Java: control flow, classes

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 3, 12 January 2023



Built-in datatypes

m Eight primitive scalar types

int, long, short, byte
float, double
char

boolean

m String is a built-in class

Constants enclosed in double quotes
+ is overloaded for concatenation
Strings are immutable

String s = "Hello", t = "world";
String u =s + " " + t;

// "Hello world"
s.substring(0,3) + "p!";
// s is now "Help!"

s =

m Arrays are also objects

m Size of the array can vary

m Array constants: {vl, v2, v3}

int[] a;

int n;

n = 10;

a = new int[n];
n = 20;

a = new int[n];

{2, 3, 5, 7, 11};

V)
]

Madhavan Mukund/S P Suresh

Java: control flow, classes

PLC, Lecture 3, 12 Jan 2023

2/15



Control flow

m Program layout
m Statements end with semi-colon

m Blocks of statements delimited by braces

m Conditional execution

m if (condition) { ... } else { ... }

m Conditional loops

m while (condition) { ... }
mdo { ... } while (condition)
m [teration

m Two kinds of for

Multiway branching — switch

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 3/15



Conditional execution

m if () {"'} else {"'} public class MyClass {

m else is optional
m Condition must be in parentheses

m If body is a single statement, braces are not public static int sign(int v) {
needed if (v < 0) {
return(-1);

m No elif, a la Python } else if (v > 0) {

m Indentation is not forced return(1);
m Just align else if b else {

] ] return(0) ;
m Nested if is a single statement, no separate }

braces required }
m No surprises

m Aside: no def for function definition

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 4/15



Conditional loops

m while (c¢) {...}

m Condition must be in parentheses

m If body is a single statement, braces are not

needed

mdo {...} while (c)
m Condition is checked at the end
m At least one iteration
m Useful for interactive user input

do {
read input;
} while (input-condition);

of the loop

public class MyClass {

public static int sumupto(int n) A

}

int sum = O;

while (n > 0){

sum += n;
n--;
}
return(sum) ;

Madhavan Mukund/S P Suresh

Java: control flow, classes

PLC, Lecture 3, 12 Jan 2023



for loop is inherited from C

for (init; cond; upd) {...}
m init is initialization
m cond is terminating condition

m upd is update

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to
i=0;
while (i < n) {

i++;

)

}

public class MyClass {

public static int sumarray(int[] a) {

int sum = O;
int n = a.length;

int i;
for (i = 0; 1 < mn; i++){

sum += ali];

}

return(sum) ;

Madhavan Mukund/S P Suresh

: control flow, classes

PLC, Lecture 3, 12 Jan 2023



m Intended use is

public class MyClass {
for(i = 0; 1 < n; i++){...}

m Completely equivalent to

i=0; public static int sumarray(int[] a) {
while (i < n) { int sum = 0;

i++; int n = a.length;
} int i;

m However, not good style to write for

. ) for (i = 0; 1 < mn; i++){
instead of while

sum += ali];
m Can define loop variable within loop ¥
m The scope of i is local to the loop return (sum) ;

m An instance of more general local b
scoping allowed in Java

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023



lterating over elements directly

m Java later introduced a for in the style of

ublic class MyClass {
Python P v

for x in 1:

do something with x
public static int sumarray(int[] a) {

m Again for, different syntax int sum = 0;

for (type x : a) int n = a.length;

do something with x;

} for (int v : a){
sum += v;
m It appears that loop variable must be }
declared in local scope for this version of
for return(sum) ;
}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023



Multiway branching

m switch selects between different public static void printsign(int v) {
switch (v) {

options
case -1: {
m Be careful, default is to “fall System.out.println("Negative");
through” from one case to the next break;

}

icitly b k
m Need to explicitly break out of case 1: {

switch
Wi System.out.println("Positive");
m break available for loops as well break;
m Check the Java documentation ¥
case 0: {
m Options have to be constants System.out.println("Zero");
m Cannot use conditional expressions break;
}
m Aside: here return type is void }
m Non-void return type requires an b

appropriate return value

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 9/15



Classes and objects

m A class is a template for an encapsulated type
m An object is an instance of a class
m How do we create objects?

m How are objects initialized?

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 10/15



Defining a class

m Definition block using class, with class name

m Modifier public to indicate visibility public class Date {

m Java allows public to be omitted private int day, month, year;

m Default visibility is public to package

Packages are administrative units of code
m All classes defined in same directory form part
of same package
m Instance variables

m Each concrete object of type Date will have
local copies of date, month, year

m These are marked private

m Can also have public instance variables, but
breaks encapsulation

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 11/15



Creating objects

m Declare type using class name

B new creates a new object

m How do we set the instance variables?

m Can add methods to update values
m this is a reference to current object

m Can omit this if reference is unambiguous

m What if we want to check the values?

m Methods to read and report values

m Accessor and Mutator methods

public void UseDate() {
Date d;
d = new Date();

public class Date {
private int day, month, year;

public void setDate(int d, int m,
int y){
this.day = d;
this.month = m;
this.year = y;
}
}

Madhavan Mukund/S P Suresh Java: control flow, classes

PLC, Lecture 3, 12 Jan 2023 12/15



Initializing objects

m Would be good to set up an object when we public class Date {
private int day, month, year;

create it
m Combine new Date() and setDate() public Date(int d, int m, int y){
. . day = d;
m Constructors — special functions called when o
. . month = m;
an object is created year = y;
m Function with the same name as the class +
m d = new Date(13,8,2015); ¥
m Constructors with different signatures public class Date {
m d = new Date(13,8); sets year to 2022 private int day, month, year;
m Java allgws funct.lon overloading — same public Date(int d, int m, int y){
name, different signatures dav = d:
ay = d;
m Python: default (optional) arguments, no month = m;
overloading year = y;

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 13/15



Constructors . ..

m A later constructor can call an earlier one using ~Public class Date {
private int day, month, year;

this
m If no constructor is defined, Java provides a public Date(int d, int m, int y){
default constructor with empty arguments day = d;
month = m;
m new Date() would implicitly invoke this year = y;

m Sets instance variables to sensible defaults }

m For instance, int variables set to 0
public Date(int d, int m){

m Only valid if no constructor is defined this(d,m,2022);

Otherwise need an explicit constructor without +
arguments i

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 14 /15



Copy constructors

m Create a new object from an existing one public class Date {

private int day, month, year;
m Copy constructor takes an object of the same

type as argument public Date(Date d){
this.day = d.day;
this.month = d.month;
m Use object name to disambiguate which this.year = d.year;

instance variables we are talking about }

m Copies the instance variables

m Note that private instance variables of
argument are visible
public void UseDate() {
m Shallow copy vs deep copy Date di,d2;
m Want new object to be disjoint from old one dl = new Date(12,4,1954);

m If instance variable are objects, we may end up d2 = new.Date(d1);

aliasing rather than copying

m Discuss later — cloning objects

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023



