
Java: generics

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 10, 9 February 2023

Polymorphism

In object-oriented programming, polymorphism usually refers to the e↵ect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities

Reverse an array/list

Search for an element in an array/list

Sort an array/list

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 2 / 19

Simula

so fore in Eventquene:
e. simulate()

Polymorphism

In object-oriented programming, polymorphism usually refers to the e↵ect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities

Reverse an array/list

Search for an element in an array/list

Sort an array/list

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 2 / 19

Polymorphism

In object-oriented programming, polymorphism usually refers to the e↵ect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities

Reverse an array/list

Search for an element in an array/list

Sort an array/list

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 2 / 19

Polymorphism

In object-oriented programming, polymorphism usually refers to the e↵ect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities

Reverse an array/list (should work for any type)

Search for an element in an array/list

Sort an array/list

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 2 / 19

[a]-[a] (a+s]
[a]->as?

Polymorphism

In object-oriented programming, polymorphism usually refers to the e↵ect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities

Reverse an array/list (should work for any type)

Search for an element in an array/list (need equality check)

Sort an array/list

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 2 / 19

Polymorphism

In object-oriented programming, polymorphism usually refers to the e↵ect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities

Reverse an array/list (should work for any type)

Search for an element in an array/list (need equality check)

Sort an array/list (need to compare values)

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 2 / 19

Polymorphism

In object-oriented programming, polymorphism usually refers to the e↵ect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities — structural polymorphism

Reverse an array/list (should work for any type)

Search for an element in an array/list (need equality check)

Sort an array/list (need to compare values)

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 2 / 19

Structural polymorphism

Use the Java class hierarchy to
simulate this

Polymorphic reverse

Polymorphic find

== translates to Object.equals()

Polymorphic sort
Use interfaces to capture
capabilities

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 3 / 19

Structural polymorphism

Use the Java class hierarchy to
simulate this

Polymorphic reverse

Polymorphic find

== translates to Object.equals()

Polymorphic sort
Use interfaces to capture
capabilities

public void reverse (Object[] objarr){
Object tempobj;
int len = objarr.length;
for (i = 0; i < n/2; i++){
tempobj = objarr[i];
objarr[i] = objarr[(n-1)-i];
objarr[(n-1)-i] = tempobj;

}
}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 3 / 19

->

Structural polymorphism

Use the Java class hierarchy to
simulate this

Polymorphic reverse

Polymorphic find

== translates to Object.equals()

Polymorphic sort
Use interfaces to capture
capabilities

public int find (Object[] objarr, Object o){
int i;
for (i = 0; i < objarr.length; i++){
if (objarr[i] == o) {return i};

}
return (-1);

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 3 / 19

↑
always "works"

Structural polymorphism

Use the Java class hierarchy to
simulate this

Polymorphic reverse

Polymorphic find

== translates to Object.equals()

Polymorphic sort
Use interfaces to capture
capabilities

public interface Comparable{
public abstract int cmp(Comparable s);

}

public class SortFunctions{
public static void quicksort(Comparable[] a){
...
// Usual code for quicksort, except that
// to compare a[i] and a[j] we use
// a[i].cmp(a[j])

}
}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 3 / 19

Type consistency

Polymorphic function to copy an array

Need to ensure that target array is
type compatible with source array

Type errors should be flagged at
compile time

More generally source array can be a
subtype of the target array

But the converse is illegal

public static void arraycopy (Object[] src,
Object[] tgt){

int i,limit;
limit = Math.min(src.length,tgt.length);
for (i = 0; i < limit; i++){

tgt[i] = src[i];
}

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 4 / 19

Type consistency

Polymorphic function to copy an array

Need to ensure that target array is
type compatible with source array

Type errors should be flagged at
compile time

More generally source array can be a
subtype of the target array

But the converse is illegal

public static void arraycopy (Object[] src,
Object[] tgt){

int i,limit;
limit = Math.min(src.length,tgt.length);
for (i = 0; i < limit; i++){

tgt[i] = src[i];
}

}

Date[] datearr = new Date[10];
Employee[] emparr = new Employee[10];

arraycopy(datearr,emparr); // Run-time error

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 4 / 19

Type consistency

Polymorphic function to copy an array

Need to ensure that target array is
type compatible with source array

Type errors should be flagged at
compile time

More generally source array can be a
subtype of the target array

But the converse is illegal

public static void arraycopy (Object[] src,
Object[] tgt){

int i,limit;
limit = Math.min(src.length,tgt.length);
for (i = 0; i < limit; i++){

tgt[i] = src[i];
}

}

public class Ticket {...}
public class ETicket extends Ticket{...}

Ticket[] tktarr = new Ticket[10];
ETicket[] etktarr = new ETicket[10];

arraycopy(etktarr,tktarr); // Allowed

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 4 / 19

Type consistency

Polymorphic function to copy an array

Need to ensure that target array is
type compatible with source array

Type errors should be flagged at
compile time

More generally source array can be a
subtype of the target array

But the converse is illegal

public static void arraycopy (Object[] src,
Object[] tgt){

int i,limit;
limit = Math.min(src.length,tgt.length);
for (i = 0; i < limit; i++){

tgt[i] = src[i];
}

}

public class Ticket {...}
public class ETicket extends Ticket{...}

Ticket[] tktarr = new Ticket[10];
ETicket[] etktarr = new ETicket[10];

arraycopy(tktarr,etktarr); // Illegal

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 4 / 19

Polymorphic data structures

Arrays, lists, . . . should allow arbitrary
elements

A polymorphic list stores values of
type Object

Two problems

Type information is lost, need casts

List need not be homogenous!

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 5 / 19

Polymorphic data structures

Arrays, lists, . . . should allow arbitrary
elements

A polymorphic list stores values of
type Object

Two problems

Type information is lost, need casts

List need not be homogenous!

public class LinkedList{
private int size;
private Node first;

public Object head(){
Object returnval;
...
return(returnval);

}

public void insert(Object newdata){...}

private class Node {
private Object data;
private Node next;
...

}
}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 5 / 19

Polymorphic data structures

Arrays, lists, . . . should allow arbitrary
elements

A polymorphic list stores values of
type Object

Two problems

Type information is lost, need casts

List need not be homogenous!

public class LinkedList{
private int size;
private Node first;

public Object head(){
Object returnval;
...
return(returnval);

}

public void insert(Object newdata){...}

private class Node {
private Object data;
private Node next;
...

}
}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 5 / 19

Polymorphic data structures

Arrays, lists, . . . should allow arbitrary
elements

A polymorphic list stores values of
type Object

Two problems

Type information is lost, need casts

List need not be homogenous!

public class LinkedList{
private int size;
private Node first;

public Object head(){ ... }

public void insert(Object newdata){...}

private class Node {...}
}

LinkedList list = new LinkedList();
Ticket t1,t2;

t1 = new Ticket();
list.insert(t1);
t2 = (Ticket)(list.head());
// head() returns an Object

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 5 / 19

Polymorphic data structures

Arrays, lists, . . . should allow arbitrary
elements

A polymorphic list stores values of
type Object

Two problems

Type information is lost, need casts

List need not be homogenous!

public class LinkedList{
private int size;
private Node first;

public Object head(){ ... }

public void insert(Object newdata){...}

private class Node {...}
}

LinkedList list = new LinkedList();
Ticket t = new Ticket();
Date d = new Date();
list.insert(t);
list.insert(d);
...

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 5 / 19

Java Generics

Use type variables

Polymorphic reverse in Java

Type quantifier before return type

“For every type T . . . ”

Polymorphic find in Java

Searching for a value of incompatible
type is now a compile-time error

Polymorphic arraycopy

Source and target types must be identical

A more generous arraycopy

Source and target types may be di↵erent

Source type must extend target type

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 6 / 19

Java Generics

Use type variables

Polymorphic reverse in Java

Type quantifier before return type

“For every type T . . . ”

Polymorphic find in Java

Searching for a value of incompatible
type is now a compile-time error

Polymorphic arraycopy

Source and target types must be identical

A more generous arraycopy

Source and target types may be di↵erent

Source type must extend target type

public <T> void reverse (T[] objarr){
T tempobj;
int len = objarr.length;
for (i = 0; i < n/2; i++){
tempobj = objarr[i];
objarr[i] = objarr[(n-1)-i];
objarr[(n-1)-i] = tempobj;

}
}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 6 / 19

VT return

↳ o ftype var
②

A -appears redundant
<T)

Java Generics

Use type variables

Polymorphic reverse in Java

Type quantifier before return type

“For every type T . . . ”

Polymorphic find in Java

Searching for a value of incompatible
type is now a compile-time error

Polymorphic arraycopy

Source and target types must be identical

A more generous arraycopy

Source and target types may be di↵erent

Source type must extend target type

public <T> int find (T[] objarr, T o){
int i;
for (i = 0; i < objarr.length; i++){
if (objarr[i] == o) {return i};

}
return (-1);

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 6 / 19

1x

samel

Java Generics

Use type variables

Polymorphic reverse in Java

Type quantifier before return type

“For every type T . . . ”

Polymorphic find in Java

Searching for a value of incompatible
type is now a compile-time error

Polymorphic arraycopy

Source and target types must be identical

A more generous arraycopy

Source and target types may be di↵erent

Source type must extend target type

public static <T> void arraycopy (T[] src,
T[] tgt){

int i,limit;
limit = Math.min(src.length,tgt.length);
for (i = 0; i < limit; i++){

tgt[i] = src[i];
}

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 6 / 19

if
same

Java Generics

Use type variables

Polymorphic reverse in Java

Type quantifier before return type

“For every type T . . . ”

Polymorphic find in Java

Searching for a value of incompatible
type is now a compile-time error

Polymorphic arraycopy

Source and target types must be identical

A more generous arraycopy

Source and target types may be di↵erent

Source type must extend target type

public static <S extends T,T>
void arraycopy (S[] src,

T[] tgt){
int i,limit;
limit = Math.min(src.length,tgt.length);
for (i = 0; i < limit; i++){

tgt[i] = src[i];
}

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 6 / 19

<SIT)
-

unconstrated

S N↓

Polymorphic data structures

A polymorphic list

The type parameter T applies to the
class as a whole

Internally, the T in Node is the same T

Also the return value of head() and
the argument of insert()

Instantiate generic classes using
concrete type

public class LinkedList<T>{
private int size;
private Node first;

public T head(){
T returnval;
...
return(returnval);

}

public void insert(T newdata){...}

private class Node {
private T data;
private Node next;
...

}
}

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 7 / 19

Polymorphic data structures

A polymorphic list

The type parameter T applies to the
class as a whole

Internally, the T in Node is the same T

Also the return value of head() and
the argument of insert()

Instantiate generic classes using
concrete type

public class LinkedList<T>{
private int size;
private Node first;

public T head(){
T returnval;
...
return(returnval);

}

public void insert(T newdata){...}

private class Node {
private T data;
private Node next;
...

}
}

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 7 / 19

Polymorphic data structures

A polymorphic list

The type parameter T applies to the
class as a whole

Internally, the T in Node is the same T

Also the return value of head() and
the argument of insert()

Instantiate generic classes using
concrete type

public class LinkedList<T>{
private int size;
private Node first;

public T head(){
T returnval;
...
return(returnval);

}

public void insert(T newdata){...}

private class Node {
private T data;
private Node next;
...

}
}

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 7 / 19

Polymorphic data structures

A polymorphic list

The type parameter T applies to the
class as a whole

Internally, the T in Node is the same T

Also the return value of head() and
the argument of insert()

Instantiate generic classes using
concrete type

public class LinkedList<T>{
private int size;
private Node first;

public T head(){
T returnval;
...
return(returnval);

}

public void insert(T newdata){...}

private class Node {
private T data;
private Node next;
...

}
}

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 7 / 19

Polymorphic data structures

A polymorphic list

The type parameter T applies to the
class as a whole

Internally, the T in Node is the same T

Also the return value of head() and
the argument of insert()

Instantiate generic classes using
concrete type

public class LinkedList<T>{
...

}

LinkedList<Ticket> ticketlist =
new LinkedList<Ticket>();

LinkedList<Date> datelist =
new LinkedList<Date>();

Ticket t = new Ticket();
Date d = new Date();

ticketlist.insert(t);
datelist.insert(d);

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 7 / 19

Polymorphic data structures

Be careful not to accidentally hide a
type variable

public <T> void
insert(T newdata){...}

T in the argument of insert() is a
new T

Quantifier <T> masks the type
parameter T of LinkedList

Contrast with

public class LinkedList<T>{
private int size;
private Node first;

public T head(){
T returnval;
...
return(returnval);

}

public <T> void insert(T newdata){...}

private class Node {
private T data;
private Node next;
...

}
}

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 8 / 19

VnEv()
&
hides

LnewT

M

Polymorphic data structures

Be careful not to accidentally hide a
type variable

public <T> void
insert(T newdata){...}

T in the argument of insert() is a
new T

Quantifier <T> masks the type
parameter T of LinkedList

Contrast with

public class LinkedList<T>{
private int size;
private Node first;

public T head(){
T returnval;
...
return(returnval);

}

public <T> void insert(T newdata){...}

private class Node {
private T data;
private Node next;
...

}
}

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 8 / 19

Polymorphic data structures

Be careful not to accidentally hide a
type variable

public <T> void
insert(T newdata){...}

T in the argument of insert() is a
new T

Quantifier <T> masks the type
parameter T of LinkedList

Contrast with

public class LinkedList<T>{
private int size;
private Node first;

public T head(){
T returnval;
...
return(returnval);

}

public <T> void insert(T newdata){...}

private class Node {
private T data;
private Node next;
...

}
}

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 8 / 19

Polymorphic data structures

Be careful not to accidentally hide a
type variable

public <T> void
insert(T newdata){...}

T in the argument of insert() is a
new T

Quantifier <T> masks the type
parameter T of LinkedList

Contrast with
public <T> static void

arraycopy (T[] src, T[] tgt){...}

public class LinkedList<T>{
private int size;
private Node first;

public T head(){
T returnval;
...
return(returnval);

}

public <T> void insert(T newdata){...}

private class Node {
private T data;
private Node next;
...

}
}

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 8 / 19

Extending subtyping in contexts

If S is compatible with T, S[] is compatible with T[]

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr;

// OK. ETicket[] is a subtype of Ticket[]

But . . .

A type error at run time!

Java array typing is covariant

If S extends T then S[] extends T[]

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 9 / 19

Extending subtyping in contexts

If S is compatible with T, S[] is compatible with T[]

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr;

// OK. ETicket[] is a subtype of Ticket[]

But . . .

...

ticketarr[5] = new Ticket();

// Not OK. ticketarr[5] refers to an ETicket!

A type error at run time!

Java array typing is covariant

If S extends T then S[] extends T[]

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 9 / 19

Extending subtyping in contexts

If S is compatible with T, S[] is compatible with T[]

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr;

// OK. ETicket[] is a subtype of Ticket[]

But . . .

...

ticketarr[5] = new Ticket();

// Not OK. ticketarr[5] refers to an ETicket!

A type error at run time!

Java array typing is covariant

If S extends T then S[] extends T[]

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 9 / 19

Extending subtyping in contexts

If S is compatible with T, S[] is compatible with T[]

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr;

// OK. ETicket[] is a subtype of Ticket[]

But . . .

...

ticketarr[5] = new Ticket();

// Not OK. ticketarr[5] refers to an ETicket!

A type error at run time!

Java array typing is covariant

If S extends T then S[] extends T[]

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 9 / 19

Generics and subtypes

Generic classes are not covariant
LinkedList<String> is not compatible with LinkedList<Object>

The following will not work to print out an arbitrary LinkedList

How can we get around this limitation?

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 10 / 19

Generics and subtypes

Generic classes are not covariant
LinkedList<String> is not compatible with LinkedList<Object>

The following will not work to print out an arbitrary LinkedList

public class LinkedList<T>{...}

public static void printlist(LinkedList<Object> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

How can we get around this limitation?

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 10 / 19

Generics and subtypes

Generic classes are not covariant
LinkedList<String> is not compatible with LinkedList<Object>

The following will not work to print out an arbitrary LinkedList

public class LinkedList<T>{...}

public static void printlist(LinkedList<Object> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

How can we get around this limitation?

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 10 / 19

4.

Generic methods

As we have seen, we can make the method generic by introducing a type variable

public class LinkedList<T>{...}

public static <T> void printlist(LinkedList<T> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

<T> is a type quantifier: For every type T, . . .

Note that T is not actually used inside the function

We use Object o as a generic variable to cycle through the list

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 11 / 19

o
<->
- No link

Generic methods

As we have seen, we can make the method generic by introducing a type variable

public class LinkedList<T>{...}

public static <T> void printlist(LinkedList<T> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

<T> is a type quantifier: For every type T, . . .

Note that T is not actually used inside the function

We use Object o as a generic variable to cycle through the list

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 11 / 19

Generic methods

As we have seen, we can make the method generic by introducing a type variable

public class LinkedList<T>{...}

public static <T> void printlist(LinkedList<T> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

<T> is a type quantifier: For every type T, . . .

Note that T is not actually used inside the function

We use Object o as a generic variable to cycle through the list

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 11 / 19

Wildcards

Instead, use ? as a wildcard type variable

public class LinkedList<T>{...}

public static void printlist(LinkedList<?> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

}

? stands for an arbitrary unknown type

Avoids unnecessary type variable quantification when the type variable is not needed
elsewhere

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 12 / 19

uf(?) X

Wildcards

Instead, use ? as a wildcard type variable

public class LinkedList<T>{...}

public static void printlist(LinkedList<?> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

}

? stands for an arbitrary unknown type

Avoids unnecessary type variable quantification when the type variable is not needed
elsewhere

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 12 / 19

Wildcards

Instead, use ? as a wildcard type variable

public class LinkedList<T>{...}

public static void printlist(LinkedList<?> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

}

? stands for an arbitrary unknown type

Avoids unnecessary type variable quantification when the type variable is not needed
elsewhere

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 12 / 19

Wildcards

Can define variables of a wildcard type

public class LinkedList<T>{...}

LinkedList<?> l;

But need to be careful about assigning values

Compiler cannot guarantee the types match

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 13 / 19

Wildcards

Can define variables of a wildcard type

public class LinkedList<T>{...}

LinkedList<?> l;

But need to be careful about assigning values

public class LinkedList<T>{...}

LinkedList<?> l = new LinkedList<String>();

l.add(new Object()); // Compile time error

Compiler cannot guarantee the types match

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 13 / 19

Wildcards

Can define variables of a wildcard type

public class LinkedList<T>{...}

LinkedList<?> l;

But need to be careful about assigning values

public class LinkedList<T>{...}

LinkedList<?> l = new LinkedList<String>();

l.add(new Object()); // Compile time error

Compiler cannot guarantee the types match

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 13 / 19

↓Opato

String s =0

·updatedshakes

1 for a clearer explanationof what's written here
-

Bounded wildcards

Suppose Circle, Square and Rectangle all extend Shape

Shape has a method draw()

All subclasses override draw()

Want a function to draw all elements in a list of Shape compatible objects

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 14 / 19

Bounded wildcards

Suppose Circle, Square and Rectangle all extend Shape

Shape has a method draw()

All subclasses override draw()

Want a function to draw all elements in a list of Shape compatible objects

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 14 / 19

Bounded wildcards

Suppose Circle, Square and Rectangle all extend Shape

Shape has a method draw()

All subclasses override draw()

Want a function to draw all elements in a list of Shape compatible objects

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 14 / 19

Bounded wildcards

Suppose Circle, Square and Rectangle all extend Shape

Shape has a method draw()

All subclasses override draw()

Want a function to draw all elements in a list of Shape compatible objects

public static void drawAll(LinkedList<? extends Shape> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

o.draw();

}

}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 14 / 19

Bounded wildcards

Copying a LinkedList, using a
wildcard

public static <? extends T,T>
void listcopy (LinkedList<?> src,

LinkedList<T> tgt){
Object o;
Iterator i = srt.get_iterator();
while (i.has_next()){
o = i.get_next();
trt.add(o);

}
}

Can reverse the constraint, using super

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 15 / 19

Bounded wildcards

Copying a LinkedList, using a
wildcard

public static <? extends T,T>
void listcopy (LinkedList<?> src,

LinkedList<T> tgt){
Object o;
Iterator i = srt.get_iterator();
while (i.has_next()){
o = i.get_next();
trt.add(o);

}
}

Can reverse the constraint, using super

public static <T,? super T>
void listcopy (LinkedList<T> src,

LinkedList<?> tgt){
Object o;
Iterator i = srt.get_iterator();
while (i.has_next()){
o = i.get_next();
trt.add(o);

}
}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 15 / 19

->

Type declarations vs type inference

Java insists that all variables are
declared in advance, with type
information

The compiler can then check whether
the program is well-typed

An alternative approach is to do type
inference

Derive type information from context.
For instance, s should be String

Propagate type information: now t is
also String

public class Employee {...}

public class Manager extends Employee {...}

Employee e;

Manager m;

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 16 / 19

Type declarations vs type inference

Java insists that all variables are
declared in advance, with type
information

The compiler can then check whether
the program is well-typed

An alternative approach is to do type
inference

Derive type information from context.
For instance, s should be String

Propagate type information: now t is
also String

public class Employee {...}

public class Manager extends Employee {...}

Employee e;

Manager m;

...

m = new Manager(...);
e = m; // Allowed by subtyping

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 16 / 19

Type declarations vs type inference

Java insists that all variables are
declared in advance, with type
information

The compiler can then check whether
the program is well-typed

An alternative approach is to do type
inference

Derive type information from context.
For instance, s should be String

Propagate type information: now t is
also String

public class Employee {...}

public class Manager extends Employee {...}

Employee e;

Manager m;

...

m = new Manager(...);
e = m; // Allowed by subtyping

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 16 / 19

Type declarations vs type inference

Java insists that all variables are
declared in advance, with type
information

The compiler can then check whether
the program is well-typed

An alternative approach is to do type
inference

Derive type information from context.
For instance, s should be String

s = "Hello, " + "world";

Propagate type information: now t is
also String

public class Employee {...}

public class Manager extends Employee {...}

Employee e;

Manager m;

...

m = new Manager(...);
e = m; // Allowed by subtyping

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 16 / 19

Type declarations vs type inference

Java insists that all variables are
declared in advance, with type
information

The compiler can then check whether
the program is well-typed

An alternative approach is to do type
inference

Derive type information from context.
For instance, s should be String

s = "Hello, " + "world";

Propagate type information: now t is
also String

t = s + 5;

public class Employee {...}

public class Manager extends Employee {...}

Employee e;

Manager m;

...

m = new Manager(...);
e = m; // Allowed by subtyping

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 16 / 19

Type inference

Assume code is well-typed, derive most
general types

Use information from constants to
determine type

s = "Hello, " + "world";

Propagate type information based on
already inferred types

t = s + 5;

More ambitious?

If x.bonus() is legal, x must be
Manager rather than Employee

Keep track of and validate type
obligations

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 17 / 19

Type inference

Assume code is well-typed, derive most
general types

Use information from constants to
determine type

s = "Hello, " + "world";

Propagate type information based on
already inferred types

t = s + 5;

More ambitious?

If x.bonus() is legal, x must be
Manager rather than Employee

Keep track of and validate type
obligations

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 17 / 19

To free x t be a

stry, 2+"
--

7+ "5"

Type inference

Assume code is well-typed, derive most
general types

Use information from constants to
determine type

s = "Hello, " + "world";

Propagate type information based on
already inferred types

t = s + 5;

More ambitious?

If x.bonus() is legal, x must be
Manager rather than Employee

Keep track of and validate type
obligations

public class Employee {...}

public class Manager extends Employee {
...
public double bonus (...) {...}

}

...

public static f(Employee x){
...
double d = x.bonus(...);
// x must be a Manager?

...
}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 17 / 19

Type inference

Assume code is well-typed, derive most
general types

Use information from constants to
determine type

s = "Hello, " + "world";

Propagate type information based on
already inferred types

t = s + 5;

More ambitious?

If x.bonus() is legal, x must be
Manager rather than Employee

Keep track of and validate type
obligations

public class Employee {...}

public class Manager extends Employee {
...
public double bonus (...) {...}

}

...

public static f(Employee x){
...
double d = x.bonus(...);
// x must be a Manager?

...
}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 17 / 19

Type inference

Assume program is type-safe, derive
most general types compatible with
code

Use information from constants to
determine type

Propagate type information based on
already inferred types

Typing judgements should ideally be
made at compile-time, not at run-time

Static analysis of code

Balance flexibility with algorithmic
tractability

public class Employee {...}

public class Manager extends Employee {
...
public double bonus (...) {...}

}

...

public static f(Employee x){
...
double d = x.bonus(...);
// x must be a Manager?

...
}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 18 / 19

Type inference

Assume program is type-safe, derive
most general types compatible with
code

Use information from constants to
determine type

Propagate type information based on
already inferred types

Typing judgements should ideally be
made at compile-time, not at run-time

Static analysis of code

Balance flexibility with algorithmic
tractability

public class Employee {...}

public class Manager extends Employee {
...
public double bonus (...) {...}

}

...

public static f(Employee x){
...
double d = x.bonus(...);
// x must be a Manager?

...
}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 18 / 19

Type inference

Assume program is type-safe, derive
most general types compatible with
code

Use information from constants to
determine type

Propagate type information based on
already inferred types

Typing judgements should ideally be
made at compile-time, not at run-time

Static analysis of code

Balance flexibility with algorithmic
tractability

public class Employee {...}

public class Manager extends Employee {
...
public double bonus (...) {...}

}

...

public static f(Employee x){
...
double d = x.bonus(...);
// x must be a Manager?

...
}

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 18 / 19

Type inference in Java

Java allows limited type inference

Only for local variables in functions

Not for instance variables of a class

Use generic var to declare variables

Must be initialized when declared

Type is inferred from initial value

Be careful about format for numeric
constants

For classes, infer most constrained type

e is inferred to be Manager

Manager extends Employee

If e should be Employee, declare
explicitly

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 19 / 19

intX=5;

Type inference in Java

Java allows limited type inference

Only for local variables in functions

Not for instance variables of a class

Use generic var to declare variables

Must be initialized when declared

Type is inferred from initial value

Be careful about format for numeric
constants

For classes, infer most constrained type

e is inferred to be Manager

Manager extends Employee

If e should be Employee, declare
explicitly

var b = false; // boolean

var s = "Hello, world"; // String

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 19 / 19

Type inference in Java

Java allows limited type inference

Only for local variables in functions

Not for instance variables of a class

Use generic var to declare variables

Must be initialized when declared

Type is inferred from initial value

Be careful about format for numeric
constants

For classes, infer most constrained type

e is inferred to be Manager

Manager extends Employee

If e should be Employee, declare
explicitly

var b = false; // boolean

var s = "Hello, world"; // String

var d = 2.0; // double

var f = 3.141f; // float

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 19 / 19

Type inference in Java

Java allows limited type inference

Only for local variables in functions

Not for instance variables of a class

Use generic var to declare variables

Must be initialized when declared

Type is inferred from initial value

Be careful about format for numeric
constants

For classes, infer most constrained type

e is inferred to be Manager

Manager extends Employee

If e should be Employee, declare
explicitly

var b = false; // boolean

var s = "Hello, world"; // String

var d = 2.0; // double

var f = 3.141f; // float

var e = new Manager(...); // Manager

Madhavan Mukund/S P Suresh Java: generics PLC, Lecture 10, 9 Feb 2023 19 / 19

Employed e =new Mayer()
->

