
Java: Collections, Exceptions

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 11, 14 February 2023



Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 2 / 33



Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

public class Queue<E> {
public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 2 / 33



Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

Head

Tail

Tail

Head

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 2 / 33



Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

Head

Tail

Tail

Head

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 2 / 33



Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

Head

Tail

Tail

Head

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 2 / 33



Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

Head

Tail

Tail

Head

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 2 / 33



Abstract data types . . .

Is the user indi↵erent to choice of
implementation?

Interface does not capture other aspects

E�ciency

Circular array is better — one time
storage allocation

Flexibility

Linked list is better — circular array
has bounded size

O↵er user a choice of implementation?

Head

Tail

Tail

Head

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 3 / 33



Abstract data types . . .

Is the user indi↵erent to choice of
implementation?

Interface does not capture other aspects

E�ciency

Circular array is better — one time
storage allocation

Flexibility

Linked list is better — circular array
has bounded size

O↵er user a choice of implementation?

Head

Tail

Tail

Head

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 3 / 33



Abstract data types . . .

Is the user indi↵erent to choice of
implementation?

Interface does not capture other aspects

E�ciency

Circular array is better — one time
storage allocation

Flexibility

Linked list is better — circular array
has bounded size

O↵er user a choice of implementation?

Head

Tail

Tail

Head

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 3 / 33



Abstract data types . . .

Is the user indi↵erent to choice of
implementation?

Interface does not capture other aspects

E�ciency

Circular array is better — one time
storage allocation

Flexibility

Linked list is better — circular array
has bounded size

O↵er user a choice of implementation?

Head

Tail

Tail

Head

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 3 / 33



Abstract data types . . .

Is the user indi↵erent to choice of
implementation?

Interface does not capture other aspects

E�ciency

Circular array is better — one time
storage allocation

Flexibility

Linked list is better — circular array
has bounded size

O↵er user a choice of implementation?

Head

Tail

Tail

Head

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 3 / 33



Multiple impementations

Create two separate implementations

User chooses

What if we later realize we need a
flexible size dateq?

Change declaration for dateq

And also every function header,
auxiliary variable, . . . associated with it

public class CircularArrayQueue<E> {
public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

public class LinkedListQueue<E> {
public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 4 / 33



Multiple impementations

Create two separate implementations

User chooses
CircularArrayQueue<Date> dateq;
LinkedListQueue<String> stringq;

dateq =
new CircularArrayQueue<Date>();

stringq =
new LinkedListQueue<String>();

}

What if we later realize we need a
flexible size dateq?

Change declaration for dateq

And also every function header,
auxiliary variable, . . . associated with it

public class CircularArrayQueue<E> {
public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

public class LinkedListQueue<E> {
public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 4 / 33

.



Multiple impementations

Create two separate implementations

User chooses
CircularArrayQueue<Date> dateq;
LinkedListQueue<String> stringq;

dateq =
new CircularArrayQueue<Date>();

stringq =
new LinkedListQueue<String>();

}

What if we later realize we need a
flexible size dateq?

Change declaration for dateq

And also every function header,
auxiliary variable, . . . associated with it

public class CircularArrayQueue<E> {
public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

public class LinkedListQueue<E> {
public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 4 / 33



Multiple impementations

Create two separate implementations

User chooses
CircularArrayQueue<Date> dateq;
LinkedListQueue<String> stringq;

dateq =
new CircularArrayQueue<Date>();

stringq =
new LinkedListQueue<String>();

}

What if we later realize we need a
flexible size dateq?

Change declaration for dateq

And also every function header,
auxiliary variable, . . . associated with it

public class CircularArrayQueue<E> {
public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

public class LinkedListQueue<E> {
public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 4 / 33



Multiple impementations

Create two separate implementations

User chooses
CircularArrayQueue<Date> dateq;
LinkedListQueue<String> stringq;

dateq =
new CircularArrayQueue<Date>();

stringq =
new LinkedListQueue<String>();

}

What if we later realize we need a
flexible size dateq?

Change declaration for dateq

And also every function header,
auxiliary variable, . . . associated with it

public class CircularArrayQueue<E> {
public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

public class LinkedListQueue<E> {
public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 4 / 33



Adding indirection

Instead, create a Queue interface

Concrete implementations implement
the interface

Use the interface to declare variables

Benefit of indirection — to use a
di↵erent implementation for dateq,
only need to update the instantiation

public interface Queue<E> {
abstract void add (E element);
abstract E remove();
abstract int size();

}

public class CircularArrayQueue<E>
implements Queue<E> {

public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

public class LinkedListQueue<E>
implements Queue<E> {

public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 5 / 33



Adding indirection

Instead, create a Queue interface

Concrete implementations implement
the interface

Use the interface to declare variables
Queue<Date> dateq;
Queue<String> stringq;

dateq =
new CircularArrayQueue<Date>();

stringq =
new LinkedListQueue<String>();

}

Benefit of indirection — to use a
di↵erent implementation for dateq,
only need to update the instantiation

public interface Queue<E> {
abstract void add (E element);
abstract E remove();
abstract int size();

}

public class CircularArrayQueue<E>
implements Queue<E> {

public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

public class LinkedListQueue<E>
implements Queue<E> {

public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}
Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 5 / 33



Adding indirection

Instead, create a Queue interface

Concrete implementations implement
the interface

Use the interface to declare variables
Queue<Date> dateq;
Queue<String> stringq;

dateq =
new CircularArrayQueue<Date>();

stringq =
new LinkedListQueue<String>();

}

Benefit of indirection — to use a
di↵erent implementation for dateq,
only need to update the instantiation

public interface Queue<E> {
abstract void add (E element);
abstract E remove();
abstract int size();

}

public class CircularArrayQueue<E>
implements Queue<E> {

public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

public class LinkedListQueue<E>
implements Queue<E> {

public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}
Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 5 / 33

change thi



Adding indirection

Instead, create a Queue interface

Concrete implementations implement
the interface

Use the interface to declare variables
Queue<Date> dateq;
Queue<String> stringq;

dateq =
new CircularArrayQueue<Date>();

stringq =
new LinkedListQueue<String>();

}

Benefit of indirection — to use a
di↵erent implementation for dateq,
only need to update the instantiation

public interface Queue<E> {
abstract void add (E element);
abstract E remove();
abstract int size();

}

public class CircularArrayQueue<E>
implements Queue<E> {

public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}

public class LinkedListQueue<E>
implements Queue<E> {

public void add (E element){...};
public E remove(){...};
public int size(){...};
...

}
Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 5 / 33



The power of indirection

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior sta↵ with an o�ce car

Concrete: each o�cial has an assigned car — what if it breaks down?

Indirection: a pool of o�ce cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 6 / 33



The power of indirection

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior sta↵ with an o�ce car

Concrete: each o�cial has an assigned car — what if it breaks down?

Indirection: a pool of o�ce cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 6 / 33



The power of indirection

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior sta↵ with an o�ce car

Concrete: each o�cial has an assigned car — what if it breaks down?

Indirection: a pool of o�ce cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 6 / 33



The power of indirection

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior sta↵ with an o�ce car

Concrete: each o�cial has an assigned car — what if it breaks down?

Indirection: a pool of o�ce cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 6 / 33



The power of indirection

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior sta↵ with an o�ce car

Concrete: each o�cial has an assigned car — what if it breaks down?

Indirection: a pool of o�ce cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 6 / 33



The power of indirection

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior sta↵ with an o�ce car

Concrete: each o�cial has an assigned car — what if it breaks down?

Indirection: a pool of o�ce cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 6 / 33



The power of indirection

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior sta↵ with an o�ce car

Concrete: each o�cial has an assigned car — what if it breaks down?

Indirection: a pool of o�ce cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 6 / 33



The power of indirection

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior sta↵ with an o�ce car

Concrete: each o�cial has an assigned car — what if it breaks down?

Indirection: a pool of o�ce cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

“Fundamental theorem of software engineering”

All problems in computer science can be solved by another level of indirection.
Butler Lampson, Turing Award 1992

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 6 / 33



Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 7 / 33



Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 7 / 33



Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 7 / 33



Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 7 / 33



Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 7 / 33



Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 7 / 33



The Collection interface

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

add() — add to the collection

iterator() — get an object that
implements Iterator interface

Use iterator to loop through the
elements

public interface Collection<E>{
boolean add(E element);
Iterator<E> iterator();
...

}

public interface Iterator<E>{
E next();
boolean hasNext();
void remove();
...

}

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();
while (iter.hasNext()) {

String element = iter.next();
// do something with element

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 8 / 33



The Collection interface

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

add() — add to the collection

iterator() — get an object that
implements Iterator interface

Use iterator to loop through the
elements

public interface Collection<E>{
boolean add(E element);
Iterator<E> iterator();
...

}

public interface Iterator<E>{
E next();
boolean hasNext();
void remove();
...

}

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();
while (iter.hasNext()) {

String element = iter.next();
// do something with element

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 8 / 33



The Collection interface

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

add() — add to the collection

iterator() — get an object that
implements Iterator interface

Use iterator to loop through the
elements

public interface Collection<E>{
boolean add(E element);
Iterator<E> iterator();
...

}

public interface Iterator<E>{
E next();
boolean hasNext();
void remove();
...

}

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();
while (iter.hasNext()) {

String element = iter.next();
// do something with element

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 8 / 33



The Collection interface

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

add() — add to the collection

iterator() — get an object that
implements Iterator interface

Use iterator to loop through the
elements

public interface Collection<E>{
boolean add(E element);
Iterator<E> iterator();
...

}

public interface Iterator<E>{
E next();
boolean hasNext();
void remove();
...

}

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();
while (iter.hasNext()) {
String element = iter.next();
// do something with element

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 8 / 33



Using iterators

Use iterator to loop through the
elements

Java later added “for each” loop

Implicitly creates an iterator and runs
through it

Generic functions to operate on
collections

How does this line work?

if (element.equals(obj))

Later!

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();
while (iter.hasNext()) {
String element = iter.next();
// do something with element

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 9 / 33



Using iterators

Use iterator to loop through the
elements

Java later added “for each” loop

Implicitly creates an iterator and runs
through it

Generic functions to operate on
collections

How does this line work?

if (element.equals(obj))

Later!

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();
while (iter.hasNext()) {
String element = iter.next();
// do something with element

}

Collection<String> cstr = new ...;
for (String element : cstr){
// do something with element

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 9 / 33

I



Using iterators

Use iterator to loop through the
elements

Java later added “for each” loop

Implicitly creates an iterator and runs
through it

Generic functions to operate on
collections

How does this line work?

if (element.equals(obj))

Later!

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();
while (iter.hasNext()) {
String element = iter.next();
// do something with element

}

Collection<String> cstr = new ...;
for (String element : cstr){
// do something with element

}

public static <E> boolean
contains(Collection<E> c, Object obj) {

for (E element : c)
if (element.equals(obj))
return true;

return false;
}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 9 / 33



Using iterators

Use iterator to loop through the
elements

Java later added “for each” loop

Implicitly creates an iterator and runs
through it

Generic functions to operate on
collections

How does this line work?

if (element.equals(obj))

Later!

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();
while (iter.hasNext()) {
String element = iter.next();
// do something with element

}

Collection<String> cstr = new ...;
for (String element : cstr){
// do something with element

}

public static <E> boolean
contains(Collection<E> c, Object obj) {

for (E element : c)
if (element.equals(obj))
return true;

return false;
}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 9 / 33



Using iterators

Use iterator to loop through the
elements

Java later added “for each” loop

Implicitly creates an iterator and runs
through it

Generic functions to operate on
collections

How does this line work?

if (element.equals(obj))

Later!

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();
while (iter.hasNext()) {
String element = iter.next();
// do something with element

}

Collection<String> cstr = new ...;
for (String element : cstr){
// do something with element

}

public static <E> boolean
contains(Collection<E> c, Object obj) {

for (E element : c)
if (element.equals(obj))
return true;

return false;
}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 9 / 33



Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

To remove the first element, need to
access it first

public interface Iterator<E>{
E next();
boolean hasNext();
void remove();
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 10 / 33



Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

To remove the first element, need to
access it first

public interface Iterator<E>{
E next();
boolean hasNext();
void remove();
...

}

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();
while (iter.hasNext()) {
String element = iter.next();
// Delete element if it has some property
if (property(element)) {

iter.remove();
}

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 10 / 33



Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

To remove the first element, need to
access it first

public interface Iterator<E>{
E next();
boolean hasNext();
void remove();
...

}

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();
...
iter.remove();
iter.remove(); // Error

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 10 / 33



Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

To remove the first element, need to
access it first

public interface Iterator<E>{
E next();
boolean hasNext();
void remove();
...

}

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();
...
iter.remove();
iter.next();
iter.remove();

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 10 / 33



Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

To remove the first element, need to
access it first

public interface Iterator<E>{
E next();
boolean hasNext();
void remove();
...

}

Collection<String> cstr = new ...;
Iterator<String> iter = cstr.iterator();

// Remove first element in cstr
iter.next();
iter.remove();

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 10 / 33



The Collection interface — the full story

How does this line work?

if (element.equals(obj))

Actually, Collection defines a much
larger set of abstract methods

addAll(from) adds elements from a
compatible collection

removeAll(c) removes elements
present in c

A di↵erent remove() from the one in
Iterator

To implement the Collection
interface, need to implement all these
methods!

public static <E> boolean
contains(Collection<E> c, Object obj) {

for (E element : c)
if (element.equals(obj))
return true;

return false;
}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 11 / 33



The Collection interface — the full story

How does this line work?

if (element.equals(obj))

Actually, Collection defines a much
larger set of abstract methods

addAll(from) adds elements from a
compatible collection

removeAll(c) removes elements
present in c

A di↵erent remove() from the one in
Iterator

To implement the Collection
interface, need to implement all these
methods!

public static <E> boolean
contains(Collection<E> c, Object obj) {

for (E element : c)
if (element.equals(obj))
return true;

return false;
}

public interface Collection<E>{
boolean add(E element);
Iterator<E> iterator();
int size() boolean isEmpty();
boolean contains(Object obj);
boolean containsAll(Collection<?> c);
boolean equals(Object other);
boolean addAll(Collection<? extends E> from);
boolean remove(Object obj);
boolean removeAll(Collection<?> c);
...

}
Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 11 / 33



The Collection interface — the full story

How does this line work?

if (element.equals(obj))

Actually, Collection defines a much
larger set of abstract methods

addAll(from) adds elements from a
compatible collection

removeAll(c) removes elements
present in c

A di↵erent remove() from the one in
Iterator

To implement the Collection
interface, need to implement all these
methods!

public static <E> boolean
contains(Collection<E> c, Object obj) {

for (E element : c)
if (element.equals(obj))
return true;

return false;
}

public interface Collection<E>{
boolean add(E element);
Iterator<E> iterator();
int size() boolean isEmpty();
boolean contains(Object obj);
boolean containsAll(Collection<?> c);
boolean equals(Object other);
boolean addAll(Collection<? extends E> from);
boolean remove(Object obj);
boolean removeAll(Collection<?> c);
...

}
Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 11 / 33



The AbsractCollection class

To implement Collection, need to
implement all these methods!

“Correct” solution — provide default
implementations in the interface

Added to Java interfaces later!

Instead, AbstractCollection
abstract class implements Collection

Concrete classes now extend
AbstractCollection

Need to define iterator() based on
internal representation

Can choose to override contains(),
. . .

public interface Collection<E>{
boolean add(E element);
Iterator<E> iterator();
int size() boolean isEmpty();
boolean contains(Object obj);
boolean containsAll(Collection<?> c);
boolean equals(Object other);
boolean addAll(Collection<? extends E> from);
boolean remove(Object obj);
boolean removeAll(Collection<?> c);
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 12 / 33



The AbsractCollection class

To implement Collection, need to
implement all these methods!

“Correct” solution — provide default
implementations in the interface

Added to Java interfaces later!

Instead, AbstractCollection
abstract class implements Collection

Concrete classes now extend
AbstractCollection

Need to define iterator() based on
internal representation

Can choose to override contains(),
. . .

public interface Collection<E>{
boolean add(E element);
Iterator<E> iterator();
int size() boolean isEmpty();
boolean contains(Object obj);
boolean containsAll(Collection<?> c);
boolean equals(Object other);
boolean addAll(Collection<? extends E> from);
boolean remove(Object obj);
boolean removeAll(Collection<?> c);
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 12 / 33



The AbsractCollection class

To implement Collection, need to
implement all these methods!

“Correct” solution — provide default
implementations in the interface

Added to Java interfaces later!

Instead, AbstractCollection
abstract class implements Collection

Concrete classes now extend
AbstractCollection

Need to define iterator() based on
internal representation

Can choose to override contains(),
. . .

public interface Collection<E>{
boolean add(E element);
Iterator<E> iterator();
int size() boolean isEmpty();
boolean contains(Object obj);
boolean containsAll(Collection<?> c);
boolean equals(Object other);
boolean addAll(Collection<? extends E> from);
boolean remove(Object obj);
boolean removeAll(Collection<?> c);
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 12 / 33



The AbsractCollection class

To implement Collection, need to
implement all these methods!

“Correct” solution — provide default
implementations in the interface

Added to Java interfaces later!

Instead, AbstractCollection
abstract class implements Collection

Concrete classes now extend
AbstractCollection

Need to define iterator() based on
internal representation

Can choose to override contains(),
. . .

public abstract class AbstractCollection<E>
implements Collection<E> {

...
public abstract Iterator<E> iterator();

public boolean contains(Object obj) {
for (E element : this)
if (element.equals(obj))
return true;

return false;
}
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 12 / 33



The AbsractCollection class

To implement Collection, need to
implement all these methods!

“Correct” solution — provide default
implementations in the interface

Added to Java interfaces later!

Instead, AbstractCollection
abstract class implements Collection

Concrete classes now extend
AbstractCollection

Need to define iterator() based on
internal representation

Can choose to override contains(),
. . .

public abstract class AbstractCollection<E>
implements Collection<E> {

...
public abstract Iterator<E> iterator();

public boolean contains(Object obj) {
for (E element : this)
if (element.equals(obj))
return true;

return false;
}
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 12 / 33



Concrete collections

The Collection interface abstracts properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like dictionaries

Collections can be further organized based on additional properties

Are the elements ordered?

Are duplicates allowed?

Are there constraints on how elements are added, removed?

In the spirit of indirection, these are captured by interfaces that extend Collection

Interface List for ordered collections

Interface Set for collections without duplicates

Interface Queue for ordered collections with constraints on addition and deletion

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 13 / 33



Concrete collections

The Collection interface abstracts properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like dictionaries

Collections can be further organized based on additional properties

Are the elements ordered?

Are duplicates allowed?

Are there constraints on how elements are added, removed?

In the spirit of indirection, these are captured by interfaces that extend Collection

Interface List for ordered collections

Interface Set for collections without duplicates

Interface Queue for ordered collections with constraints on addition and deletion

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 13 / 33



Concrete collections

The Collection interface abstracts properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like dictionaries

Collections can be further organized based on additional properties

Are the elements ordered?

Are duplicates allowed?

Are there constraints on how elements are added, removed?

In the spirit of indirection, these are captured by interfaces that extend Collection

Interface List for ordered collections

Interface Set for collections without duplicates

Interface Queue for ordered collections with constraints on addition and deletion

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 13 / 33



The List interface

An ordered collection can be accessed
in two ways

Through an iterator

By position — random access

Additional functions for random access

ListIterator extends Iterator

void add(E element) to insert an
element before the current index

void previous() to go to previous
element

boolean hasPrevious() checks that
it is legal to go backwards

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 14 / 33



The List interface

An ordered collection can be accessed
in two ways

Through an iterator

By position — random access

Additional functions for random access

ListIterator extends Iterator

void add(E element) to insert an
element before the current index

void previous() to go to previous
element

boolean hasPrevious() checks that
it is legal to go backwards

public interface List<E>
extends Collection<E>{

void add(int index, E element);
void remove(int index);
E get(int index);
E set(int index, E element);

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 14 / 33



The List interface

An ordered collection can be accessed
in two ways

Through an iterator

By position — random access

Additional functions for random access

ListIterator extends Iterator

void add(E element) to insert an
element before the current index

void previous() to go to previous
element

boolean hasPrevious() checks that
it is legal to go backwards

public interface List<E>
extends Collection<E>{

void add(int index, E element);
void remove(int index);
E get(int index);
E set(int index, E element);

ListIterator<E> listIterator();
}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 14 / 33



The List interface and random access

Random access is not equally e�cient
for all ordered collections

In an array, can compute location of
element at index i

In a linked list, must start at the
beginning and traverse i links

Tagging interface RandomAccess

Tells us whether a List supports
random access or not

Can choose algorithmic strategy based
on this

public interface List<E>
extends Collection<E>{

void add(int index, E element);
void remove(int index);
E get(int index);
E set(int index, E element);

ListIterator<E> listIterator();
}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 15 / 33



The List interface and random access

Random access is not equally e�cient
for all ordered collections

In an array, can compute location of
element at index i

In a linked list, must start at the
beginning and traverse i links

Tagging interface RandomAccess

Tells us whether a List supports
random access or not

Can choose algorithmic strategy based
on this

public interface List<E>
extends Collection<E>{

void add(int index, E element);
void remove(int index);
E get(int index);
E set(int index, E element);

ListIterator<E> listIterator();
}

if (c instanceof RandomAccess) {
// use random access algorithm

} else {
// use sequential access algorithm

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 15 / 33



The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no e↵ect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow e�cient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 16 / 33



The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no e↵ect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow e�cient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 16 / 33



The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no e↵ect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow e�cient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 16 / 33



The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no e↵ect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow e�cient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 16 / 33



The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no e↵ect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow e�cient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 16 / 33



The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no e↵ect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow e�cient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 16 / 33



The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no e↵ect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow e�cient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 16 / 33



The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no e↵ect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow e�cient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 16 / 33



Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — di↵erent
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 17 / 33



Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — di↵erent
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 17 / 33



Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — di↵erent
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 17 / 33



Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — di↵erent
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 17 / 33



Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — di↵erent
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 17 / 33



Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — di↵erent
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 17 / 33



Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — di↵erent
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 17 / 33



Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — di↵erent
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 17 / 33



The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following
boolean add(E element);
E remove();

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()
Return false or null, respectively, if
not possible

Inspect the head, no update

Interface Deque, double ended queue

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue
ArrayDeque — circular array Deque

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 18 / 33



The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following
boolean add(E element);
E remove();

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()
boolean offer(E element);
E poll();

Return false or null, respectively, if
not possible

Inspect the head, no update

Interface Deque, double ended queue

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue
ArrayDeque — circular array Deque

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 18 / 33



The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following
boolean add(E element);
E remove();

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()
boolean offer(E element);
E poll();

Return false or null, respectively, if
not possible

Inspect the head, no update
E element(); // Throws exception
E peek(); // Returns null

Interface Deque, double ended queue

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue
ArrayDeque — circular array Deque

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 18 / 33



The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following
boolean add(E element);
E remove();

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()
boolean offer(E element);
E poll();

Return false or null, respectively, if
not possible

Inspect the head, no update
E element(); // Throws exception
E peek(); // Returns null

Interface Deque, double ended queue
boolean addFirst(E element);
boolean addLast(E element);
boolean offerFirst(E element);
boolean offerLast(E element);
E pollFirst();
E pollLast();
E getFirst();
E getLast();
E peekFirst();
E peekLast();

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue
ArrayDeque — circular array Deque

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 18 / 33



The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following
boolean add(E element);
E remove();

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()
boolean offer(E element);
E poll();

Return false or null, respectively, if
not possible

Inspect the head, no update
E element(); // Throws exception
E peek(); // Returns null

Interface Deque, double ended queue
boolean addFirst(E element);
boolean addLast(E element);
boolean offerFirst(E element);
boolean offerLast(E element);
E pollFirst();
E pollLast();
E getFirst();
E getLast();
E peekFirst();
E peekLast();

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue
ArrayDeque — circular array Deque

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 18 / 33



The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following
boolean add(E element);
E remove();

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()
boolean offer(E element);
E poll();

Return false or null, respectively, if
not possible

Inspect the head, no update
E element(); // Throws exception
E peek(); // Returns null

Interface Deque, double ended queue
boolean addFirst(E element);
boolean addLast(E element);
boolean offerFirst(E element);
boolean offerLast(E element);
E pollFirst();
E pollLast();
E getFirst();
E getLast();
E peekFirst();
E peekLast();

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue
ArrayDeque — circular array Deque

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 18 / 33



Maps

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

Key-value structures come under the
Map interface

Two type parameters

K is the type for keys

V is the type for values

get(k) fetches value for key k

put(k,v) updates value for key k

As expected, keys form a set

Only one entry per key-value

Assigning a fresh value to existing key
overwrite the old value

put(k,v) returns the previous value
associated with k, or null

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 19 / 33



Maps

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

Key-value structures come under the
Map interface

Two type parameters

K is the type for keys

V is the type for values

get(k) fetches value for key k

put(k,v) updates value for key k

public interface Map<K,V>{
V get(Object key);
V put(K key, V Value);

boolean containsKey(Object key);
boolean containsValue(Object value);
...

}

As expected, keys form a set

Only one entry per key-value

Assigning a fresh value to existing key
overwrite the old value

put(k,v) returns the previous value
associated with k, or null

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 19 / 33



Maps

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

Key-value structures come under the
Map interface

Two type parameters

K is the type for keys

V is the type for values

get(k) fetches value for key k

put(k,v) updates value for key k

public interface Map<K,V>{
V get(Object key);
V put(K key, V Value);

boolean containsKey(Object key);
boolean containsValue(Object value);
...

}

As expected, keys form a set

Only one entry per key-value

Assigning a fresh value to existing key
overwrite the old value

put(k,v) returns the previous value
associated with k, or null

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 19 / 33



Extracting keys and values

Methods to extract keys and values

Set<K> keySet();
Collection<V> values();
Set<Map.Entry<K, V>> entrySet()

Keys form a Set while values form an
arbitrary Collection

Key-value pairs form a set over a
special type Map.Entry

Java calls these views

Can now iterate through a Map

Use entrySet() to operate on key and
associated value without looking up
map again

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 20 / 33



Extracting keys and values

Methods to extract keys and values

Set<K> keySet();
Collection<V> values();
Set<Map.Entry<K, V>> entrySet()

Keys form a Set while values form an
arbitrary Collection

Key-value pairs form a set over a
special type Map.Entry

Java calls these views

Can now iterate through a Map

Use entrySet() to operate on key and
associated value without looking up
map again

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 20 / 33



Extracting keys and values

Methods to extract keys and values

Set<K> keySet();
Collection<V> values();
Set<Map.Entry<K, V>> entrySet()

Keys form a Set while values form an
arbitrary Collection

Key-value pairs form a set over a
special type Map.Entry

Java calls these views

Can now iterate through a Map

Use entrySet() to operate on key and
associated value without looking up
map again

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 20 / 33



Extracting keys and values

Methods to extract keys and values

Set<K> keySet();
Collection<V> values();
Set<Map.Entry<K, V>> entrySet()

Keys form a Set while values form an
arbitrary Collection

Key-value pairs form a set over a
special type Map.Entry

Java calls these views

Can now iterate through a Map

Use entrySet() to operate on key and
associated value without looking up
map again

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 20 / 33



Extracting keys and values

Methods to extract keys and values

Set<K> keySet();
Collection<V> values();
Set<Map.Entry<K, V>> entrySet()

Keys form a Set while values form an
arbitrary Collection

Key-value pairs form a set over a
special type Map.Entry

Java calls these views

Can now iterate through a Map

Set<String> keys = strmap.keySet();
for (String key : keys) {

do something with key
}

Use entrySet() to operate on key and
associated value without looking up
map again

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 20 / 33



Extracting keys and values

Methods to extract keys and values

Set<K> keySet();
Collection<V> values();
Set<Map.Entry<K, V>> entrySet()

Keys form a Set while values form an
arbitrary Collection

Key-value pairs form a set over a
special type Map.Entry

Java calls these views

Can now iterate through a Map

Set<String> keys = strmap.keySet();
for (String key : keys) {

do something with key
}

Use entrySet() to operate on key and
associated value without looking up
map again

for (Map.Entry<String, Employee> entry :
staff.entrySet()){

String k = entry.getKey();
Employee v = entry.getValue();
do something with k, v

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 20 / 33



Concrete implementations of Map

HashMap

Similar to HashSet

Use a hash table to store keys and
values

No fixed order over keys returned by
keySet()

Similar to TreeSet

Use a balanced search tree to store keys
and values

Iterator over keySet() will process keys
in sorted order

Remembers the order in which keys
were inserted

Hash table entries are also connected as
a (doubly) linked list

Iterators over both keySet() and
value() enumerate in order of insertion

Can also use access order

Each get() or put() moves key-value
pair to end of list

Process entries in least recently used
order — scheduling, caching

Similarly, LinkedHashSet

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 21 / 33



Concrete implementations of Map

HashMap

Similar to HashSet

Use a hash table to store keys and
values

No fixed order over keys returned by
keySet()

TreeMap

Similar to TreeSet

Use a balanced search tree to store keys
and values

Iterator over keySet() will process keys
in sorted order

Remembers the order in which keys
were inserted

Hash table entries are also connected as
a (doubly) linked list

Iterators over both keySet() and
value() enumerate in order of insertion

Can also use access order

Each get() or put() moves key-value
pair to end of list

Process entries in least recently used
order — scheduling, caching

Similarly, LinkedHashSet

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 21 / 33



Concrete implementations of Map

HashMap

Similar to HashSet

Use a hash table to store keys and
values

No fixed order over keys returned by
keySet()

TreeMap

Similar to TreeSet

Use a balanced search tree to store keys
and values

Iterator over keySet() will process keys
in sorted order

LinkedHashMap

Remembers the order in which keys
were inserted

Hash table entries are also connected as
a (doubly) linked list

Iterators over both keySet() and
value() enumerate in order of insertion

Can also use access order

Each get() or put() moves key-value
pair to end of list

Process entries in least recently used
order — scheduling, caching

Similarly, LinkedHashSet

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 21 / 33

life,item



Concrete implementations of Map

HashMap

Similar to HashSet

Use a hash table to store keys and
values

No fixed order over keys returned by
keySet()

TreeMap

Similar to TreeSet

Use a balanced search tree to store keys
and values

Iterator over keySet() will process keys
in sorted order

LinkedHashMap

Remembers the order in which keys
were inserted

Hash table entries are also connected as
a (doubly) linked list

Iterators over both keySet() and
value() enumerate in order of insertion

Can also use access order

Each get() or put() moves key-value
pair to end of list

Process entries in least recently used
order — scheduling, caching

Similarly, LinkedHashSet

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 21 / 33



Concrete implementations of Map

HashMap

Similar to HashSet

Use a hash table to store keys and
values

No fixed order over keys returned by
keySet()

TreeMap

Similar to TreeSet

Use a balanced search tree to store keys
and values

Iterator over keySet() will process keys
in sorted order

LinkedHashMap

Remembers the order in which keys
were inserted

Hash table entries are also connected as
a (doubly) linked list

Iterators over both keySet() and
value() enumerate in order of insertion

Can also use access order

Each get() or put() moves key-value
pair to end of list

Process entries in least recently used
order — scheduling, caching

Similarly, LinkedHashSet

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 21 / 33



When things go wrong

Our code could encounter many types of errors

User input — enter invalid filenames or URLs

Device errors — printer jam, network connection drops

Resource limitations — disk full

Code errors — invalid array index, key not present in hash table, refer to a variable
that is null, divide by zero, . . .

Signalling errors

Return an invalid value: �1 at end of file, null

What if there is no obvious invalid value?

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 22 / 33



When things go wrong

Our code could encounter many types of errors

User input — enter invalid filenames or URLs

Device errors — printer jam, network connection drops

Resource limitations — disk full

Code errors — invalid array index, key not present in hash table, refer to a variable
that is null, divide by zero, . . .

Signalling errors

Return an invalid value: �1 at end of file, null

What if there is no obvious invalid value?

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 22 / 33



Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 23 / 33



Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 23 / 33



Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 23 / 33



Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 23 / 33



Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 23 / 33



Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 24 / 33



Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 24 / 33



Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 24 / 33



Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 24 / 33



Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 24 / 33



Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {
...
call a function that may
throw an exception

..
}
catch (ExceptionType e){
...
examine e and handle it
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 25 / 33

Cjou



Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {
...
call a function that may
throw an exception

..
}
catch (ExceptionType e){
...
examine e and handle it
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 25 / 33



Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {
...
call a function that may
throw an exception

..
}
catch (ExceptionType e){
...
examine e and handle it
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 25 / 33

-



Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {
...
call a function that may
throw an exception

..
}
catch (ExceptionType e){
...
examine e and handle it
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 25 / 33



Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {
...
call a function that may
throw an exception

..
}
catch (ExceptionType e){
...
examine e and handle it
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 25 / 33



Catching and handling exceptions

Can catch more than one type of
exception

Multiple catch blocks

Exceptions are classes in the Java class
hiearachy

catch (ExceptionType e) matches
any subtype of ExceptionType

Catch blocks are tried in sequence

Match exception type against each
one in turn

Order catch blocks by argument type,
more specific to less specific

IOException would intercept
FileNotFoundException

try {
code that might throw exceptions

}
catch (FileNotFoundException e) {
handle missing files

}
catch (UnknownHostException e) {
handle unknown hosts

}
catch (IOException e) {
handle all other I/O issues

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 26 / 33



Catching and handling exceptions

Can catch more than one type of
exception

Multiple catch blocks

Exceptions are classes in the Java class
hiearachy

catch (ExceptionType e) matches
any subtype of ExceptionType

Catch blocks are tried in sequence

Match exception type against each
one in turn

Order catch blocks by argument type,
more specific to less specific

IOException would intercept
FileNotFoundException

try {
code that might throw exceptions

}
catch (FileNotFoundException e) {
handle missing files

}
catch (UnknownHostException e) {
handle unknown hosts

}
catch (IOException e) {
handle all other I/O issues

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 26 / 33



Catching and handling exceptions

Can catch more than one type of
exception

Multiple catch blocks

Exceptions are classes in the Java class
hiearachy

catch (ExceptionType e) matches
any subtype of ExceptionType

Catch blocks are tried in sequence

Match exception type against each
one in turn

Order catch blocks by argument type,
more specific to less specific

IOException would intercept
FileNotFoundException

try {
code that might throw exceptions

}
catch (FileNotFoundException e) {
handle missing files

}
catch (UnknownHostException e) {
handle unknown hosts

}
catch (IOException e) {
handle all other I/O issues

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 26 / 33



Catching and handling exceptions

Can catch more than one type of
exception

Multiple catch blocks

Exceptions are classes in the Java class
hiearachy

catch (ExceptionType e) matches
any subtype of ExceptionType

Catch blocks are tried in sequence

Match exception type against each
one in turn

Order catch blocks by argument type,
more specific to less specific

IOException would intercept
FileNotFoundException

try {
code that might throw exceptions

}
catch (FileNotFoundException e) {
handle missing files

}
catch (UnknownHostException e) {
handle unknown hosts

}
catch (IOException e) {
handle all other I/O issues

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 26 / 33



Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 27 / 33



Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 27 / 33



Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 27 / 33



Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 27 / 33



Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 27 / 33



Notifying checked exceptions

Example: you write a method readData()

Header line provides length of data

Content-Length: 2048

Actual data read is less than promised length

Search Java documentation for suitable pre-defined exception

EOFException, subtype of IOException

“Signals that EOF has been reached unexpectedly during input”

Create an object of exception type and throw it

Can also pass a diagnostic message when constructing exception object

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 28 / 33



Notifying checked exceptions

Example: you write a method readData()

Header line provides length of data

Content-Length: 2048

Actual data read is less than promised length

Search Java documentation for suitable pre-defined exception

EOFException, subtype of IOException

“Signals that EOF has been reached unexpectedly during input”

Create an object of exception type and throw it

Can also pass a diagnostic message when constructing exception object

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 28 / 33



Notifying checked exceptions

Example: you write a method readData()

Header line provides length of data

Content-Length: 2048

Actual data read is less than promised length

Search Java documentation for suitable pre-defined exception

EOFException, subtype of IOException

“Signals that EOF has been reached unexpectedly during input”

Create an object of exception type and throw it

throw new EOFException();

Can also pass a diagnostic message when constructing exception object

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 28 / 33



Notifying checked exceptions

Example: you write a method readData()

Header line provides length of data

Content-Length: 2048

Actual data read is less than promised length

Search Java documentation for suitable pre-defined exception

EOFException, subtype of IOException

“Signals that EOF has been reached unexpectedly during input”

Create an object of exception type and throw it

throw new EOFException();

Can also pass a diagnostic message when constructing exception object

String errormsg = "Content-Length:" + contentlen + ", Received: " + rcvdlen;
throw new EOFException(errormsg);

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 28 / 33

/

-..



Throwing exceptions . . .

How does caller know that readData()
generates EOFException?

Declare exceptions thrown in header

Can throw multiple types of exceptions

Can throw any subtype of declared
exception type

Can throw FileNotFoundException,
EOFException, both subclasses of
IOException

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 29 / 33



Throwing exceptions . . .

How does caller know that readData()
generates EOFException?

Declare exceptions thrown in header

Can throw multiple types of exceptions

Can throw any subtype of declared
exception type

Can throw FileNotFoundException,
EOFException, both subclasses of
IOException

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 29 / 33



Throwing exceptions . . .

How does caller know that readData()
generates EOFException?

Declare exceptions thrown in header

Can throw multiple types of exceptions

String readFile(String filename)
throws FileNotFoundException,

EOFException { ... }

Can throw any subtype of declared
exception type

Can throw FileNotFoundException,
EOFException, both subclasses of
IOException

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 29 / 33



Throwing exceptions . . .

How does caller know that readData()
generates EOFException?

Declare exceptions thrown in header

Can throw multiple types of exceptions

String readFile(String filename)
throws FileNotFoundException,

EOFException { ... }

Can throw any subtype of declared
exception type

String readFile(String filename)
throws IOException { ... }

Can throw FileNotFoundException,
EOFException, both subclasses of
IOException

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 29 / 33



Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 30 / 33



Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 30 / 33



Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 30 / 33



Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 30 / 33



Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)
throws EOFException {

...
while (...) {
if (!in.hasNext()) {

// EOF encountered
if (n < len) {
String errmsg = ...
throw new EOFException(errmsg);

}
...

}
return(s);

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 30 / 33



Customized exceptions

Don’t want negative numbers in
a LinearList

Define a new class extending
Exception

Throw this from LinearList

Note that add advertises the
fact that it throws a
NegativeException

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 31 / 33



Customized exceptions

Don’t want negative numbers in
a LinearList

Define a new class extending
Exception

Throw this from LinearList

Note that add advertises the
fact that it throws a
NegativeException

public class NegativeException extends Exception{

private int error_value;
// Negative value that generated exception

public NegativeException(String message, int i){
super(message); // Appeal to superclass
error_value = i; // constructor to set message

}

public int report_error_value(){
return error_value;

}
}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 31 / 33



Customized exceptions

Don’t want negative numbers in
a LinearList

Define a new class extending
Exception

Throw this from LinearList

Note that add advertises the
fact that it throws a
NegativeException

public class NegativeException extends Exception{
...

}

public class LinearList{
...
public add(int i) throws NegativeException{
...
if (i < 0){
throw new NegativeException("Negative input",i);

}
...

}
}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 31 / 33



More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {
...
call a function that may
throw an exception

..
}
catch (ExceptionType e){
...
String errormsg = e.getMessage();
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 32 / 33



More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {
...
access database
..

}
catch (SQLException e){
...
String errormsg =

"database error" + e.getMessage();
throw new ServletException(errormsg);
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 32 / 33



More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {
...
access database
..

}
catch (SQLException e){
...
String errormsg =

"database error" + e.getMessage();
throw new ServletException(errormsg);
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 32 / 33



More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {
...
access database
..

}
catch (SQLException e){
...
String errormsg =

"database error" + e.getMessage();
ServletException newe =

new ServletException(errormsg);
newe.initCause(e);
throw newe;
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 32 / 33



More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {
...

}
catch (ServletException e){
...
Throwable original = e.getCause();
...

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 32 / 33



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 33 / 33



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 33 / 33



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

try{
...

}

catch (ExceptionType1 e){...}

catch (ExceptionType2 e){...}

finally{
...

// Always executed, whether try
// terminates normally or
// exceptionally. Use for clean up.

}

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 33 / 33



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

FileInputStream in =
new FileInputStream(...);

try {
// 1
code that might throw exceptions
// 2

}
catch (IOException e) {
// 3
show error message
// 4

}
finally {
// 5
in.close();

}
// 6

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 33 / 33



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

FileInputStream in =
new FileInputStream(...);

try {
// 1
code that might throw exceptions
// 2

}
catch (IOException e) {
// 3
show error message
// 4

}
finally {
// 5
in.close();

}
// 6

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 33 / 33



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

FileInputStream in =
new FileInputStream(...);

try {
// 1
code that might throw exceptions
// 2

}
catch (IOException e) {
// 3
show error message
// 4

}
finally {
// 5
in.close();

}
// 6

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 33 / 33



Cleaning up resources

When exception occurs, rest of the try
block is skipped

May need to do some clean up (close files,
deallocate resources, . . . )

Add a block labelled finally

Di↵erent scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

FileInputStream in =
new FileInputStream(...);

try {
// 1
code that might throw exceptions
// 2

}
catch (IOException e) {
// 3
show error message
// 4

}
finally {
// 5
in.close();

}
// 6

Madhavan Mukund/S P Suresh Java: Collections, Exceptions PLC, Lecture 11, 14 Feb 2023 33 / 33


