Concurrent programming example;

Thread safe collections

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 16, 9 March 2023



An exercise in concurrent programming

m A narrow North-South bridge can accommodate traffic only in one direction at a
time.

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 2/18



An exercise in concurrent programming

m A narrow North-South bridge can accommodate traffic only in one direction at a
time.

m When a car arrives at the bridge
m Cars on the bridge going in the same direction = can cross

m No other car on the bridge = can cross (implicitly sets direction)

m Cars on the bridge going in the opposite direction = wait for the bridge to be empty

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



An exercise in concurrent programming

m A narrow North-South bridge can accommodate traffic only in one direction at a
time.
m When a car arrives at the bridge
m Cars on the bridge going in the same direction = can cross
m No other car on the bridge = can cross (implicitly sets direction)

m Cars on the bridge going in the opposite direction = wait for the bridge to be empty

m Cars waiting to cross from one side may enter bridge in any order after direction
switches in their favour.

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



An exercise in concurrent programming

m A narrow North-South bridge can accommodate traffic only in one direction at a
time.
m When a car arrives at the bridge
m Cars on the bridge going in the same direction = can cross
m No other car on the bridge = can cross (implicitly sets direction)
m Cars on the bridge going in the opposite direction = wait for the bridge to be empty

m Cars waiting to cross from one side may enter bridge in any order after direction
switches in their favour.

m When bridge becomes empty and cars are waiting, yet another car can enter in the
opposite direction and makes them all wait some more.

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



An example . ..

m Design a class Bridge to implement consistent one-way access for cars on the
highway

m Should permit multiple cars to be on the bridge at one time (all going in the samﬂ
direction!)

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 3/18



example ...

m Design a class Bridge to implement consistent one-way access for cars on the
highway
m Should permit multiple cars to be on the bridge at one time (all going in the same
direction!)

m Bridge has a public method public void cross(int id, boolean d, int s)

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 3/18



An example . ..

m Design a class Bridge to implement consistent one-way access for cars on the
highway
m Should permit multiple cars to be on the bridge at one time (all going in the same
direction!)
m Bridge has a public method public void cross(int id, boolean d, int s)

m id is identity of car

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 3/18



An example . ..

m Design a class Bridge to implement consistent one-way access for cars on the
highway
m Should permit multiple cars to be on the bridge at one time (all going in the same
direction!)
m Bridge has a public method public void cross(int id, boolean d, int s)
m id is identity of car
m d indicates direction
m true is North

m false is South

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 3/18



An example . ..

m Design a class Bridge to implement consistent one-way access for cars on the
highway
m Should permit multiple cars to be on the bridge at one time (all going in the same
direction!)
m Bridge has a public method public void cross(int id, boolean d, int s)
m id is identity of car
m d indicates direction
m true is North

m false is South

m s indicates time taken to cross (milliseconds)

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



An example . ..

public void cross(int id, boolean d, int s)

m Method cross prints out diagnostics

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 4/18



An example . ..

public void cross(int id, boolean d, int s)

m Method cross prints out diagnostics

m A car is stuck waiting for the direction to change
Car 10 going South stuck at Thu Mar 9 12:42:13 IST 2023

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 4/18



An example . ..

public void cross(int id, boolean d, int s)

m Method cross prints out diagnostics
m A car is stuck waiting for the direction to change
Car 10 going South stuck at Thu Mar 9 12:42:13 IST 2023

m The direction changes

Car 10 switches bridge direction to South at Fri Feb 25 12:42:13 IST
2023

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



An example . ..

public void cross(int id, boolean d, int s)

m Method cross prints out diagnostics

m A car is stuck waiting for the direction to change
Car 10 going South stuck at Thu Mar 9 12:42:13 IST 2023

m The direction changes
Car 10 switches bridge direction to South at Fri Feb 25 12:42:13 IST
2023

m A car enters the bridge
Car 10 going South enters bridge at Thu Mar 9 12:42:13 IST 2023

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



An example . ..

public void cross(int id, boolean d, int s)

m Method cross prints out diagnostics

m A car is stuck waiting for the direction to change
Car 10 going South stuck at Thu Mar 9 12:42:13 IST 2023

m The direction changes
Car 10 switches bridge direction to South at Fri Feb 25 12:42:13 IST
2023

m A car enters the bridge
Car 10 going South enters bridge at Thu Mar 9 12:42:13 IST 2023

m A car leaves the bridge
Car 10 leaves at Thu Mar 9 12:42:14 IST 2023

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



Analysis

m The “data” that is shared is the Bridge

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 5/18



m The “data” that is shared is the Bridge

m State of the bridge is represented by two quantities
m Number of cars on bridge — int bcount

m Current direction of bridge — boolean direction

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 5/18



m The “data” that is shared is the Bridge

m State of the bridge is represented by two quantities
m Number of cars on bridge — int bcount
m Current direction of bridge — boolean direction
m The method public void cross(int id, boolean d, int s)
changes the state of the bridge

m Concurrent execution of cross can cause problems . ..

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



m The “data” that is shared is the Bridge

m State of the bridge is represented by two quantities
m Number of cars on bridge — int bcount
m Current direction of bridge — boolean direction
m The method public void cross(int id, boolean d, int s)
changes the state of the bridge

m Concurrent execution of cross can cause problems . ..

m ... but making cross a synchronized method is too restrictive
m Only one car on the bridge at a time

m Problem description explicitly disallows such a solution

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



Analysis . ..

m Break up cross into a sequence of actions
m enter — get on the bridge
m travel — drive across the bridge

m leave — get off the bridge

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 6/18



Analysis . ..

m Break up cross into a sequence of actions
m enter — get on the bridge
m travel — drive across the bridge
m leave — get off the bridge

m enter and leave can print out the diagnostics required

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 6/18



m Break up cross into a sequence of actions
m enter — get on the bridge
m travel — drive across the bridge
m leave — get off the bridge

m enter and leave can print out the diagnostics required

m Which of these affect the state of the bridge?

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 6/18



m Break up cross into a sequence of actions
m enter — get on the bridge
m travel — drive across the bridge
m leave — get off the bridge

m enter and leave can print out the diagnostics required

m Which of these affect the state of the bridge?

m enter : increment number of cars, perhaps change direction

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 6/18



m Break up cross into a sequence of actions
m enter — get on the bridge
m travel — drive across the bridge
m leave — get off the bridge

m enter and leave can print out the diagnostics required

m Which of these affect the state of the bridge?
m enter : increment number of cars, perhaps change direction

m leave : decrement number of cars

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 6/18



m Break up cross into a sequence of actions
m enter — get on the bridge
m travel — drive across the bridge
m leave — get off the bridge

m enter and leave can print out the diagnostics required

m Which of these affect the state of the bridge?
m enter : increment number of cars, perhaps change direction

m leave : decrement number of cars

m Make enter and leave synchronized

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 6/18



m Break up cross into a sequence of actions
m enter — get on the bridge
m travel — drive across the bridge
m leave — get off the bridge

m enter and leave can print out the diagnostics required

m Which of these affect the state of the bridge?
m enter : increment number of cars, perhaps change direction

m leave : decrement number of cars
m Make enter and leave synchronized

m travel is just a means to let time elapse — use sleep

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



Code for cross Y- 5‘1’”“‘"‘”'“

public void cross(int id, boolean d, int s){

// Get onto the bridge (if you can!)
enter(id,d) ;

// Takes time to cross the bridge
try{

Thread.sleep(s); {:
, faudv

catch(InterruptedException e){}

// Get off the bridge
leave(id);

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 7/18



Analysis . ..

Entering the bridge

m If the direction of this car matches the direction of the bridge, it can enter

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 8/18



Entering the bridge

m If the direction of this car matches the direction of the bridge, it can enter

m If the direction does not match but the number of cars is zero, it can reset the
direction and enter

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 8/18



Entering the bridge

m If the direction of this car matches the direction of the bridge, it can enter

m If the direction does not match but the number of cars is zero, it can reset the
direction and enter

m Otherwise, wait () for the state of the bridge to change

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 8/18



Entering the bridge

m If the direction of this car matches the direction of the bridge, it can enter

m If the direction does not match but the number of cars is zero, it can reset the
direction and enter

m Otherwise, wait () for the state of the bridge to change

m In each case, print a diagnostic message

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 8/18



Code for enter

private{synchronized Joid enter(int id, boolean d){

Date e

// While there are cars going in the wrong direction
while (d != direction &% bcount > 0){

l‘date = new Date();
Im{!“")' System.out.println("Car "+id+" going "+direction_name(d)+" stuck at "+date);

// Wait for our turn
try{

wait();

————

}
catch (InterruptedException e){}
}

)

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 9/18



Code for enter

private synchronized void enter(int id, boolean d){

while (d != direction && bcount > 0){ ... wait() ...}
—

if (d !'= direction){ // Switch direction, if needed
direction = d; I\ ]
date = new Date(); 0?‘10""
D\ \System out.println("Car "+id+" switches bridge direction
’I to "+direction_name(direction)+" at "+date);

bcount++; // Register our presence on the bridge
—

date = new Date();
D(_ﬁ \System.out.println("Car "+id+" going "+direction_name(d)+" enters bridge at "+date);
}

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 20:



Code for leave

Leaving the bridge is much simpler

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 20:



Code for leave

Leaving the bridge is much simpler

m Decrement the car count

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 20:



Code for leave

Leaving the bridge is much simpler

m Decrement the car count

m notify () waiting cars

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 20:



Code for leave

Leaving the bridge is much simpler

m Decrement the car count

m notify () waiting cars ... provided car count is zero

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 20:



Code for leave

Leaving the bridge is much simpler

m Decrement the car count
m notify () waiting cars ... provided car count is zero

private synchronized void leave(int id){
Date date = new Date();
System.out.println("Car "+id+" leaves at "+date);

// "Check out"
bcount--;

// If everyone on the bridge has checked out, notify the
// cars waiting on the opposite side
if (bcount == 0){

notifyAl1();

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



Summary

m Concurrent programming can be tricky

Need to synchronize access to shared resources

m ... while allowing concurrency

This bridge crossing example is a prototype for a number of real world requirements

N
Un 1Sex LaJchm"

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



Concurrency and collections

m Synchronize access to bank account
array to ensure consistent updates

monitor bank_account{
double accounts[100];

boolean transfer (double amount,

}

int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

double audit(){

// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i++){
balance += accounts[i];
}

return balance;

Madhavan Mukund/S P Suresh

Concurrent programming example; Thread safe collections

PLC, Lecture 16, 9 Mar 20



Concurrency and collections

m Synchronize access to bank account

array to ensure consistent updates

m Noninterfering updates can safely
happen in parallel

m Updates to different accounts,
accounts[i] and accounts[j]

monitor bank_account{
double accounts[100];

boolean transfer (double amount,

}

int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

double audit(){

// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i++){
balance += accounts[i];
}

return balance;

Madhavan Mukund/S P Suresh

Concurrent programming example; Thread safe collections

PLC, Lecture 16, 9 Mar 20



Concurrency and collections

m Synchronize access to bank account
array to ensure consistent updates

m Noninterfering updates can safely
happen in parallel
m Updates to different accounts,

accounts[i] and accounts[j]

m Insistence on sequential access affects
performance

monitor bank_account{

double accounts[100];

boolean transfer (double amount,
int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

double audit(){
// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i++){
balance += accounts[i];
}

return balance;

Madhavan Mukund/S P Suresh

Concurrent programming example; Thread safe collections

PLC, Lecture 16, 9 Mar 20



Concurrency and collections

m Synchronize access to bank account
array to ensure consistent updates

m Noninterfering updates can safely
happen in parallel

m Updates to different accounts,
accounts[i] and accounts[j]

m Insistence on sequential access affects
performance

m Can we implement collections to allow
such concurrent updates in a safe
manner — make them thread safe?

monitor bank_account{

double accounts[100];

boolean transfer (double amount,
int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

double audit(){
// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i++){
balance += accounts[i];
}

return balance;

Madhavan Mukund/S P Suresh

Concurrent programming example; Thread safe collections

PLC, Lecture 16, 9 Mar 2023



Thread safety and correctness

monitor bank_account{
m Thread safety guarantees consistency of double accounts[100];

individual updates

boolean transfer (double amount,
int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

double audit(){
// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i++){
balance += accounts[i];
}

return balance;

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 20:



Thread safety and correctness

monitor bank_account{

m Thread safety guarantees consistency of
individual updates

m If two threads increment accounts[i],
neither update is lost

}

double accounts[100];

boolean transfer (double amount,

int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts [source]
accounts[target] += amount;
return true;

—-= amount;

double audit(){

¥

// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100;

balance += accounts[i];
}

return balance;

i++){

Madhavan Mukund/S P Suresh

Concurrent programming example; Thread safe collections

PLC, Lecture 16, 9 Mar 2|



Thread safety and correctness

monitor bank_account{

m Thread safety guarantees consistency of
individual updates

m If two threads increment accounts[i],
neither update is lost

m Individual updates are implemented in
an atomic manner

}

double accounts[100];

boolean transfer (double amount,

int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

double audit(){

¥

// compute balance across all accounts

double balance = 0.00;
for (int i = 0; i < 100; i++){
balance += accounts[i];

}

return balance;

Madhavan Mukund/S P Suresh

Concurrent programming example; Thread safe collections

PLC, Lecture 16, 9 Mar 2|



Thread safety and correctness

m Thread safety guarantees consistency of

individual updates

m If two threads increment accounts[i],
neither update is lost

m Individual updates are implemented in
an atomic manner

m Does not say anything about sequences
of updates

monitor bank_account{
double accounts[100];

boolean transfer (double amount,

}

int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts [source]
accounts[target] += amount;
return true;

—-= amount;

double audit(){

// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100;

balance += accounts[i];
}

return balance;

i++){

Madhavan Mukund/S P Suresh

Concurrent programming example; Thread safe collections

PLC, Lecture 16, 9 Mar 20



Thread safety and correctness

m Thread safety guarantees consistency of

individual updates

m If two threads increment accounts[i],
neither update is lost

m Individual updates are implemented in
an atomic manner

m Does not say anything about sequences
of updates

m Formally, linearizability

monitor bank_account{

double accounts[100];

boolean transfer (double amount,
int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

double audit(){
// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i++){
balance += accounts[i];
}

return balance;

Madhavan Mukund/S P Suresh

Concurrent programming example; Thread safe collections

PLC, Lecture 16, 9 Mar 20



Thread safety and correctness

m Thread safety guarantees consistency of

individual updates

m If two threads increment accounts[i],
neither update is lost

m Individual updates are implemented in
an atomic manner

m Does not say anything about sequences
of updates

m Formally, linearizability

m Contrast with serializability in
databases, where transactions
(sequences of updates) appear atomic

monitor bank_account{

double accounts[100];

boolean transfer (double amount,
int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

double audit(){
// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i++){
balance += accounts[i];
}

return balance;

Madhavan Mukund/S P Suresh

Concurrent programming example; Thread safe collections

PLC, Lecture 16, 9 Mar 20



SMA,M-MN? T\ 13 T n 12 T(T



Thread safe collections

m To implement thread safe collections, use locks to make local updates atomic

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 20:



Thread safe collections

m To implement thread safe collections, use locks to make local updates atomic

m Granularity of locking depends on data structure
m In an array, sufficient to protect a[i]

m In a linked list, restrict access to nodes on either side of insert/delete

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



Thread safe collections

m To implement thread safe collections, use locks to make local updates atomic

m Granularity of locking depends on data structure
m In an array, sufficient to protect a[i]

m In a linked list, restrict access to nodes on either side of insert/delete

m Java provides built-in collection types that are thread safe
m ConcurrentMap interface, implemented as ConcurrentHashMap
m BlockingQueue, ConcurrentSkipList, ...
—_—— = =

m Appropriate low level locking is done automatically to ensure consistent local updates

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



Thread safe collections

m To implement thread safe collections, use locks to make local updates atomic

m Granularity of locking depends on data structure
m In an array, sufficient to protect a[i]

m In a linked list, restrict access to nodes on either side of insert/delete

m Java provides built-in collection types that are thread safe
m ConcurrentMap interface, implemented as ConcurrentHashMap
m BlockingQueue, ConcurrentSkipList, ...

m Appropriate low level locking is done automatically to ensure consistent local updates

m Remember that these only guarantee atomicity of individual updates

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



Thread safe collections

m To implement thread safe collections, use locks to make local updates atomic

Granularity of locking depends on data structure
m In an array, sufficient to protect a[i]

m In a linked list, restrict access to nodes on either side of insert/delete

Java provides built-in collection types that are thread safe
m ConcurrentMap interface, implemented as ConcurrentHashMap
m BlockingQueue, ConcurrentSkipList, ...

m Appropriate low level locking is done automatically to ensure consistent local updates

m Remember that these only guarantee atomicity of individual updates

Sequences of updates (transfer from one account to another) still need to be
manually synchronized to work properly

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 15/18



Usings thread safe queues for synchronization

m Use a thread safe queue for simpler synchronization of shared objects

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 16 /18



Usings thread safe queues for synchronization

m Use a thread safe queue for simpler synchronization of shared objects

m Producer—Consumer system
m Producer threads insert items into the queue

m Consumer threads retrieve them.

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 16 /18



Usings thread safe queues for synchronization

m Use a thread safe queue for simpler synchronization of shared objects

m Producer—Consumer system

m Producer threads insert items into the queue

m Consumer threads retrieve them.
m Bank account example
m Transfer threads insert transfer instructions into shared queue
m Update thread processes instructions from the queue, modifies bank accounts

m Only the update thread modifies the data structure

m No synchronization necessary

Madhavan Mukund/S P Suresh

Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



Usings thread safe queues for synchronization

m Use a thread safe queue for simpler synchronization of shared objects

m Producer—Consumer system
m Producer threads insert items into the queue

m Consumer threads retrieve them.

m Bank account example

m Transfer threads insert transfer instructions into shared queue

Update thread processes instructions from the queue, modifies bank accounts

m Only the update thread modifies the data structure

No synchronization necessary

m How does a consumer thread know when to check the queue?

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 16 /18



Blocking queues

m Blocking queues block when ...
m ...you try to add an element when the queue is full

® ...you try to remove an element when the queue is empty

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2



Blocking queues

m Blocking queues block when ...
m ...you try to add an element when the queue is full

® ...you try to remove an element when the queue is empty

m Update thread tries to remove an item to process, waits if nothing is available

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 20:



Blocking queues

m Blocking queues block when ...
m ...you try to add an element when the queue is full

® ...you try to remove an element when the queue is empty
m Update thread tries to remove an item to process, waits if nothing is available

m In general, use blocking queues to coordinate multiple producer and consumer
threads
m Producers write intermediate results into the queue

m Consumers retrieve these results and make further updates

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023



Blocking queues

m Blocking queues block when ...
m ...you try to add an element when the queue is full

® ...you try to remove an element when the queue is empty
m Update thread tries to remove an item to process, waits if nothing is available
m In general, use blocking queues to coordinate multiple producer and consumer
threads

m Producers write intermediate results into the queue

m Consumers retrieve these results and make further updates

m Blocking automatically balances the workload
m Producers wait if consumers are slow and the queue fills up

m Consumers wait if producers are slow to provide items to process

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 17 /18



m When updating collections, locking the entire data structure for individual updates
is wasteful
m Sufficient to protect access within a local portion of the structure
m Ensure that two updates do not overlap
m Region to protect depends on the type of collection

m Implement using lower level locks of suitable granularity
m Java provides built-in thread safe collections

m One of these is a blocking queue
m Use a blocking queue to coordinate producers and consumers

m Ensure safe access to a shared data structure without explicit synchronization

Madhavan Mukund/S P Suresh Concurrent programming example; Thread safe collections PLC, Lecture 16, 9 Mar 2023 18 /18



