
Java: control flow, classes

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 3, 12 January 2023



Built-in datatypes

Eight primitive scalar types

int, long, short, byte

float, double

char

boolean

String is a built-in class

Constants enclosed in double quotes

+ is overloaded for concatenation

Strings are immutable

String s = "Hello", t = "world";
String u = s + " " + t;

// "Hello world"
s = s.substring(0,3) + "p!";

// s is now "Help!"

Arrays are also objects

Size of the array can vary

Array constants: {v1, v2, v3}
int[] a;
int n;

n = 10;
a = new int[n];

n = 20;
a = new int[n];

a = {2, 3, 5, 7, 11};

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 2 / 20

- Garbage
/collection

--

-



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 3 / 20



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 3 / 20



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 3 / 20



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 3 / 20



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 3 / 20



Conditional execution

if (c) {...} else {...}
else is optional

Condition must be in parentheses

If body is a single statement, braces are not
needed

No elif, à la Python

Indentation is not forced

Just align else if

Nested if is a single statement, no separate
braces required

No surprises

Aside: no def for function definition

public class MyClass {

...

public static int sign(int v) {
if (v < 0) {
return(-1);

} else if (v > 0) {
return(1);

} else {
return(0);

}
}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 4 / 20

--

⑮If
nested

↳ inside

else



Conditional loops

while (c) {...}
Condition must be in parentheses

If body is a single statement, braces are not
needed

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

public class MyClass {

...

public static int sumupto(int n) {
int sum = 0;

while (n > 0){
sum += n;
n--;

}

return(sum);
}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 5 / 20



Conditional loops

while (c) {...}
Condition must be in parentheses

If body is a single statement, braces are not
needed

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

public class MyClass {

...

public static int sumupto(int n) {
int sum = 0;
int i = 0;

do {
sum += i;
i++;

} while (i <= n);

return(sum);
}

}
Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 5 / 20

& Order is
important



Conditional loops

while (c) {...}
Condition must be in parentheses

If body is a single statement, braces are not
needed

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

do {
read input;

} while (input-condition);

public class MyClass {

...

public static int sumupto(int n) {
int sum = 0;
int i = 0;

do {
sum += i;
i++;

} while (i <= n);

return(sum);
}

}
Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 5 / 20



Iteration

for loop is inherited from C

for (init; cond; upd) {...}
init is initialization

cond is terminating condition

upd is update

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 6 / 20



Iteration

for loop is inherited from C

for (init; cond; upd) {...}
init is initialization

cond is terminating condition

upd is update

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

public class MyClass {

...

public static int sumarray(int[] a) {
int sum = 0;
int n = a.length;
int i;

for (i = 0; i < n; i++){
sum += a[i];

}

return(sum);
}

}
Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 6 / 20

·
-

-
>



Iteration

for loop is inherited from C

for (init; cond; upd) {...}
init is initialization

cond is terminating condition

upd is update

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;
while (i < n) {

i++;
}

public class MyClass {

...

public static int sumarray(int[] a) {
int sum = 0;
int n = a.length;
int i;

for (i = 0; i < n; i++){
sum += a[i];

}

return(sum);
}

}
Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 6 / 20

- -ra

L+t



Iteration

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;
while (i < n) {

i++;
}

However, not good style to write for
instead of while

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {
int sum = 0;
int n = a.length;
int i;

for (i = 0; i < n; i++){
sum += a[i];

}

return(sum);
}

}
Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 7 / 20



Iteration

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;
while (i < n) {

i++;
}

However, not good style to write for
instead of while

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {
int sum = 0;
int n = a.length;
int i;

for (i = 0; i < n; i++){
sum += a[i];

}

return(sum);
}

}
Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 7 / 20

*



Iteration

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;
while (i < n) {

i++;
}

However, not good style to write for
instead of while

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {
int sum = 0;
int n = a.length;

for (int i = 0; i < n; i++){
sum += a[i];

}

return(sum);
}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 7 / 20

D



Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:
do something with x

Again for, di↵erent syntax

for (type x : a)
do something with x;

}

It appears that loop variable must be
declared in local scope for this version of
for

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 8 / 20



Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:
do something with x

Again for, di↵erent syntax

for (type x : a)
do something with x;

}

It appears that loop variable must be
declared in local scope for this version of
for

public class MyClass {

...

public static int sumarray(int[] a) {
int sum = 0;
int n = a.length;

for (int v : a){
sum += v;

}

return(sum);
}

}
Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 8 / 20



Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:
do something with x

Again for, di↵erent syntax

for (type x : a)
do something with x;

}

It appears that loop variable must be
declared in local scope for this version of
for

public class MyClass {

...

public static int sumarray(int[] a) {
int sum = 0;
int n = a.length;

for (int v : a){
sum += v;

}

return(sum);
}

}
Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 8 / 20

esdental ->



Multiway branching

switch selects between di↵erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {
switch (v) {
case -1: {
System.out.println("Negative");
break;

}
case 1: {
System.out.println("Positive");
break;

}
case 0: {
System.out.println("Zero");
break;

}
}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 9 / 20



Multiway branching

switch selects between di↵erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {
switch (v) {
case -1: {
System.out.println("Negative");
break;

}
case 1: {
System.out.println("Positive");
break;

}
case 0: {
System.out.println("Zero");
break;

}
}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 9 / 20

-

-

<



Multiway branching

switch selects between di↵erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {
switch (v) {
case -1: {
System.out.println("Negative");
break;

}
case 1: {
System.out.println("Positive");
break;

}
case 0: {
System.out.println("Zero");
break;

}
}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 9 / 20



Multiway branching

switch selects between di↵erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {
switch (v) {
case -1: {
System.out.println("Negative");
break;

}
case 1: {
System.out.println("Positive");
break;

}
case 0: {
System.out.println("Zero");
break;

}
}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 9 / 20

o

↓
returns

nothing



Classes and objects

A class is a template for an encapsulated type

An object is an instance of a class

How do we create objects?

How are objects initialized?

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 10 / 20



Defining a class

Definition block using class, with class name

Modifier public to indicate visibility

Java allows public to be omitted

Default visibility is public to package

Packages are administrative units of code

All classes defined in same directory form part
of same package

Instance variables

Each concrete object of type Date will have
local copies of date, month, year

These are marked private

Can also have public instance variables, but
breaks encapsulation

public class Date {

private int day, month, year;

...

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 11 / 20

-

- Dali.java

-



Defining a class

Definition block using class, with class name

Modifier public to indicate visibility

Java allows public to be omitted

Default visibility is public to package

Packages are administrative units of code

All classes defined in same directory form part
of same package

Instance variables

Each concrete object of type Date will have
local copies of date, month, year

These are marked private

Can also have public instance variables, but
breaks encapsulation

public class Date {

private int day, month, year;

...

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 11 / 20

②



Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {
Date d;
d = new Date();
...

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 12 / 20

a =new (+15] ;



Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {
Date d;
d = new Date();
...

}

public class Date {
private int day, month, year;

public void setDate(int d, int m,
int y){

this.day = d;
this.month = m;
this.year = y;

}
}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 12 / 20

->creates

"empty"
day, monthyear

is this X

d.SetDate (12, 1, 2023); [



Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {
Date d;
d = new Date();
...

}

public class Date {
private int day, month, year;

public void setDate(int d, int m,
int y){

day = d;
month = m;
year = y;

}
}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 12 / 20

=



Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public class Date {
...

public int getDay(){
return(day);

}

public int getMonth(){
return(month);

}

public int getYear(){
return(year);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 12 / 20

= SetDay

setMonh

sken

day =30
month= 1 -> setMonth(2)
yean= 23



Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public class Date {
...

public int getDay(){
return(day);

}

public int getMonth(){
return(month);

}

public int getYear(){
return(year);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 12 / 20



Initializing objects

Would be good to set up an object when we
create it

Combine new Date() and setDate()

Constructors — special functions called when
an object is created

Function with the same name as the class

d = new Date(13,8,2015);

Constructors with di↵erent signatures

d = new Date(13,8); sets year to 2022

Java allows function overloading — same
name, di↵erent signatures

Python: default (optional) arguments, no
overloading

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 13 / 20



Initializing objects

Would be good to set up an object when we
create it

Combine new Date() and setDate()

Constructors — special functions called when
an object is created

Function with the same name as the class

d = new Date(13,8,2015);

Constructors with di↵erent signatures

d = new Date(13,8); sets year to 2022

Java allows function overloading — same
name, di↵erent signatures

Python: default (optional) arguments, no
overloading

public class Date {
private int day, month, year;

public Date(int d, int m, int y){
day = d;
month = m;
year = y;

}
}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 13 / 20

↓ no return type

7
- -
,nit--

in Pyther

intx=5;



Initializing objects

Would be good to set up an object when we
create it

Combine new Date() and setDate()

Constructors — special functions called when
an object is created

Function with the same name as the class

d = new Date(13,8,2015);

Constructors with di↵erent signatures

d = new Date(13,8); sets year to 2022

Java allows function overloading — same
name, di↵erent signatures

Python: default (optional) arguments, no
overloading

public class Date {
private int day, month, year;

public Date(int d, int m, int y){
day = d;
month = m;
year = y;

}

public Date(int d, int m){
day = d;
month = m;
year = 2022;

}
}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 13 / 20

=2022

*
same

↓signature
publicDate (utm, (n+3)



Constructors . . .

A later constructor can call an earlier one using
this

If no constructor is defined, Java provides a
default constructor with empty arguments

new Date() would implicitly invoke this

Sets instance variables to sensible defaults

For instance, int variables set to 0

Only valid if no constructor is defined

Otherwise need an explicit constructor without
arguments

public class Date {
private int day, month, year;

public Date(int d, int m, int y){
day = d;
month = m;
year = y;

}

public Date(int d, int m){
this(d,m,2022);

}
}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 14 / 20



Constructors . . .

A later constructor can call an earlier one using
this

If no constructor is defined, Java provides a
default constructor with empty arguments

new Date() would implicitly invoke this

Sets instance variables to sensible defaults

For instance, int variables set to 0

Only valid if no constructor is defined

Otherwise need an explicit constructor without
arguments

public class Date {
private int day, month, year;

public Date(int d, int m, int y){
day = d;
month = m;
year = y;

}

public Date(int d, int m){
this(d,m,2022);

}
}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 14 / 20



Copy constructors

Create a new object from an existing one

Copy constructor takes an object of the same
type as argument

Copies the instance variables

Use object name to disambiguate which
instance variables we are talking about

Note that private instance variables of
argument are visible

Shallow copy vs deep copy

Want new object to be disjoint from old one

If instance variable are objects, we may end up
aliasing rather than copying

Discuss later — cloning objects

public class Date {
private int day, month, year;

public Date(Date d){
this.day = d.day;
this.month = d.month;
this.year = d.year;

}
}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 15 / 20



Copy constructors

Create a new object from an existing one

Copy constructor takes an object of the same
type as argument

Copies the instance variables

Use object name to disambiguate which
instance variables we are talking about

Note that private instance variables of
argument are visible

Shallow copy vs deep copy

Want new object to be disjoint from old one

If instance variable are objects, we may end up
aliasing rather than copying

Discuss later — cloning objects

public class Date {
private int day, month, year;

public Date(Date d){
this.day = d.day;
this.month = d.month;
this.year = d.year;

}
}

public void UseDate() {
Date d1,d2;
d1 = new Date(12,4,1954);
d2 = new.Date(d1);

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 15 / 20



Copy constructors

Create a new object from an existing one

Copy constructor takes an object of the same
type as argument

Copies the instance variables

Use object name to disambiguate which
instance variables we are talking about

Note that private instance variables of
argument are visible

Shallow copy vs deep copy

Want new object to be disjoint from old one

If instance variable are objects, we may end up
aliasing rather than copying

Discuss later — cloning objects

public class Date {
private int day, month, year;

public Date(Date d){
this.day = d.day;
this.month = d.month;
this.year = d.year;

}
}

public void UseDate() {
Date d1,d2;
d1 = new Date(12,4,1954);
d2 = new.Date(d1);

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 3, 12 Jan 2023 15 / 20

"A
anFil



class Student &
S1
=

> Name
private string name; T
I

3

private Dahe bday;

coneshowin
the

this name =sname;

thi.bdaya s.dday;

Python (1 = 22


