Java: class hierarchy, polymorphism

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 7, 14 February 2022

A Java class

m An Employee class
m Two private instance variables

m Some constructors to set up the
object

m Accessor and mutator methods to set
instance variables

m A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(O{ ... }

// other methods
public double bonus(float percent){
return (percent/100.0)*salary;

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism

PLC, Lecture 7, 14 Feb 2022

Subclasses

m Managers are special types of employees with extra features

public class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

m Manager objects inherit other fields and methods from Employee

m Every Manager has a name, salary and methods to access and manipulate these.

m Manager is a subclass of Employee

m Think of subset

PLC, Lecture 7, 14 Feb 2022

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

m Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{

public Employee(String n, double s){
name = n; salary = s;

}

public Employee(String n){
this(n,500.00);

public class Manager extends Employee{

public Manager(String n, double s, String sn){
super (n,s) ; /* super calls
Employee constructor */
secretary = sn;

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism

PLC, Lecture 7, 14 Feb 2022

4/24

Inheritance

m In general, subclass has more features m Recall

than parent class m int[] a = new int[100];

m Subclass inherits instance variables, m Why the seemingly redundant

methods from parent class reference to int in new?

m Every Manager is an Employee, but not m One can now presumably write

vice versal Employee[] e = new Manager[100];

m Can use a subclass in place of a
superclass

Employee e = new Manager(...)

m But the following will not work

Manager m = new Employee(...)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022 5/24

Dynamic dispatch

m Manager can redefine bonus () m What about e.bonus (p)? Which

5
double bonus(float percent){ bonus () do we use

return 1.5%super.bonus(percent); m Static: Use Employee.bonus ()

¥ m Dynamic: Use Manager.bonus ()
u tcl b i-
= Uses parent class bonus() via super m Dynamic dispatch (dynamic binding,
late method binding, ...) turns out to
m Consider the following assignment be more useful

m Overrides definition in parent class

Default in Java, optional in languages
Employee e = new Manager(...) " ' }
Py N & like C++ (virtual function)
m Can we invoke e.setSecretary()?

m e is declared to be an Employee

m Static typechecking — e can only
refer to methods in Employee

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022 6/24

Polymorphism

m Every Employee in emparray

. . . Employee[] emparray = new Employee[2];
knows"” how to calculate its bonus

Employee e = new Employee(...);
correctly! Manager m = new Manager(...);

m Recall the event simulation loop that .
i)) emparray[0] = e;
motivated Simula to introduce emparray[1] = m

objects
for (i = 0; i < emparray.length; i++){

m Also referred to as runtime System.out.println(emparray[i] .bonus(5.0))

polymorphism or inheritance }
polymorphism

:= make-queue(first event)
repeat

remove next event e from Q
simulate e

place all events generated
Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022

m Different from structural Q
polymorphism of Haskell etc — called
generics in Java

Functions, signatures and overloading

m Signature of a function is its name and
the list of argument types

m Can have different functions with the
same name and different signatures
m For example, multiple constructors

m Java class Arrays has a method sort
to sort arbitrary scalar arrays

m Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];
int[] iarr = new int[500];

Arrays.sort(darr);

// sorts contents of darr
Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

public static void sort(double[] a){..}
// sorts arrays of doublel[]

public static void sort(int[] a){..}
// sorts arrays of int[]

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism

PLC, Lecture 7, 14 Feb 2022 8/24

Functions, signatures and overloading

m Overloading: multiple methods,
different signatures, choice is static

m Overriding: multiple methods, same
signature, choice is static

m Employee.bonus ()
m Manager.bonus ()
m Dynamic dispatch: multiple methods,

same signature, choice made at
run-time

double[] darr = new double[100];
int[] iarr = new int[500];

Arrays.sort(darr);

// sorts contents of darr
Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

public static void sort(double[] a){..}
// sorts arrays of doublel[]

public static void sort(int[] a){..}
// sorts arrays of int[]

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism

PLC, Lecture 7, 14 Feb 2022 9/24

Type casting

m Consider the following assignment m Can test if e is a Manager
Employee e = new Manager(...) if (e instanceof Manager){
((Manager) e).setSecretary(s);
m Can we get e.setSecretary() to }
work?

. . . . m A simple example of reflection in Java
m Static type-checking disallows this P P

m “Think about oneself”
m Type casting — convert e to Manager
m Can also use type casting for basic

types

((Manager) e).setSecretary(s)

m Cast fails (error at run time) if e is not
a Manager

double d = 29.98;
long nd = (long) d;

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022

Multiple inheritance

C1 Cc2

public int £QO); public int £QO);

C3 extends C1,C2

Can a subclass extend multiple parent classes?
m If £ () is not overridden, which f () do we use in C37
m Java does not allow multiple inheritance

m C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022

Java class hierarchy

No multiple inheritance — tree-like

m In fact, there is a universal superclass Object
m Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the
// instance variables to String

m For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

m Implicitly invokes o.toString ()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022

Java class hierarchy

m Can exploit the tree structure to write generic functions

m Example: search for an element in an array

public int find (Object[] objarr, Object o){
int i;
for (i = 0; i < objarr.length(); i++){
if (objarr([i] == o) {return i};
}
return (-1);

}
m Recall that == is pointer equality, by default

m If a class overrides equals (), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

PLC, Lecture 7, 14 Feb 2022

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism

Overriding functions

m For instance, a class Date with instance m Should write, instead

variables day, month and year public boolean equals(Object d){

if (d instanceof Date){
Date myd = (Date) d;
return ((this.day == myd.day) &&
(this.month == myd.month)
(this.year == myd.year));

m May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){
return ((this.day == d.day) &&
(this.month == d.month) && b
(this.year == d.year)); return(false);
} }
m Note the run-time type check and the

m Unfortunately, t
cas

boolean equals(Date d)
does not override
boolean equals(Object o)!

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022 14 /24

Overriding functions

m Overriding looks for “closest” match

m Suppose we have public boolean equals(Employee e) but no equals() in
Manager

m Consider

Manager ml = new Manager(...);
Manager m2 = new Manager(...);

iél(ml.equals(mQ)){ oo 1

m public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

m Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022

Subclasses, subtyping and inheritance

m Class hierarchy provides both subtyping and inheritance

m Subtyping
m Capabilities of the subtype are a superset of the main type

m If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

m Employee e = new Manager(...); is legal

m Inheritance
m Subtype can reuse code of the main type
m B inherits from A if some functions for B are written in terms of functions of A

m Manager.bonus () uses Employee.bonus ()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022 16 /24

Subtyping vs inheritance

m Recall the following example
m queue, with methods insert-rear, delete-front
m stack, with methods insert-front, delete-front

m deque, with methods insert-front, delete-front, insert-rear, delete-rear
m What are the subtype and inheritance relationships between these classes?

m Subtyping
m deque has more functionality than queue or stack

m deque is a subtype of both these types

m Inheritance
m Can suppress two functions in a deque and use it as a queue or stack

m Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022

Subclasses, subtyping and inheritance

m Class hierarchy represents both subtyping and inheritance

m Subtyping
m Compatibility of interfaces.
m B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.
m Inheritance
m Reuse of implementations.
m B inherits from A if some functions for B are written in terms of functions of A.

m Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022

Modifiers in Java

m Java uses many modifiers in declarations, to cover different features of
object-oriented programming

m public vs private to support encapsulation of data

m static, for entities defined inside classes that exist without creating objects of the
class

m final, for values that cannot be changed
m These modifiers can be applied to classes, instance variables and methods

m Let's look at some examples of situations where different combinations make sense

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022 19 /24

public vs private

m Faithful implementation of public class Stack {

lati itat difi private int[] values; // array of values
encapsulation necessitates moditiers private int tos; // top of stack

public and private private int size; // values.length

m Typically, instance variables are

. * Constructors to set up values array x*
private / P y */

m Methods to query (accessor) and public void push (int i){
update (mutator) the state are public
}
m Can private methods make sense?
public int pop Of
m Example: a Stack class

m Data stored in a private array b

m Public methods to push, pop, query if public boolean is_empty (){

empty return (tos == 0);
}
}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022

private methods

m Example: a Stack class public class Stack {
D di X private int[] values; // array of values
B Data stored in a private array private int tos; // top of stack
m Public methods to push, pop, query if private int size; // values.length

empty
/* Constructors to set up values array */

m push() needs to check if stack has
public void push (int i){

space
m Deal gracefully with stack overflow ¥
m private methods invoked from within public int pop O{
push () to check if stack is full and
expand storage }

public boolean is_empty (){
return (tos == 0);
}
}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022

Accessor and mutator methods

m Public methods to query and update public class Date {

private instance variables private int day, month year;
m Date class public void getDay(int d) {...}

m Private instance variables day, month, public void getMonth(int m) {...}
public void getYear(int y) {...}

year
m One public accessor/mutator method public void setDay(int d) {...}
per instance variable public void setMonth(int m) {...}
public void setYear(int y) {...}
m Inconsistent updates are now possible }

m Separately set invalid combinations of

day and month public class Date {

. private int day, month year;
m Instead, allow only combined update

public void getDay(int d) {...}
public void getMonth(int m) {...}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022 22/24

static components

public class Order {
m Use static for components that exist private static int lastorderid = 0;

without creating objects

. . rivate int orderid;
m Library functions, main(), ... P

m Useful constants like Math.PI,
Integer.MAX,VALUE publlc Order(.) {
lastorderid++;

m These static components are also orderid = lastorderid;

public

m Do private static components make

? . . -
Sense! m lastorderid is private static field

m Internal constants for bookkeeping = Common to all objects in the class

m Constructor sets unique id for each
order m Be careful about concurrent updates!

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022 23 /24

final components

m final denotes that a value cannot be updated

m Usually used for constants (public and static instance variables)
m Math.PI, Integer.MAX_VALUE

m What would final mean for a method?

m Cannot redefine functions at run-time, unlike Python!

m Recall overriding

m Subclass redefines a method available with the same signature in the parent class

m A final method cannot be overridden

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism PLC, Lecture 7, 14 Feb 2022

