Monitors and Threads in Java

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 15, 7 March 2023

Monitors

m Monitor is like a class in an OO
language
m Data definition — to which access is

restricted across threads

m Collections of functions operating on
this data — all are implicitly mutually
exclusive

m Monitor guarantees mutual exclusion —
if one function is active, any other
function will have to wait for it to finish

m Implicit queue associated with each
monitor

m Contains all processes waiting for
access

monitor bank_account{

double accounts[100];

boolean transfer (double amount,
int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

double audit(){
// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i++){
balance += accounts[i];
}

return balance;

Madhavan Mukund/S P Suresh

Monitors and Threads in Java

PLC, Lecture 15, 7 Mar 2023

Condition variables

. R monitor bank_account{
m Thread suspends itself and waits for a double accounts[100];

state Change — qglsource] .wait () queue q[100]; // one internal queue
// for each account

boolean transfer (double amount,

m Separate internal queue, vs external :
int source,

queue for initially blocked threads int target){
while (accounts[source] < amount){
qlsource] .wait(); // wait in the queue
// associated with source
}
accounts[source] -= amount;

accounts[target] += amount;
qltarget] .notify(); // notify the queue

// associated with target
return true;

}

// compute the balance across all accounts
double audit(){ ...}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 3/16

Condition variables

. R monitor bank_account{
m Thread suspends itself and waits for a double accounts[100];

state Change — qglsource] .wait () queue q[100]; // one internal queue
// for each account

boolean transfer (double amount,

m Separate internal queue, vs external :
int source,

queue for initially blocked threads int target){
while (accounts[source] < amount){
m Notify change — q[target] .notify() qlsource] .wait(); // wait in the queue
// associated with source
}
accounts[source] -= amount;

accounts[target] += amount;
qltarget] .notify(); // notify the queue

// associated with target
return true;

}

// compute the balance across all accounts
double audit(){ ...}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 3/16

Condition variables

i A monitor bank_accountq{
m Thread suspends itself and waits for a double accounts[100];
state Change — qglsource] .wait () queue q[100]; // one internal queue
// for each account
boolean transfer (double amount,

m Separate internal queue, vs external :
L. int source,
queue for initially blocked threads int target){
while (accounts[source] < amount){
[] NOtIfy Change — qltarget] .notify () qlsource] .wait(); // wait in the queue
// associated with source
m Signal and exit — notifying process }
X . . : accounts[source] -= amount;
immediately exits the monitor accounts [target] += amount;
qltarget] .notify(); // notify the queue
m Signal and wait — notifying process // associated with target
. . return true;
swaps roles with notified process }
m Signal and continue — notifying process // compute the balance across all accounts

keeps control till it completes and then double avditOf ...

one of the notified processes steps in

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 3/16

Monitors in Java

m Monitors incorporated within existing
class definitions

public class bank_account{
double accounts[100];

public synchronized boolean
transfer(double amount, int source, int target){
while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notifyAl1Q);

return true;
}

public synchronized double audit(){
double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

}

public double current_balance(int i){
return accounts[i]; // not synchronized!
}

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

Monitors in Java

public class bank_account{
double accounts[100];
m Monitors incorporated within existing
class definitions public synchronized boolean
transfer(double amount, int source, int target){

. i . while (accounts[source] < amount){ wait(); }
m Function declared synchronized is to

accounts[source] -= amount;
be executed atomically accounts[target] += amount;

notifyAl1Q);

return true;

public synchronized double audit(){
double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

}

public double current_balance(int i){
return accounts[i]; // not synchronized!
}

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

Monitors in Java

public class bank_account{
double accounts[100];
m Monitors incorporated within existing
class definitions public synchronized boolean
transfer(double amount, int source, int target){

. i . while (accounts[source] < amount){ wait(); }
m Function declared synchronized is to

accounts[source] -= amount;
be executed atomically accounts[target] += amount;
notifyAl1Q);

. return true;
m Each object has a lock }
m To execute a synchronized method
i . ! public synchronized double audit(){
thread must acquire lock double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];

return balance;

}

m Thread gives up lock when the
method exits

m Only one thread can have the lock at

any time public double current_balance(int i){

return accounts[i]; // not synchronized!

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

Monitors in Java

public class bank_account{
double accounts[100];
m Monitors incorporated within existing
class definitions public synchronized boolean
transfer(double amount, int source, int target){

. i . while (accounts[source] < amount){ wait(); }
m Function declared synchronized is to

accounts[source] -= amount;
be executed atomically accounts[target] += amount;
notifyAl1Q);

. return true;
m Each object has a lock }
m To execute a synchronized method
i . ! public synchronized double audit(){
thread must acquire lock double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];

return balance;

}

m Thread gives up lock when the
method exits

m Only one thread can have the lock at

any time public double current_balance(int i){
return accounts[i]; // not synchronized!

m Wait for lock in external queue }

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

Monitors in Java

m wait() and notify () to suspend and
resume

Madhavan Mukund/S P Suresh

Monitors and Threads in Java

public class bank_account{
double accounts[100];

public synchronized boolean
transfer(double amount, int source, int target){
while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notifyAl1Q);

return true;
}

public synchronized double audit(){
double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

}

public double current_balance(int i){
return accounts[i]; // not synchronized!

}
}

PLC, Lecture 15, 7 Mar 2023

Monitors in Java

m wait() and notify () to suspend and
resume

m Wait — single internal queue

Madhavan Mukund/S P Suresh

Monitors and Threads in Java

public class bank_account{
double accounts[100];

public synchronized boolean
transfer(double amount, int source, int target){
while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notifyAl1Q);

return true;
}

public synchronized double audit(){
double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

}

public double current_balance(int i){
return accounts[i]; // not synchronized!

}
}

PLC, Lecture 15, 7 Mar 2023

Monitors in Java

public class bank_account{
double accounts[100];
m wait() and notify () to suspend and
resume public synchronized boolean
transfer(double amount, int source, int target){
while (accounts[source] < amount){ wait(); }
accounts[source] -= amount;

. accounts[target] += amounty z
m Notify notifyAll(); Pi:- AB NArak
m notify() signals one (arbitrary) rewmm e é'z - ¢ AD wadd

waiting process P2- n-(h‘
public synchronized double audit().{Eec

m notifyAll() signals all waiting double balance = 0.0;

processes for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

m Wait — single internal queue

[}

m Java uses signal and continue

}
public double current_balance(int i){
return accounts[i]; // not synchronized!
}
}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

Object locks . ..

m Use object locks to synchronize
arbitrary blocks of code public class XYZ{
Object o = new Object();

public int £(){

synchronized(o){ ... }
}

public double g(){
synchronized(o){ |... }

}
}

' Some O

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

ject locks

m Use object locks to synchronize

arbitrary blocks of code public class XYZ{
Object o = new Object();
m £() and g() can start in parallel
public int £(){
m Only one of the threads can grab the

synchronized(o){ ... }
lock for o }

public double g(){

synchronized(o){ ... }
}
}
}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 6/16

Object locks . ..

m Use object locks to synchronize
arbitrary blocks of code

m £() and g() can start in parallel

m Only one of the threads can grab the
lock for o

m Each object has its own internal queue

Object o = new Object();
public int £(){
synchronized (o) {

o.wait(); // Wait in queue attached to "o

}
}

public double g(){
synchronized(o){

o.notifyAl1(); // Wake up queue attached tc

PLC, Lecture 15, 7 Mar 2023 6/16

Madhavan Mukund/S P Suresh

Monitors and Threads in Java

Object locks . ..

m Use object locks to synchronize

arbitrary blocks of code public double h(){
synchronized(this){
m £() and g() can start in parallel L"
¥ Cavrenk Jjuj—
m Only one of the threads can grab the ¥
lock for o
m Each object has its own internal queue

m Can convert methods from “externally”
synchronized to “internally”
synchronized

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 6/16

Object locks . ..

m Use object locks to synchronize

arbitrary blocks of code public double h(){
synchronized(this){
m £() and g() can start in parallel
}
m Only one of the threads can grab the Y
lock for o

Each object has its own internal queue Sqmd@) {

m Can convert methods from “externally \
synchronized to “internally”

synchronized 0. Umk())

m “Anonymous” wait (), notify(),
notifyAll() abbreviate this.wait (),
this.notify(), this.notifyAll() 3

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 6/16

Object locks . ..

m Actually, wait () can be “interrupted” by an InterruptedException

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 7/16

Object locks . ..

m Actually, wait () can be “interrupted” by an InterruptedException

m Should write

wait();

}

tch (Int tedException e) { ‘
o e A gt b

};

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 7/16

Object locks . ..

m Actually, wait () can be “interrupted” by an InterruptedException

m Should write

try{
wait();
}
catch (InterruptedException e) {

};

m Error to use wait (), notify (), notifyAll() outside synchronized method

m IllegalMonitorStateException

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 7/16

Object locks . ..

m Actually, wait () can be “interrupted” by an InterruptedException

m Should write

try{
wait();

}
catch (InterruptedException e) {

};

m Error to use wait (), notify (), notifyAll() outside synchronized method

m IllegalMonitorStateException

m Likewise, use o.wait (), o.notify(), o.notifyA11() only in block synchronized
on o

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 7/16

Reentrant locks

m Separate ReentrantLock class

public class Bank
{

private Lock bankLock = new ReentrantLock();
public void

transfer(int from, int to, int amount) {
bankLock.lock();

try {
accounts[from] -= amount;
accounts[to] += amount;

}

finally {
bankLock.unlock() ;

}

}
}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

Reentrant locks

m Separate ReentrantLock class

public class Bank
{
m lock() is like P(S) private Lock bankLock = new ReentrantLock();

m Similar to a semaphore

m unlock() is like V(S) }.Jl.lt‘)lic void
transfer(int from, int to, int amount) {
bankLock.lock();

try {
accounts[from] -= amount;
accounts[to] += amount;

}

finally {
bankLock.unlock() ;

}

}
}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 8/16

Reentrant locks

m Separate ReentrantLock class

m Similar to a semaphore f{mbhc class Bank

m lock() is like P(S) private Lock bankLock = new ReentrantLock();
[] unlock() |S I|ke V(S) public void
transfer(int from, int to, int amount) {

m Always unlock() in finally — avoid bankLock.lock() ;

abort while holding lock try {

accounts[from] -= amount;
accounts[to] += amount;

}

finally {
bankLock.unlock() ;

}

}

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

NM trdne I T

Q/ESWC&] 'Kn, ouvce W 0..44

g (sowree]. wadk() 4llrg k] wiry O
() Ay - hyen e
OL Sjvwhrmui Soured]
g q L] et (oonlDS
() Moy o[Lockes -
3

A

Reentrant locks

m Separate ReentrantLock class

m Similar to a semaphore f{mbhc class Bank

m lock() is like P(S) private Lock bankLock = new ReentrantLock();
[] unlock() |S I|ke V(S) public void
transfer(int from, int to, int amount) {

m Always unlock() in finally — avoid bankLock.lock() ;

abort while holding lock try {
accounts[from] -= amount;
™ Why reentrant? accounts[to] += amount;
}
m Thread holding lock can reacquire it finally {
m transfer () may call getBalance()) bankLock.unlock() ;
that also locks bankLock 3
m Hold count increases with lock(), b

decreases with unlock()
m Lock is available if hold count is 0

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 8/16

Locks and conditions

. . .. class BoundedBuffer {
m Can associate multiple condition

variables with a lock
final Object[] items = new Object[100];

m Bounded buffer implemented as int putptr, takeptr, count;
circular queue

m put () blocks if buffer is full,
take () blocks if buffer is empty 3

public void put(Object x) {

public Object take() {

}

PLC, Lecture 15, 7 Mar 2023 9/16

Madhavan Mukund/S P Suresh Monitors and Threads in Java

Locks and conditions

i) L class BoundedBuffer {
m Can associate mUItlpIe condition final Lock lock = new ReentrantLock();
variables with a lock final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition();
m Bounded buffer implemented as

circular queue final Object[] items = new Object[100];
. . int putptr, takeptr, count;
m put () blocks if buffer is full,
take () blocks if buffer is empty public void put(Object x) {
m Java interface Condition }
B Methods await () and signal() public Object take() {

m Separate conditions to indicate

buffer empty and buffer full !

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 9/16

Locks and conditions

m Can associate multiple condition
variables with a lock
m Bounded buffer implemented as
circular queue
m put () blocks if buffer is full,

take () blocks if buffer is empty
m Java interface Condition

m Methods await () and signal()

m Separate conditions to indicate
buffer empty and buffer full

m put () awaits notFull, signals
notEmpty

class BoundedBuffer {

final Lock lock = new ReentrantLock();

final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition();
final Object[] items = new Object[100];

int putptr, takeptr, count;

public void put(Object x) throws InterruptedException {
lock.lock();
try {
while (count == items.length)
notFull.await();
Add an item to the buffer
notEmpty.signal();
} finally {
lock.unlock();
}
}

public Object take() {

.

Madhavan Mukund/S P Suresh

Monitors and Threads in Java

PLC, Lecture 15, 7 Mar 2023 9/16

Locks and conditions

m Can associate multiple condition
variables with a lock
m Bounded buffer implemented as
circular queue

m put () blocks if buffer is full,
take () blocks if buffer is empty

m Java interface Condition

m Methods await () and signal()

m Separate conditions to indicate
buffer empty and buffer full

m put () awaits notFull, signals
notEmpty

m take() awaits notEmpty, signals
notFull

Madhavan Mukund/S P Suresh

Monitors and Threads in Java

class BoundedBuffer {

final Lock lock = new ReentrantLock();

final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition();
final Object[] items = new Object[100];

int putptr, takeptr, count;

public void put(Object x) throws InterruptedException {
}

public Object take() throws InterruptedException {
lock.lock();
try {
while (count == 0)
notEmpty.await () ;
Remove an item x from the buffer
notFull.signal();
return Xx;
} finally {
lock.unlock();
}
}

PLC, Lecture 15, 7 Mar 2023 9/16

Every object in Java implicitly has a lock

m Methods tagged synchronized are executed atomically

m Implicitly acquire and release the object’s lock

m Associated condition variable, single internal queue

m wait(), notify(), notifyAll()

Can synchronize an arbitrary block of code using an object
m sycnchronized(o) { ... }

m o.wait(), o.notify(), o.notifyAl1()

Reentrant locks work like semaphores

m Can attach multiple condition variables to a lock, await () and signal ()

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

Creating threads in Java

m Have a class extend Thread

m Define a function run() where
execution can begin in parallel

m Invoking p[i].start () initiates
plil . run() in a separate thread

m Directly calling p[i] .run() does not
execute in separate thread!

m sleep(t) suspends thread for t
milliseconds

m Static function — use
Thread.sleep() if current class does
not extend Thread

m Throws InterruptedException —
later

public class Parallel extends Thread{
private int id;
public Parallel(int i){ id = i; }
public void run(){
for (int j = 0; j < 100; j++){
System.out.println("My id is "+id);

try{

sleep(1000); // Sleep for 1000 ms
}
catch(InterruptedException e){}

}
}
}

public class TestParallel {
public static void main(String[] args){
Parallel p[] = new Parallel[5];
for (int i = 0; i < 5; i++){
pli] = new Parallel(i);
plil.start(); // Start p[il.run()
} // in concurrent thread

Madhavan Mukund/S P Suresh

Monitors and Threads in Java

PLC, Lecture 15, 7 Mar 2023

11/16

Creating threads in Java

m Have a class extend Thread Typical output
m Define a function run() where My id is 0
execution can begin in parallel My id is 3
) o My id is 2
m Invoking p[i] .start () initiates My id is 1
plil . run() in a separate thread My id is 4
. . . My id is 0
m Directly .callmg plil .run() does not My id is 2
execute in separate thread! My id is 3
m sleep(t) suspends thread for t fy id is <
L My id is 1
milliseconds My id is 0
m Static function — use My id is 3
Thread.sleep() if current class does My id is 1
not extend Thread My ?d s 2
My id is 4
m Throws InterruptedException — My id is 0

later

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 11/16

Java threads ...

public class Parallel implements Runnable{
// only the line above has changed

m Cannot always extend Thread private int id;
- - - public Parallel(int i){ ... } // Constructor
|
Single inheritance public void ranO{ ... }

m Instead, implement Runnable }

m To use Runnable class, explicitly create public class TestParallel {

a Thread and start () it public static void main(String[] args){
Parallel p[] = new Parallel[5];
Thread t[] = new Thread[5];

for (int i = 0; i < 5; i++){
plil = new Parallel(i);
t[i] = new Thread(pl[il);
// Make a thread t[i] from pl[il
t[i].start(); // Start off p[il.run()
// Note: t[il.start(),
} // not pl[il.start()

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 20

Life cycle of a Java thread

A thread can be in six states

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 13/16

Life cycle of a Java thread

A thread can be in six states

m New: Created but not start()ed.

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 13/16

Life cycle of a Java thread

A thread can be in six states

m New: Created but not start()ed.

m Runnable: start()ed and ready to be scheduled.
m Need not be actually “running”
m No guarantee made about how scheduling is done

m Most Java implementations use time-slicing

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 13/16

Life cycle of a Java thread

A thread can be in six states

m New: Created but not start()ed.

m Runnable: start()ed and ready to be scheduled.
m Need not be actually “running”
m No guarantee made about how scheduling is done

m Most Java implementations use time-slicing

m Not available to run
m Blocked — waiting for a lock, unblocked when lock is granted
m Waiting — suspended by wait (), unblocked by notify () or notfifyAll ()

m Timed wait — within sleep(..), released when sleep timer expires

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

Life cycle of a Java thread

A thread can be in six states

m New: Created but not start()ed.

m Runnable: start()ed and ready to be scheduled.
m Need not be actually “running”
m No guarantee made about how scheduling is done

m Most Java implementations use time-slicing

m Not available to run
m Blocked — waiting for a lock, unblocked when lock is granted
m Waiting — suspended by wait (), unblocked by notify () or notfifyAll ()

m Timed wait — within sleep(..), released when sleep timer expires

m Dead: thread terminates.

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

Life cycle of a Java thread

A thread can be in six states — thread status via t.getState()

m New: Created but not start()ed.

m Runnable: start()ed and ready to be scheduled.
m Need not be actually “running”
m No guarantee made about how scheduling is done

m Most Java implementations use time-slicing

m Not available to run
m Blocked — waiting for a lock, unblocked when lock is granted
m Waiting — suspended by wait (), unblocked by notify () or notfifyAll ()

m Timed wait — within sleep(..), released when sleep timer expires

m Dead: thread terminates.

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

m One thread can interrupt another using
interrupt)

m pli].interrupt(); interrupts thread
plil

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 14 /16

Interrupts

m One thread can interrupt another using
interrupt)

m pli].interrupt(); interrupts thread
plil

m Raises InterruptedException within
wait(), sleep()

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 14 /16

Interrupts

m One thread can interrupt another using

interrupt() public void run(){
. try{
m p[il.interrupt(); interrupts thread BJ] ~ 0.
pli] while(!interrupted() && j < 100){
Rai I dE . ithi System.out.println("My id is "+id);
m Raises InterruptedException within sleep(1000); // Sleep for 1000 ms
wait (), sleep() o+
. o , . ¥
m No exception raised if thread is running! }
catch(InterruptedException e){}

m interrupt() sets a status flag
m interrupted() checks interrupt status
and clears the flag

m Detecting an interrupt while running or
waiting

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 14 /16

More about threads ...

m Check a thread'’s interrupt status
m Use t.isInterrupted() to check status of t's interrupt flag

m Does not clear flag

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 15/16

More about threads ...

m Check a thread'’s interrupt status
m Use t.isInterrupted() to check status of t's interrupt flag

m Does not clear flag

m Can give up running status
m yield() gives up active state to another thread

m Static method in Thread

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 15/16

More about threads ...

m Check a thread'’s interrupt status
m Use t.isInterrupted() to check status of t's interrupt flag

m Does not clear flag

m Can give up running status
m yield() gives up active state to another thread
m Static method in Thread
m Normally, scheduling of threads is handled by OS — preemptive

m Some mobile platforms use cooperative scheduling — thread loses control only if it
yields

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

More about threads ...

m Check a thread'’s interrupt status
m Use t.isInterrupted() to check status of t's interrupt flag

m Does not clear flag

m Can give up running status
m yield() gives up active state to another thread
m Static method in Thread
m Normally, scheduling of threads is handled by OS — preemptive
m Some mobile platforms use cooperative scheduling — thread loses control only if it
yields
m Waiting for other threads

m t.join() waits for t to terminate

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

m To run in parallel, need to extend Thread or implement Runnable

m When implmenting Runnable, first create a Thread from Runnable object
m t.start() invokes method run() in parallel

m Threads can become inactive for different reasons
m Block waiting for a lock
m Wait in internal queue for a condition to be notified

m Wait for a sleep timer to elapse

m Threads can be interrupted

m Be careful to check both interrupted status and handle InterruptException

Can yield control, or wait for another thread to terminate

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023

