
Java: class hierarchy, polymorphism

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 4, 17 January 2023

A Java class

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{

private String name;

private double salary;

// Some Constructors ...

// "mutator" methods

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

// "accessor" methods

public String getName(){ ... }

public double getSalary(){ ... }

// other methods

public double bonus(float percent){

return (percent/100.0)*salary;

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 2 / 24

A Java class

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{

private String name;

private double salary;

// Some Constructors ...

// "mutator" methods

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

// "accessor" methods

public String getName(){ ... }

public double getSalary(){ ... }

// other methods

public double bonus(float percent){

return (percent/100.0)*salary;

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 2 / 24

A Java class

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{

private String name;

private double salary;

// Some Constructors ...

// "mutator" methods

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

// "accessor" methods

public String getName(){ ... }

public double getSalary(){ ... }

// other methods

public double bonus(float percent){

return (percent/100.0)*salary;

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 2 / 24

A Java class

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{

private String name;

private double salary;

// Some Constructors ...

// "mutator" methods

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

// "accessor" methods

public String getName(){ ... }

public double getSalary(){ ... }

// other methods

public double bonus(float percent){

return (percent/100.0)*salary;

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 2 / 24

A Java class

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{

private String name;

private double salary;

// Some Constructors ...

// "mutator" methods

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

// "accessor" methods

public String getName(){ ... }

public double getSalary(){ ... }

// other methods

public double bonus(float percent){

return (percent/100.0)*salary;

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 2 / 24

Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 3 / 24

Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 3 / 24

Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 3 / 24

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 4 / 24

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 4 / 24

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{

...

public Employee(String n, double s){

name = n; salary = s;

}

public Employee(String n){

this(n,500.00);

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 4 / 24

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{

...

public Employee(String n, double s){

name = n; salary = s;

}

public Employee(String n){

this(n,500.00);

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 4 / 24

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{

...

public Employee(String n, double s){

name = n; salary = s;

}

public Employee(String n){

this(n,500.00);

}

}

public class Manager extends Employee{

..

public Manager(String n, double s, String sn){

super(n,s); /* super calls

Employee constructor */

secretary = sn;

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 4 / 24

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

But the following will not work

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 5 / 24

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

But the following will not work

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 5 / 24

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

Employee e = new Manager(...)

But the following will not work

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 5 / 24

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

Employee e = new Manager(...)

But the following will not work

Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 5 / 24

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

Employee e = new Manager(...)

But the following will not work

Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 5 / 24

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

Employee e = new Manager(...)

But the following will not work

Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Employee[] e = new Manager[100];

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 5 / 24

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 6 / 24

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 6 / 24

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 6 / 24

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 6 / 24

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 6 / 24

Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus

correctly!

Recall the event simulation loop that
motivated Simula to introduce
objects

Also referred to as runtime
polymorphism or inheritance
polymorphism

Different from structural
polymorphism of Haskell etc — called
generics in Java

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager m = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0));

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 7 / 24

Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus

correctly!

Recall the event simulation loop that
motivated Simula to introduce
objects

Also referred to as runtime
polymorphism or inheritance
polymorphism

Different from structural
polymorphism of Haskell etc — called
generics in Java

Q := make-queue(first event)

repeat

remove next event e from Q

simulate e

place all events generated

by e on Q

until Q is empty

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 7 / 24

Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus

correctly!

Recall the event simulation loop that
motivated Simula to introduce
objects

Also referred to as runtime
polymorphism or inheritance
polymorphism

Different from structural
polymorphism of Haskell etc — called
generics in Java

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager m = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0));

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 7 / 24

Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus

correctly!

Recall the event simulation loop that
motivated Simula to introduce
objects

Also referred to as runtime
polymorphism or inheritance
polymorphism

Different from structural
polymorphism of Haskell etc — called
generics in Java

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager m = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0));

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 7 / 24

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have different functions with the
same name and different signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 8 / 24

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have different functions with the
same name and different signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 8 / 24

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have different functions with the
same name and different signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 8 / 24

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have different functions with the
same name and different signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 8 / 24

Functions, signatures and overloading

Overloading: multiple methods,
different signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 9 / 24

Functions, signatures and overloading

Overloading: multiple methods,
different signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 9 / 24

Functions, signatures and overloading

Overloading: multiple methods,
different signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 9 / 24

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 10 / 24

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 10 / 24

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 10 / 24

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 10 / 24

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;

long nd = (long) d;

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 10 / 24

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;

long nd = (long) d;

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 10 / 24

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;

long nd = (long) d;

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 10 / 24

Multiple inheritance

C1 C2

C3 extends C1,C2

Can a subclass extend multiple parent classes?

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 11 / 24

Multiple inheritance

C1 C2

C3 extends C1,C2

public int f(); public int f();

Can a subclass extend multiple parent classes?

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 11 / 24

Multiple inheritance

C1 C2

C3 extends C1,C2

public int f(); public int f();

Can a subclass extend multiple parent classes?

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 11 / 24

Multiple inheritance

C1 C2

C3 extends C1,C2

public int f(); public int f();

Can a subclass extend multiple parent classes?

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 11 / 24

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 12 / 24

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 12 / 24

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 12 / 24

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 12 / 24

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 12 / 24

Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 13 / 24

Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 13 / 24

Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 13 / 24

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 14 / 24

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 14 / 24

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 14 / 24

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

public boolean equals(Object d){

if (d instanceof Date){

Date myd = (Date) d;

return ((this.day == myd.day) &&

(this.month == myd.month) &&

(this.year == myd.year));

}

return(false);

}

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 14 / 24

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 15 / 24

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 15 / 24

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 15 / 24

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 15 / 24

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 15 / 24

Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 16 / 24

Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 16 / 24

Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 16 / 24

Subtyping vs inheritance

Recall the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 17 / 24

Subtyping vs inheritance

Recall the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 17 / 24

Subtyping vs inheritance

Recall the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 17 / 24

Subtyping vs inheritance

Recall the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 17 / 24

Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 18 / 24

Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 18 / 24

Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 18 / 24

Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 18 / 24

Modifiers in Java

Java uses many modifiers in declarations, to cover different features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where different combinations make sense

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 19 / 24

Modifiers in Java

Java uses many modifiers in declarations, to cover different features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where different combinations make sense

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 19 / 24

Modifiers in Java

Java uses many modifiers in declarations, to cover different features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where different combinations make sense

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 19 / 24

Modifiers in Java

Java uses many modifiers in declarations, to cover different features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where different combinations make sense

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 19 / 24

Modifiers in Java

Java uses many modifiers in declarations, to cover different features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where different combinations make sense

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 19 / 24

Modifiers in Java

Java uses many modifiers in declarations, to cover different features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where different combinations make sense

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 19 / 24

public vs private

Faithful implementation of
encapsulation necessitates modifiers
public and private

Typically, instance variables are
private

Methods to query (accessor) and
update (mutator) the state are public

Can private methods make sense?

Example: a Stack class

Data stored in a private array

Public methods to push, pop, query if
empty

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 20 / 24

public vs private

Faithful implementation of
encapsulation necessitates modifiers
public and private

Typically, instance variables are
private

Methods to query (accessor) and
update (mutator) the state are public

Can private methods make sense?

Example: a Stack class

Data stored in a private array

Public methods to push, pop, query if
empty

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 20 / 24

public vs private

Faithful implementation of
encapsulation necessitates modifiers
public and private

Typically, instance variables are
private

Methods to query (accessor) and
update (mutator) the state are public

Can private methods make sense?

Example: a Stack class

Data stored in a private array

Public methods to push, pop, query if
empty

public class Stack {

private int[] values; // array of values

private int tos; // top of stack

private int size; // values.length

/* Constructors to set up values array */

public void push (int i){

....

}

public int pop (){

...

}

public boolean is_empty (){

return (tos == 0);

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 20 / 24

private methods

Example: a Stack class

Data stored in a private array

Public methods to push, pop, query if
empty

push() needs to check if stack has
space

Deal gracefully with stack overflow

private methods invoked from within
push() to check if stack is full and
expand storage

public class Stack {

private int[] values; // array of values

private int tos; // top of stack

private int size; // values.length

/* Constructors to set up values array */

public void push (int i){

....

}

public int pop (){

...

}

public boolean is_empty (){

return (tos == 0);

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 21 / 24

private methods

Example: a Stack class

Data stored in a private array

Public methods to push, pop, query if
empty

push() needs to check if stack has
space

Deal gracefully with stack overflow

private methods invoked from within
push() to check if stack is full and
expand storage

public class Stack {

...

public void push (int i){

if (tos < size){

values[tos] = i;

tos = tos+1;

}else{

// Deal with stack overflow

}

...

}

...

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 21 / 24

private methods

Example: a Stack class

Data stored in a private array

Public methods to push, pop, query if
empty

push() needs to check if stack has
space

Deal gracefully with stack overflow

private methods invoked from within
push() to check if stack is full and
expand storage

public class Stack {

...

public void push (int i){

if (stack_full()){

extend_stack();

}

... // Usual push operations

}

...

private boolean stack_full(){

return(tos == size);

}

private void extend_stack(){

/* Allocate additional space,

reset size etc */

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 21 / 24

Accessor and mutator methods

Public methods to query and update
private instance variables

Date class

Private instance variables day, month,
year

One public accessor/mutator method
per instance variable

Inconsistent updates are now possible

Separately set invalid combinations of
day and month

Instead, allow only combined update

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 22 / 24

Accessor and mutator methods

Public methods to query and update
private instance variables

Date class

Private instance variables day, month,
year

One public accessor/mutator method
per instance variable

Inconsistent updates are now possible

Separately set invalid combinations of
day and month

Instead, allow only combined update

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDay(int d) {...}

public void setMonth(int m) {...}

public void setYear(int y) {...}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 22 / 24

Accessor and mutator methods

Public methods to query and update
private instance variables

Date class

Private instance variables day, month,
year

One public accessor/mutator method
per instance variable

Inconsistent updates are now possible

Separately set invalid combinations of
day and month

Instead, allow only combined update

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDay(int d) {...}

public void setMonth(int m) {...}

public void setYear(int y) {...}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 22 / 24

Accessor and mutator methods

Public methods to query and update
private instance variables

Date class

Private instance variables day, month,
year

One public accessor/mutator method
per instance variable

Inconsistent updates are now possible

Separately set invalid combinations of
day and month

Instead, allow only combined update

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDate(int d, int m, int y) {

...

// Validate d-m-y combination

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 22 / 24

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 23 / 24

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 23 / 24

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 23 / 24

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

public class Order {

private static int lastorderid = 0;

private int orderid;

....

public Order(...) {

lastorderid++;

orderid = lastorderid;

...

}

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 23 / 24

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

public class Order {

private static int lastorderid = 0;

private int orderid;

....

public Order(...) {

lastorderid++;

orderid = lastorderid;

...

}

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 23 / 24

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

public class Order {

private static int lastorderid = 0;

private int orderid;

....

public Order(...) {

lastorderid++;

orderid = lastorderid;

...

}

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 23 / 24

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

public class Order {

private static int lastorderid = 0;

private int orderid;

....

public Order(...) {

lastorderid++;

orderid = lastorderid;

...

}

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 23 / 24

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 24 / 24

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 24 / 24

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 24 / 24

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 24 / 24

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 4, 17 Jan 2023 24 / 24

