
Java: Reflection, Cloning

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 12, 16 February 2023

Reflection

Wikipedia

Reflective programming or reflection is the ability of a process to examine, introspect,
and modify its own structure and behaviour.

Two components involved in reflection

Introspection

A program can observe, and therefore reason about its own state.

Intercession

A program can modify its execution state or alter its own interpretation or meaning.

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 2 / 25

Reflection

Wikipedia

Reflective programming or reflection is the ability of a process to examine, introspect,
and modify its own structure and behaviour.

Two components involved in reflection

Introspection

A program can observe, and therefore reason about its own state.

Intercession

A program can modify its execution state or alter its own interpretation or meaning.

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 2 / 25

Reflection

Wikipedia

Reflective programming or reflection is the ability of a process to examine, introspect,
and modify its own structure and behaviour.

Two components involved in reflection

Introspection

A program can observe, and therefore reason about its own state.

Intercession

A program can modify its execution state or alter its own interpretation or meaning.

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 2 / 25

Reflection

Wikipedia

Reflective programming or reflection is the ability of a process to examine, introspect,
and modify its own structure and behaviour.

Two components involved in reflection

Introspection

A program can observe, and therefore reason about its own state.

Intercession

A program can modify its execution state or alter its own interpretation or meaning.

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 2 / 25

Reflection in Java

Simple example of introspection
Employee e = new Manager(...);

...

if (e instanceof Manager){

...

}

What if we don’t know the type that we want to check in advance?

Suppose we want to write a function to check if two di↵erent objects are both
instances of the same class?

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 3 / 25

Reflection in Java

Simple example of introspection
Employee e = new Manager(...);

...

if (e instanceof Manager){

...

}

What if we don’t know the type that we want to check in advance?

Suppose we want to write a function to check if two di↵erent objects are both
instances of the same class?

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 3 / 25

Reflection in Java

Simple example of introspection
Employee e = new Manager(...);

...

if (e instanceof Manager){

...

}

What if we don’t know the type that we want to check in advance?

Suppose we want to write a function to check if two di↵erent objects are both
instances of the same class?
public static boolean classequal(Object o1, Object o2){

...

// return true iff o1 and o2 point to objects of same type

...

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 3 / 25

. a

Reflection in Java . . .

public static boolean classequal(Object o1, Object o2){...}

Can’t use instanceof

Will have to check across all defined classes

This is not even a fixed set!

Can’t use generic type variables

The following code is syntactically disallowed

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 4 / 25

Reflection in Java . . .

public static boolean classequal(Object o1, Object o2){...}

Can’t use instanceof

Will have to check across all defined classes

This is not even a fixed set!

Can’t use generic type variables

The following code is syntactically disallowed

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 4 / 25

Reflection in Java . . .

public static boolean classequal(Object o1, Object o2){...}

Can’t use instanceof

Will have to check across all defined classes

This is not even a fixed set!

Can’t use generic type variables

The following code is syntactically disallowed
if (o1 instance of T) { ...}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 4 / 25

arraycopy(Is set

Introspection in Java

Can extract the class of an object using getClass()

Import package java.lang.reflect

What does getClass() return?

An object of type Class that encodes class information

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 5 / 25

Introspection in Java

Can extract the class of an object using getClass()

Import package java.lang.reflect

import java.lang.reflect.*;

class MyReflectionClass{

...

public static boolean classequal(Object o1, Object o2){

return (o1.getClass() == o2.getClass());

}

}

What does getClass() return?

An object of type Class that encodes class information

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 5 / 25

Introspection in Java

Can extract the class of an object using getClass()

Import package java.lang.reflect

import java.lang.reflect.*;

class MyReflectionClass{

...

public static boolean classequal(Object o1, Object o2){

return (o1.getClass() == o2.getClass());

}

}

What does getClass() return?

An object of type Class that encodes class information

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 5 / 25

Introspection in Java

Can extract the class of an object using getClass()

Import package java.lang.reflect

import java.lang.reflect.*;

class MyReflectionClass{

...

public static boolean classequal(Object o1, Object o2){

return (o1.getClass() == o2.getClass());

}

}

What does getClass() return?

An object of type Class that encodes class information

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 5 / 25

The class Class

A version of classequal the explicitly uses this fact

import java.lang.reflect.*;

class MyReflectionClass{

...

public static boolean classequal(Object o1, Object o2){

Class c1, c2;

c1 = o1.getClass();

c2 = o2.getClass();

return (c1 == c2);

}

}

For each currently loaded class C, Java creates an object of type Class with
information about C

Encoding execution state as data — reification
Representing an abstract idea in a concrete form

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 6 / 25

The class Class

A version of classequal the explicitly uses this fact

import java.lang.reflect.*;

class MyReflectionClass{

...

public static boolean classequal(Object o1, Object o2){

Class c1, c2;

c1 = o1.getClass();

c2 = o2.getClass();

return (c1 == c2);

}

}

For each currently loaded class C, Java creates an object of type Class with
information about C

Encoding execution state as data — reification
Representing an abstract idea in a concrete form

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 6 / 25

The class Class

A version of classequal the explicitly uses this fact

import java.lang.reflect.*;

class MyReflectionClass{

...

public static boolean classequal(Object o1, Object o2){

Class c1, c2;

c1 = o1.getClass();

c2 = o2.getClass();

return (c1 == c2);

}

}

For each currently loaded class C, Java creates an object of type Class with
information about C

Encoding execution state as data — reification
Representing an abstract idea in a concrete form

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 6 / 25

Using the Class object

Can create new instances of a class at runtime

...

Class c = obj.getClass();

Object o = c.newInstance();

// Create a new object of same type as obj

...

Can also get hold of the class object using the name of the class

. . . , or, more compactly

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 7 / 25

⑥

Using the Class object

Can create new instances of a class at runtime

...

Class c = obj.getClass();

Object o = c.newInstance();

// Create a new object of same type as obj

...

Can also get hold of the class object using the name of the class

...

String s = "Manager".

Class c = Class.forName(s);

Object o = c.newInstance();

...

. . . , or, more compactly

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 7 / 25

Imanger

Using the Class object

Can create new instances of a class at runtime

...

Class c = obj.getClass();

Object o = c.newInstance();

// Create a new object of same type as obj

...

Can also get hold of the class object using the name of the class

...

String s = "Manager".

Class c = Class.forName(s);

Object o = c.newInstance();

...

. . . , or, more compactly

...

Object o = Class.forName("Manager").newInstance();

...
Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 7 / 25

--

The class Class . . .

From the Class object for class C, we can extract details about constructors,
methods and fields of C

Constructors, methods and fields themselves have structure

Constructors: arguments

Methods : arguments and return type

All three: modifiers static, private etc

Additional classes Constructor, Method, Field

Use getConstructors(), getMethods() and getFields() to obtain
constructors, methods and fields of C in an array.

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 8 / 25

The class Class . . .

From the Class object for class C, we can extract details about constructors,
methods and fields of C

Constructors, methods and fields themselves have structure

Constructors: arguments

Methods : arguments and return type

All three: modifiers static, private etc

Additional classes Constructor, Method, Field

Use getConstructors(), getMethods() and getFields() to obtain
constructors, methods and fields of C in an array.

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 8 / 25

The class Class . . .

From the Class object for class C, we can extract details about constructors,
methods and fields of C

Constructors, methods and fields themselves have structure

Constructors: arguments

Methods : arguments and return type

All three: modifiers static, private etc

Additional classes Constructor, Method, Field

Use getConstructors(), getMethods() and getFields() to obtain
constructors, methods and fields of C in an array.

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 8 / 25

The class Class . . .

From the Class object for class C, we can extract details about constructors,
methods and fields of C

Constructors, methods and fields themselves have structure

Constructors: arguments

Methods : arguments and return type

All three: modifiers static, private etc

Additional classes Constructor, Method, Field

Use getConstructors(), getMethods() and getFields() to obtain
constructors, methods and fields of C in an array.

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 8 / 25

The class Class . . .

Extracting information about constructors, methods and fields

...

Class c = obj.getClass();

Constructor[] constructors = c.getConstructors();

Method[] methods = c.getMethods();

Field[] fields = c.getFields();

...

Constructor, Method, Field in turn have functions to get further details

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 9 / 25

The class Class . . .

Extracting information about constructors, methods and fields

...

Class c = obj.getClass();

Constructor[] constructors = c.getConstructors();

Method[] methods = c.getMethods();

Field[] fields = c.getFields();

...

Constructor, Method, Field in turn have functions to get further details

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 9 / 25

The class Class . . .

Example: Get the list of parameters for each constructor

...

Class c = obj.getClass();

Constructor[] constructors = c.getConstructors();

for (int i = 0; i < constructors.length; i++){

Class params[] = constructors[i].getParameterTypes();

..

}

Each parameter list is a list of types

Return value is an array of type Class[]

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 10 / 25

The class Class . . .

Example: Get the list of parameters for each constructor

...

Class c = obj.getClass();

Constructor[] constructors = c.getConstructors();

for (int i = 0; i < constructors.length; i++){

Class params[] = constructors[i].getParameterTypes();

..

}

Each parameter list is a list of types

Return value is an array of type Class[]

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 10 / 25

The class Class . . .

We can also invoke methods and examine/set values of fields.

...

Class c = obj.getClass();

..

Method[] methods = c.getMethods();

Object[] args = { ... }

// construct an array of arguments

methods[3].invoke(obj,args);

// invoke methods[3] on obj with arguments args

...

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 11 / 25

The class Class . . .

We can also invoke methods and examine/set values of fields.

...

Class c = obj.getClass();

..

Method[] methods = c.getMethods();

Object[] args = { ... }

// construct an array of arguments

methods[3].invoke(obj,args);

// invoke methods[3] on obj with arguments args

...

Field[] fields = c.getFields();

Object o = fields[2].get(obj);

// get the value of fields[2] from obj

...

fields[3].set(obj,value);

// set the value of fields[3] in obj to value

...

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 11 / 25

Reflection and security

Can we extract information about private methods, fields, . . . ?

getConstructors(), . . . only return publicly defined values

Separate functions to also include private components

getDeclaredConstructors()

getDeclaredMethods()

getDeclaredFields()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 12 / 25

Reflection and security

Can we extract information about private methods, fields, . . . ?

getConstructors(), . . . only return publicly defined values

Separate functions to also include private components

getDeclaredConstructors()

getDeclaredMethods()

getDeclaredFields()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 12 / 25

Reflection and security

Can we extract information about private methods, fields, . . . ?

getConstructors(), . . . only return publicly defined values

Separate functions to also include private components

getDeclaredConstructors()

getDeclaredMethods()

getDeclaredFields()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 12 / 25

Reflection and security

Can we extract information about private methods, fields, . . . ?

getConstructors(), . . . only return publicly defined values

Separate functions to also include private components

getDeclaredConstructors()

getDeclaredMethods()

getDeclaredFields()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 12 / 25

Reflection and security

Can we extract information about private methods, fields, . . . ?

getConstructors(), . . . only return publicly defined values

Separate functions to also include private components

getDeclaredConstructors()

getDeclaredMethods()

getDeclaredFields()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 12 / 25

Reflection and security

Can we extract information about private methods, fields, . . . ?

getConstructors(), . . . only return publicly defined values

Separate functions to also include private components

getDeclaredConstructors()

getDeclaredMethods()

getDeclaredFields()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 12 / 25

Using reflection

BlueJ, a programming environment to learn Java

Can define and compile Java classes

For compiled code, create object, invoke methods, examine state

Uses reflective capabilities of Java — BlueJ need not internally maintain
“debugging” information about each class

See http://www.bluej.org

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 13 / 25

Using reflection

BlueJ, a programming environment to learn Java

Can define and compile Java classes

For compiled code, create object, invoke methods, examine state

Uses reflective capabilities of Java — BlueJ need not internally maintain
“debugging” information about each class

See http://www.bluej.org

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 13 / 25

Using reflection

BlueJ, a programming environment to learn Java

Can define and compile Java classes

For compiled code, create object, invoke methods, examine state

Uses reflective capabilities of Java — BlueJ need not internally maintain
“debugging” information about each class

See http://www.bluej.org

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 13 / 25

Using reflection

BlueJ, a programming environment to learn Java

Can define and compile Java classes

For compiled code, create object, invoke methods, examine state

Uses reflective capabilities of Java — BlueJ need not internally maintain
“debugging” information about each class

See http://www.bluej.org

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 13 / 25

Using reflection

BlueJ, a programming environment to learn Java

Can define and compile Java classes

For compiled code, create object, invoke methods, examine state

Uses reflective capabilities of Java — BlueJ need not internally maintain
“debugging” information about each class

See http://www.bluej.org

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 13 / 25

Limitations of Java reflection

Cannot create or modify classes at run time

The following is not possible
Class c = new Class(....);

An environment like BlueJ must invoke Java compiler before you can use a new class

Contrast with Python
class XYZ: can be executed at runtime in Python

Other OO languages like Smalltalk allow redefining methods at run time

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 14 / 25

Limitations of Java reflection

Cannot create or modify classes at run time

The following is not possible
Class c = new Class(....);

An environment like BlueJ must invoke Java compiler before you can use a new class

Contrast with Python
class XYZ: can be executed at runtime in Python

Other OO languages like Smalltalk allow redefining methods at run time

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 14 / 25

Limitations of Java reflection

Cannot create or modify classes at run time

The following is not possible
Class c = new Class(....);

An environment like BlueJ must invoke Java compiler before you can use a new class

Contrast with Python
class XYZ: can be executed at runtime in Python

Other OO languages like Smalltalk allow redefining methods at run time

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 14 / 25

Erasure of generic information

Type erasure — Java does not keep record all versions of LinkedList<T> as
separate types

Cannot write

if (s instanceof LinkedList<String>){ ... }

At run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Or, the upper bound, if one is available

LinkedList<? extends Shape> becomes LinkedList<Shape>

Since no information about T is preserved, cannot use T in expressions like

if (o instanceof T) {...}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 15 / 25

Erasure of generic information

Type erasure — Java does not keep record all versions of LinkedList<T> as
separate types

Cannot write

if (s instanceof LinkedList<String>){ ... }

At run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Or, the upper bound, if one is available

LinkedList<? extends Shape> becomes LinkedList<Shape>

Since no information about T is preserved, cannot use T in expressions like

if (o instanceof T) {...}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 15 / 25

Erasure of generic information

Type erasure — Java does not keep record all versions of LinkedList<T> as
separate types

Cannot write

if (s instanceof LinkedList<String>){ ... }

At run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Or, the upper bound, if one is available

LinkedList<? extends Shape> becomes LinkedList<Shape>

Since no information about T is preserved, cannot use T in expressions like

if (o instanceof T) {...}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 15 / 25

Erasure of generic information

Type erasure — Java does not keep record all versions of LinkedList<T> as
separate types

Cannot write

if (s instanceof LinkedList<String>){ ... }

At run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Or, the upper bound, if one is available

LinkedList<? extends Shape> becomes LinkedList<Shape>

Since no information about T is preserved, cannot use T in expressions like

if (o instanceof T) {...}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 15 / 25

Erasure and overloading

Type erasure means the comparison in following code fragment returns True

o1 = new LinkedList<Employee>();

o2 = new LinkedList<Date>();

if (o1.getClass() == o2.getClass){

// True, so this block is executed

}

As a consequence the following overloading is illegal

Both functions have the same signature after type erasure

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 16 / 25

LinkedList<T>

↓
ILObject)

Erasure and overloading

Type erasure means the comparison in following code fragment returns True

o1 = new LinkedList<Employee>();

o2 = new LinkedList<Date>();

if (o1.getClass() == o2.getClass){

// True, so this block is executed

}

As a consequence the following overloading is illegal

public class Example {

public void printlist(LinkedList<String> strList) { }

public void printlist(LinkedList<Date> dateList) { }

}

Both functions have the same signature after type erasure

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 16 / 25

Erasure and overloading

Type erasure means the comparison in following code fragment returns True

o1 = new LinkedList<Employee>();

o2 = new LinkedList<Date>();

if (o1.getClass() == o2.getClass){

// True, so this block is executed

}

As a consequence the following overloading is illegal

public class Example {

public void printlist(LinkedList<String> strList) { }

public void printlist(LinkedList<Date> dateList) { }

}

Both functions have the same signature after type erasure

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 16 / 25

Arrays and generics

Recall the covariance problem for arrays

If S extends T then S[] extends T[]

Can lead to run time type errors

To avoid similar problems, can declare a generic array, but cannot instantiate it

An ugly workaround . . .

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 17 / 25

Arrays and generics

Recall the covariance problem for arrays

If S extends T then S[] extends T[]

Can lead to run time type errors

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr; // OK. ETicket[] is a subtype of Ticket[]

...

ticketarr[5] = new Ticket(); // Not OK. ticketarr[5] refers to an ETicket!

To avoid similar problems, can declare a generic array, but cannot instantiate it

An ugly workaround . . .

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 17 / 25

Arrays and generics

Recall the covariance problem for arrays

If S extends T then S[] extends T[]

Can lead to run time type errors

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr; // OK. ETicket[] is a subtype of Ticket[]

...

ticketarr[5] = new Ticket(); // Not OK. ticketarr[5] refers to an ETicket!

To avoid similar problems, can declare a generic array, but cannot instantiate it

T[] newarray; // OK

newarray = new T[100]; // Cannot create!

An ugly workaround . . .

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 17 / 25

NotJava syntax

Arrays and generics

Recall the covariance problem for arrays

If S extends T then S[] extends T[]

Can lead to run time type errors

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr; // OK. ETicket[] is a subtype of Ticket[]

...

ticketarr[5] = new Ticket(); // Not OK. ticketarr[5] refers to an ETicket!

To avoid similar problems, can declare a generic array, but cannot instantiate it

T[] newarray; // OK

newarray = new T[100]; // Cannot create!

An ugly workaround . . .

T[] newarray;

newarray = (T[]) new Object[100];

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 17 / 25

Arrays and generics

Recall the covariance problem for arrays

If S extends T then S[] extends T[]

Can lead to run time type errors

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr; // OK. ETicket[] is a subtype of Ticket[]

...

ticketarr[5] = new Ticket(); // Not OK. ticketarr[5] refers to an ETicket!

To avoid similar problems, can declare a generic array, but cannot instantiate it

T[] newarray; // OK

newarray = new T[100]; // Cannot create!

An ugly workaround . . . generates a compiler warning but works!

T[] newarray;

newarray = (T[]) new Object[100];

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 17 / 25

Wrapper classes

Type erasure — at run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Basic types int, float, . . . are not compatible with Object

Cannot use basic type in place of a generic type variable T

Cannot instantiate LinkedList<T> as LinkedList<int>, LinkedList<double>, . . .

Wrapper class for each basic type:

Basic type Wrapper Class
byte Byte

short Short

int Integer

long Long

Basic type Wrapper Class
float Float

double Double

boolean Boolean

char Character

All wrapper classes other than Boolean, Character extend the class Number

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 18 / 25

Wrapper classes

Type erasure — at run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Basic types int, float, . . . are not compatible with Object

Cannot use basic type in place of a generic type variable T

Cannot instantiate LinkedList<T> as LinkedList<int>, LinkedList<double>, . . .

Wrapper class for each basic type:

Basic type Wrapper Class
byte Byte

short Short

int Integer

long Long

Basic type Wrapper Class
float Float

double Double

boolean Boolean

char Character

All wrapper classes other than Boolean, Character extend the class Number

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 18 / 25

Wrapper classes

Type erasure — at run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Basic types int, float, . . . are not compatible with Object

Cannot use basic type in place of a generic type variable T

Cannot instantiate LinkedList<T> as LinkedList<int>, LinkedList<double>, . . .

Wrapper class for each basic type:

Basic type Wrapper Class
byte Byte

short Short

int Integer

long Long

Basic type Wrapper Class
float Float

double Double

boolean Boolean

char Character

All wrapper classes other than Boolean, Character extend the class Number

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 18 / 25

Wrapper classes

Type erasure — at run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Basic types int, float, . . . are not compatible with Object

Cannot use basic type in place of a generic type variable T

Cannot instantiate LinkedList<T> as LinkedList<int>, LinkedList<double>, . . .

Wrapper class for each basic type:

Basic type Wrapper Class
byte Byte

short Short

int Integer

long Long

Basic type Wrapper Class
float Float

double Double

boolean Boolean

char Character

All wrapper classes other than Boolean, Character extend the class Number

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 18 / 25

Wrapper classes

Type erasure — at run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Basic types int, float, . . . are not compatible with Object

Cannot use basic type in place of a generic type variable T

Cannot instantiate LinkedList<T> as LinkedList<int>, LinkedList<double>, . . .

Wrapper class for each basic type:

Basic type Wrapper Class
byte Byte

short Short

int Integer

long Long

Basic type Wrapper Class
float Float

double Double

boolean Boolean

char Character

All wrapper classes other than Boolean, Character extend the class Number

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 18 / 25

Wrapper classes

Converting from basic type to wrapper class and back

int x = 5;

Integer myx = Integer(x);

int y = myx.intValue();

Similarly, byteValue(), doubleValue(), . . .

Autoboxing — implicit conversion between base types and wrapper types

Use wrapper types in generic data structures

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 19 / 25

Wrapper classes

Converting from basic type to wrapper class and back

int x = 5;

Integer myx = Integer(x);

int y = myx.intValue();

Similarly, byteValue(), doubleValue(), . . .

Autoboxing — implicit conversion between base types and wrapper types

Use wrapper types in generic data structures

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 19 / 25

Wrapper classes

Converting from basic type to wrapper class and back

int x = 5;

Integer myx = Integer(x);

int y = myx.intValue();

Similarly, byteValue(), doubleValue(), . . .

Autoboxing — implicit conversion between base types and wrapper types

int x = 5;

Integer myx = x;

int y = myx;

Use wrapper types in generic data structures

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 19 / 25

3.j

Wrapper classes

Converting from basic type to wrapper class and back

int x = 5;

Integer myx = Integer(x);

int y = myx.intValue();

Similarly, byteValue(), doubleValue(), . . .

Autoboxing — implicit conversion between base types and wrapper types

int x = 5;

Integer myx = x;

int y = myx;

Use wrapper types in generic data structures

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 19 / 25

Copying an object

Normal assignment creates two
references to the same object

Updates via either name update the
object

What if we want two separate but
identical objects?

e2 should be initialized to a disjoint
copy of e1

How does one make a faithful copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1;

e2.setname("Eknath"); // e1 also updated

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 20 / 25

:EF
[

Copying an object

Normal assignment creates two
references to the same object

Updates via either name update the
object

What if we want two separate but
identical objects?

e2 should be initialized to a disjoint
copy of e1

How does one make a faithful copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1;

e2.setname("Eknath"); // e1 also updated

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 20 / 25

Copying an object

Normal assignment creates two
references to the same object

Updates via either name update the
object

What if we want two separate but
identical objects?

e2 should be initialized to a disjoint
copy of e1

How does one make a faithful copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1;

e2.setname("Eknath"); // e1 also updated

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 20 / 25

The clone() method

Object defines a method clone()

e1.clone() returns a bitwise copy of
e1

Why a bitwise copy?

Object does not have access to
private instance variables

Cannot build up a fresh copy of e1
from scratch

What could go wrong with a bitwise
copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 21 / 25

The clone() method

Object defines a method clone()

e1.clone() returns a bitwise copy of
e1

Why a bitwise copy?

Object does not have access to
private instance variables

Cannot build up a fresh copy of e1
from scratch

What could go wrong with a bitwise
copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 not updated

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 21 / 25

The clone() method

Object defines a method clone()

e1.clone() returns a bitwise copy of
e1

Why a bitwise copy?

Object does not have access to
private instance variables

Cannot build up a fresh copy of e1
from scratch

What could go wrong with a bitwise
copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 not updated

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 21 / 25

The clone() method

Object defines a method clone()

e1.clone() returns a bitwise copy of
e1

Why a bitwise copy?

Object does not have access to
private instance variables

Cannot build up a fresh copy of e1
from scratch

What could go wrong with a bitwise
copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 not updated

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 21 / 25

Shallow copy

What if we add an instance variable
Date to Employee?

Assume update() updates the
components of a Date object

Bitwise copy made by e1.clone()

copies the reference to the embedded
Date

e2.birthday and e1.birthday refer
to the same object

e2.setbday() a↵ects e1.birthday

Bitwise copy is a shallow copy

Nested mutable references are copied
verbatim

Deep copy would recursively clone
internal components

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){

name = n;

}

public void setbday(int dd, int mm, int yy){

birthday.update(dd,mm,yy);

}

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 22 / 25

-R

Shallow copy

What if we add an instance variable
Date to Employee?

Assume update() updates the
components of a Date object

Bitwise copy made by e1.clone()

copies the reference to the embedded
Date

e2.birthday and e1.birthday refer
to the same object

e2.setbday() a↵ects e1.birthday

Bitwise copy is a shallow copy

Nested mutable references are copied
verbatim

Deep copy would recursively clone
internal components

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){

name = n;

}

public void setbday(int dd, int mm, int yy){

birthday.update(dd,mm,yy);

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 name not updated

e2.setbday(16,4,1997); // e1 bday updated!

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 22 / 25

Shallow copy

What if we add an instance variable
Date to Employee?

Assume update() updates the
components of a Date object

Bitwise copy made by e1.clone()

copies the reference to the embedded
Date

e2.birthday and e1.birthday refer
to the same object

e2.setbday() a↵ects e1.birthday

Bitwise copy is a shallow copy

Nested mutable references are copied
verbatim

Deep copy would recursively clone
internal components

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){

name = n;

}

public void setbday(int dd, int mm, int yy){

birthday.update(dd,mm,yy);

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 name not updated

e2.setbday(16,4,1997); // e1 bday updated!

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 22 / 25

Shallow copy

What if we add an instance variable
Date to Employee?

Assume update() updates the
components of a Date object

Bitwise copy made by e1.clone()

copies the reference to the embedded
Date

e2.birthday and e1.birthday refer
to the same object

e2.setbday() a↵ects e1.birthday

Bitwise copy is a shallow copy

Nested mutable references are copied
verbatim

Deep copy would recursively clone
internal components

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){

name = n;

}

public void setbday(int dd, int mm, int yy){

birthday.update(dd,mm,yy);

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 name not updated

e2.setbday(16,4,1997); // e1 bday updated!

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 22 / 25

Deep copy

Deep copy recursively clones nested
objects

Override the shallow clone() from
Object

Object.clone() returns an Object

Cast super.clone()

Employee.clone() returns an
Employee

Allowed to change the return type

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 23 / 25

Deep copy

Deep copy recursively clones nested
objects

Override the shallow clone() from
Object

Object.clone() returns an Object

Cast super.clone()

Employee.clone() returns an
Employee

Allowed to change the return type

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){

Employee newemp =

(Employee) super.clone()

Date newbday = birthday.clone();

newemp.birthday = newbday;

return newmp;

}

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 23 / 25

Deep copy

Deep copy recursively clones nested
objects

Override the shallow clone() from
Object

Object.clone() returns an Object

Cast super.clone()

Employee.clone() returns an
Employee

Allowed to change the return type

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){

Employee newemp =

(Employee) super.clone()

Date newbday = birthday.clone();

newemp.birthday = newbday;

return newmp;

}

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 23 / 25

Deep copy

Deep copy recursively clones nested
objects

Override the shallow clone() from
Object

Object.clone() returns an Object

Cast super.clone()

Employee.clone() returns an
Employee

Allowed to change the return type

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){

Employee newemp =

(Employee) super.clone()

Date newbday = birthday.clone();

newemp.birthday = newbday;

return newmp;

}

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 23 / 25

Deep copy . . .

What if Manager extends Employee?

New instance variable promodate

Manager inherits deep copy clone()

from Employee

However Employee.clone() does not
know that it has to deep copy
promodate!

Cloning is subtle, so Java puts in some
restrictions

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){...}

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 24 / 25

Deep copy . . .

What if Manager extends Employee?

New instance variable promodate

Manager inherits deep copy clone()

from Employee

However Employee.clone() does not
know that it has to deep copy
promodate!

Cloning is subtle, so Java puts in some
restrictions

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){...}

}

public class Manager extends Employee {

private Date promodate;

...

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 24 / 25

--

Deep copy . . .

What if Manager extends Employee?

New instance variable promodate

Manager inherits deep copy clone()

from Employee

However Employee.clone() does not
know that it has to deep copy
promodate!

Cloning is subtle, so Java puts in some
restrictions

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){...}

}

public class Manager extends Employee {

private Date promodate;

...

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 24 / 25

Deep copy . . .

What if Manager extends Employee?

New instance variable promodate

Manager inherits deep copy clone()

from Employee

However Employee.clone() does not
know that it has to deep copy
promodate!

Cloning is subtle, so Java puts in some
restrictions

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){...}

}

public class Manager extends Employee {

private Date promodate;

...

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 24 / 25

Deep copy . . .

What if Manager extends Employee?

New instance variable promodate

Manager inherits deep copy clone()

from Employee

However Employee.clone() does not
know that it has to deep copy
promodate!

Cloning is subtle, so Java puts in some
restrictions

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){...}

}

public class Manager extends Employee {

private Date promodate;

...

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 24 / 25

Restrictions on clone()

To allow clone() to be used, a class
has to implement Cloneable interface

Marker interface

clone() in Object is protected

Only Employee objects can clone()

Redefine clone() as public to allow
other classes to clone Employee

Expanding visibility from protected

to public is allowed

Object.clone() throws
CloneNotSupportedException

Catch or report this exception

Call clone() in try block

public class Employee implements Cloneable {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 not updated

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 25 / 25

Restrictions on clone()

To allow clone() to be used, a class
has to implement Cloneable interface

Marker interface

clone() in Object is protected

Only Employee objects can clone()

Redefine clone() as public to allow
other classes to clone Employee

Expanding visibility from protected

to public is allowed

Object.clone() throws
CloneNotSupportedException

Catch or report this exception

Call clone() in try block

public class Employee implements Cloneable {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 not updated

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 25 / 25

Restrictions on clone()

To allow clone() to be used, a class
has to implement Cloneable interface

Marker interface

clone() in Object is protected

Only Employee objects can clone()

Redefine clone() as public to allow
other classes to clone Employee

Expanding visibility from protected

to public is allowed

Object.clone() throws
CloneNotSupportedException

Catch or report this exception

Call clone() in try block

public class Employee implements Cloneable {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){...}

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 25 / 25

Restrictions on clone()

To allow clone() to be used, a class
has to implement Cloneable interface

Marker interface

clone() in Object is protected

Only Employee objects can clone()

Redefine clone() as public to allow
other classes to clone Employee

Expanding visibility from protected

to public is allowed

Object.clone() throws
CloneNotSupportedException

Catch or report this exception

Call clone() in try block

public class Employee implements Cloneable {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone()

throws CloneNotSupportedException {...}

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 25 / 25

Restrictions on clone()

To allow clone() to be used, a class
has to implement Cloneable interface

Marker interface

clone() in Object is protected

Only Employee objects can clone()

Redefine clone() as public to allow
other classes to clone Employee

Expanding visibility from protected

to public is allowed

Object.clone() throws
CloneNotSupportedException

Catch or report this exception

Call clone() in try block

public class Employee implements Cloneable {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone()

throws CloneNotSupportedException {...}

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 25 / 25

