
Introduction

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 1, 5 January 2023



What this course is about

Haskell, Python, C, C++, Java, . . . ,
Swift, Go, Rust, . . .

What is common? What are the
differences?

Styles of programming

Declarative — what is to be done

Imperative — how to do it

Sum a list of numbers

Declarative

sum [] = 0

sum (x:xs) = x + sum xs

Imperative

sum = 0

for x in l:

sum = sum + x

Madhavan Mukund/S P Suresh Introduction PLC, Lecture 1, 5 Jan 2023 2 / 17



Imperative programming

Variables — types, storage allocation

Control flow

Abstraction

Control flow — functions and procedures

Data — complex data structures

Abstract datatypes

Public interface

Private implementation

Madhavan Mukund/S P Suresh Introduction PLC, Lecture 1, 5 Jan 2023 3 / 17



Course outline

Imperative programming

Object oriented programming

Concurrent programming

Language support for concurrency

Dealing with errors and exceptions

Event driven programming

Graphical user interfaces, react to
mouse clicks etc

Java as a concrete example language
to illustrate concepts

Declarative programming

Haskell and relatives

Foundations — λ calculus

Types and type inference

Madhavan Mukund/S P Suresh Introduction PLC, Lecture 1, 5 Jan 2023 4 / 17



Abstraction, modularity, object-oriented programming

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 1, 5 January 2023



Stepwise refinement

Begin with a high level description of
the task

Refine the task into subtasks

Further elaborate each subtask

Subtasks can be coded by different
people

Program refinement — focus on
code, not much change in data
structures

begin

print first thousand prime numbers

end

begin

declare table p

fill table p with first thousand primes

print table p

end

begin

integer array p[1:1000]

for k from 1 through 1000

make p[k] equal to the kth prime number

for k from 1 through 1000

print p[k]

endMadhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 1, 5 Jan 2023 6 / 17



Data refinement

Banking application

Typical functions: CreateAccount(), Deposit()/Withdraw(), PrintStatement()

How do we represent each account?

Only need the current balance

Overall, an array of balances

Refine PrintStatement() to include PrintTransactions()

Now we need to record transactions for each account

Data representation also changes

Cascading impact on other functions that operate on accounts

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 1, 5 Jan 2023 7 / 17



Modular software development

Use refinement to divide the solution into components

Build a prototype of each component to validate design

Components are described in terms of

Interfaces — what is visible to other components, typically function calls

Specification — behaviour of the component, as visible through interface

Improve each component independently, preserving interface and specification

Simplest example of a component: a function

Interfaces — function header, arguments and return type

Specification — intended input-output behaviour

Main challenge: suitable language to write specifications

Balance abstraction and detail, should not be another programming language!

Cannot algorithmically check that specification is met (halting problem!)

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 1, 5 Jan 2023 8 / 17



Programming language support for abstraction

Control abstraction

Functions and procedures

Encapsulate a block of code, reuse in different contexts

Data abstraction

Abstract data types (ADTs)

Set of values along with operations permitted on them

Internal representation should not be accessible

Interaction restricted to public interface

For example, when a stack is implemented as a list, we should not be able to observe or
modify internal elements

Object-oriented programming

Organize ADTs in a hierarchy

Implicit reuse of implementations — subtyping, inheritance

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 1, 5 Jan 2023 9 / 17



Objects

An object is like an abstract datatype

Hidden data with set of public operations

All interaction through operations — messages, methods, member-functions, . . .

Uniform way of encapsulating different combinations of data and functionality

An object can hold single integer — e.g., a counter

An entire filesystem or database could be a single object

Distinguishing features of object-oriented programming

Abstraction

Subtyping

Dynamic lookup

Inheritance

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 1, 5 Jan 2023 10 / 17



History of object-oriented programming

Objects first introduced in Simula —
simulation language, 1960s

Event-based simulation follows a basic pattern

Maintain a queue of events to be simulated

Simulate the event at the head of the queue

Add all events it spawns to the queue

Challenges

Queue must be well-typed, yet hold all types
of events

Use a generic simulation operation across
different types of events

Avoid elaborate checking of cases

Q := make-queue(first event)

repeat

remove next event e from Q

simulate e

place all events generated

by e on Q

until Q is empty

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 1, 5 Jan 2023 11 / 17



Abstraction

Objects are similar to abstract datatypes

Public interface

Private implementation

Changing the implementation should not affect interactions with the object

Data-centric view of programming

Focus on what data we need to maintain and manipulate

Recall that stepwise refinement could affect both code and data

Tying methods to data makes this easier to coordinate

Refining data representation naturally tied to updating methods that operate on the
data

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 1, 5 Jan 2023 12 / 17



Subtyping

Recall the Simula event queue

A well-typed queue holds values of a fixed type

In practice, the queue holds different types of objects

How can this be reconciled?

Arrange types in a hierarchy

A subtype is a specialization of a type

If A is a subtype of B, wherever an object of type B is needed, an object of type A can
be used

Every object of type A is also an object of type B

Think subset — if X ⊆ Y , every x ∈ X is also in Y

If f() is a method in B and A is a subtype of B, every object of A also supports f()

Implementation of f() can be different in A

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 1, 5 Jan 2023 13 / 17



Dynamic lookup

Whether a method can be invoked on an object is a static property — type-checking

How the method acts is a dynamic property of how the object is implemented

In the simulation queue, all events support a simulate method

The action triggered by the method depends on the type of event

In a graphics application, different types of objects to be rendered

Invoke using the same operation, each object “knows” how to render itself

Different from overloading

Operation + is addition for int and float

Internal implementation is different, but choice is determined by static type

Dynamic lookup

A variable v of type B can refer to an object of subtype A

Static type of v is B, but method implementation depends on run-time type A

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 1, 5 Jan 2023 14 / 17



Inheritance

Re-use of implementations

Example: different types of employees

Employee objects store basic personal data, date of joining

Manager objects can add functionality

Retain basic data of Employee objects

Additional fields and functions: date of promotion, seniority (in current role)

Usually one hierarchy of types to capture both subtyping and inheritance

A can inherit from B iff A is a subtype of B

Philosophically, however the two are different

Subtyping is a relationship of interfaces

Inheritance is a relationship of implementations

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 1, 5 Jan 2023 15 / 17



Subtyping vs inheritance

A deque is a double-ended queue

Supports insert-front(), delete-front(), insert-rear() and delete-rear()

We can implement a stack or a queue using a deque

Stack: use only insert-front(), delete-front(),

Queue: use only insert-rear(), delete-front(),

Stack and Queue inherit from Deque — reuse implementation

But Stack and Queue are not subtypes of Deque

If v of type Deque points an object of type Stack, cannot invoke insert-rear(),
delete-rear()

Similarly, no insert-front(), delete-rear() in Queue

Interfaces of Stack and Queue are not compatible with Deque

In fact, Deque is a subtype of both Stack and Queue
Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 1, 5 Jan 2023 16 / 17



Summary

Solving a complex task requires breaking it down into manageable components

Top down: refine the task into subtasks; Bottom up: combine simple building blocks

Modular description of components — interface and specification

Build prototype implementation to validate design
Reimplement the components independently, preserving interface and specification

PL support for abstraction

Control flow: functions and procedures
Data: Abstract data types, object-oriented programming

Distinguishing features of object-oriented programming

Abstraction: Public interface, private implementation, like ADTs

Subtyping: Hierarchy of types, compatibility of interfaces

Dynamic lookup: Choice of method implementation is determined at run-time

Inheritance: Reuse of implementations

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 1, 5 Jan 2023 17 / 17


