
Java: Collections and Maps

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 11, 28 February 2022



Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

public class Queue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 2 / 26



Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

Head

Tail

Tail

Head

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 3 / 26



Abstract data types . . .

Is the user indifferent to choice of
implementation?

Interface does not capture other aspects

Efficiency

Circular array is better — one time
storage allocation

Flexibility

Linked list is better — circular array
has bounded size

Offer user a choice of implementation?

Head

Tail

Tail

Head

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 4 / 26



Multiple impementations

Create two separate implementations

User chooses

CircularArrayQueue<Date> dateq;

LinkedListQueue<String> stringq;

dateq =

new CircularArrayQueue<Date>();

stringq =

new LinkedListQueue<String>();

}

What if we later realize we need a
flexible size dateq?

Change declaration for dateq

And also every function header,
auxiliary variable, . . . associated with it

public class CircularArrayQueue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

public class LinkedListQueue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 5 / 26



Adding indirection

Instead, create a Queue interface

Concrete implementations implement
the interface

Use the interface to declare variables

Queue<Date> dateq;

Queue<String> stringq;

dateq =

new CircularArrayQueue<Date>();

stringq =

new LinkedListQueue<String>();

}

Benefit of indirection — to use a
different implementation for dateq,
only need to update the instantiation

public interface Queue<E> {

abstract void add (E element);

abstract E remove();

abstract int size();

}

public class CircularArrayQueue<E>

implements Queue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

public class LinkedListQueue<E>

implements Queue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 6 / 26



The power of indirection

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior staff with an office car

Concrete: each official has an assigned car — what if it breaks down?

Indirection: a pool of office cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

“Fundamental theorem of software engineering”

All problems in computer science can be solved by another level of indirection.
Butler Lampson, Turing Award 1992

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 7 / 26



Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 8 / 26



The Collection interface

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

add() — add to the collection

iterator() — get an object that
implements Iterator interface

Use iterator to loop through the
elements

public interface Collection<E>{

boolean add(E element);

Iterator<E> iterator();

...

}

public interface Iterator<E>{

E next();

boolean hasNext();

void remove();

...

}

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// do something with element

}

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 9 / 26



Using iterators

Use iterator to loop through the
elements

Java later added “for each” loop

Implicitly creates an iterator and runs
through it

Generic functions to operate on
collections

How does this line work?

if (element.equals(obj))

Later!

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// do something with element

}

Collection<String> cstr = new ...;

for (String element : cstr){

// do something with element

}

public static <E> boolean

contains(Collection<E> c, Object obj) {

for (E element : c)

if (element.equals(obj))

return true;

return false;

}

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 10 / 26



Removing elements

Iterator also has a remove() method

Which element does it remove?

public interface Iterator<E>{

E next();

boolean hasNext();

void remove();

...

}

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 11 / 26



Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// Delete element if it has some property

if (property(element)) {

iter.remove();

}

}

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 12 / 26



Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

...

iter.remove();

iter.remove(); // Error

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 13 / 26



Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

...

iter.remove();

iter.next();

iter.remove();

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 14 / 26



Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

To remove the first element, need to
access it first

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

// Remove first element in cstr

iter.next();

iter.remove();

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 15 / 26



The Collection interface — the full story

How does this line work?

if (element.equals(obj))

Actually, Collection defines a much
larger set of abstract methods

addAll(from) adds elements from a
compatible collection

removeAll(c) removes elements
present in c

A different remove() from the one in
Iterator

To implement the Collection

interface, need to implement all these
methods!

public static <E> boolean

contains(Collection<E> c, Object obj) {

for (E element : c)

if (element.equals(obj))

return true;

return false;

}

public interface Collection<E>{

boolean add(E element);

Iterator<E> iterator();

int size() boolean isEmpty();

boolean contains(Object obj);

boolean containsAll(Collection<?> c);

boolean equals(Object other);

boolean addAll(Collection<? extends E> from);

boolean remove(Object obj);

boolean removeAll(Collection<?> c);

...

}
Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 16 / 26



The AbsractCollection class

To implement Collection, need to
implement all these methods!

“Correct” solution — provide default
implementations in the interface

Added to Java interfaces later!

public interface Collection<E>{

boolean add(E element);

Iterator<E> iterator();

int size() boolean isEmpty();

boolean contains(Object obj);

boolean containsAll(Collection<?> c);

boolean equals(Object other);

boolean addAll(Collection<? extends E> from);

boolean remove(Object obj);

boolean removeAll(Collection<?> c);

...

}

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 17 / 26



The AbsractCollection class

To implement Collection, need to
implement all these methods!

“Correct” solution — provide default
implementations in the interface

Added to Java interfaces later!

Instead, AbstractCollection
abstract class implements Collection

Concrete classes now extend
AbstractCollection

Need to define iterator() based on
internal representation

Can choose to override contains(),
. . .

public abstract class AbstractCollection<E>

implements Collection<E> {

...

public abstract Iterator<E> iterator();

public boolean contains(Object obj) {

for (E element : this)

if (element.equals(obj))

return true;

return false;

}

...

}

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 18 / 26



Concrete collections

The Collection interface abstracts properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like dictionaries

Collections can be further organized based on additional properties

Are the elements ordered?

Are duplicates allowed?

Are there constraints on how elements are added, removed?

In the spirit of indirection, these are captured by interfaces that extend Collection

Interface List for ordered collections

Interface Set for collections without duplicates

Interface Queue for ordered collections with constraints on addition and deletion

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 19 / 26



The List interface

An ordered collection can be accessed
in two ways

Through an iterator

By position — random access

Additional functions for random access

public interface List<E>

extends Collection<E>{

void add(int index, E element);

void remove(int index);

E get(int index);

E set(int index, E element);

}

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 20 / 26



The List interface

An ordered collection can be accessed
in two ways

Through an iterator

By position — random access

Additional functions for random access

ListIterator extends Iterator

void add(E element) to insert an
element before the current index

void previous() to go to previous
element

boolean hasPrevious() checks that
it is legal to go backwards

public interface List<E>

extends Collection<E>{

void add(int index, E element);

void remove(int index);

E get(int index);

E set(int index, E element);

ListIterator<E> listIterator();

}

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 21 / 26



The List interface and random access

Random access is not equally efficient
for all ordered collections

In an array, can compute location of
element at index i

In a linked list, must start at the
beginning and traverse i links

Tagging interface RandomAccess

Tells us whether a List supports
random access or not

Can choose algorithmic strategy based
on this

public interface List<E>

extends Collection<E>{

void add(int index, E element);

void remove(int index);

E get(int index);

E set(int index, E element);

ListIterator<E> listIterator();

}

if (c instanceof RandomAccess) {

// use random access algorithm

} else {

// use sequential access algorithm

}

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 22 / 26



The AbstractList interface

Recall that AbstractCollection is
the “usable” version of Collection

Correspondingly, AbstractList
extends AbstractCollection

Inherits default implementations

AbstractSequentialList extends
AbstractList

A further subclass to distinguish lists
without random access

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Internally, the usual flexible linked list

Efficient to add and remove elements
at arbitrary positions

Concrete generic class ArrayList<E>

extends AbstractList

Flexible size array, supports random
access

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 23 / 26



Using concrete list classes

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Not random access

But random access methods of
AbstractList are still available

This loop will execute a fresh scan
from start to element i in each
iteration!

LinkedList<String> list = new ...;

for (int i = 0; i < list.size(); i++)

// do something with list.get(i);

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 24 / 26



The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no effect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow efficient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

As usual, concrete set implementations
extend AbstractSet, which extends
AbstractCollection

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 25 / 26



Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — different
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund/S P Suresh Java: Collections and Maps PLC, Lecture 11, 28 Feb 2022 26 / 26


