Classes, objects, Java

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 5, 7 February 2022



Programming with objects

m Object are like abstract datatypes
m Hidden data with set of public operations

m All interaction through operations — messages, methods, member-functions, ...

m Class
m Template for a data type
m How data is stored

m How public functions manipulate data

m Object
m Concrete instance of template
m Each object maintains a separate copy of local data

m Invoke methods on objects — send a message to the object

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022



Example: 2D points, in Python

m A point has coordinates (x, y) class Point:

def __init__(self,a=0,b=0):
self.x = a
self.y = Db

m Each point object stores its own internal
values x and y — instance variables

m For a point p, the local values arep.x and p.y

m self is a special name referring to the current
object — self.x, self.y

m When we create an object, we need to set it up

m Implicitly call a constructor function with a
fixed name

m In Python, constructor is called _init__()
m Parameters are used to set up internal values

m In Python, the first parameter is always self

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022



Adding methods to a class

m Translation: shift a point by (Ax, Ay)

m(x,y) = (x+ Ax,y + Ay)

m Update instance variables

m Distance from the origin

nd= /T

m Does not update instance variables

m state of object is unchanged

class Point:
def __init__(self,a=0,b=0):
self.x = a
self.y = Db

def translate(self,dx,dy):
self.x += dx
self.y += dy

def odistance(self):
import math
d = math.sqrt(self.x*self.x +
self.yxself.y)
return(d)

Madhavan Mukund/S P Suresh

Classes, objects, Java

PLC, Lecture 5, 7 Feb 2022 4/28



Changing the internal implementation

m Polar coordinates: (r,0), not (x,y) import math

. \/m class Point:

) def __init__(self,a=0,b=0):
m 0 =tan *(y/x) self.r = math.sqrt(a*a + b*b)

Di f e if a ==
m Distance from origin is just r self.thota = math.pi/2
m Translation else:

self.theta = math.atan(b/a)
m Convert (r,0) to (x,y)

m x=rcos y=rsin¢ def odistance(self):
m Recompute r, 0 from (x + Ax,y + Ay) return(self.r)

m Interface has not changed

def translate(self,dx,dy):
m User need not be aware whether

1ot 1 x = self.r*math.cos(self.theta)
representation is (x, y) or (r,0) y = self.r*math.sin(self.theta)
x += dx

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 5/28



Abstraction

m User should not know whether Point uses
(x,y) or (r,theta)
m Interface remains identical

m Even constructor is the same

m Python allows direct access to instance
variables from outside the class
p = Point(5,7)
p.x = 4 # Point is now (4,7)

m Breaks the abstraction

m Changing the internal implementation of
Point can have impact on other code

m Rely on programmer discipline

class Point:
def __init__(self,a=0,b=0):
self.x = a
self.y = Db

class Point:
def __init__(self,a=0,b=0):
self.r = math.sqrt(a*a + bxb)

if a ==

self.theta = math.pi/2
else:

self.theta = math.atan(b/a)

Madhavan Mukund/S P Suresh Classes, objects, Java

PLC, Lecture 5, 7 Feb 2022 6/28



Subtyping and inheritance

m Define Square to be a subtype of
Rectangle

m Different constructor

m Same instance variables

m The following is legal

s = Square(5)
s.area()
p = s.perimeter()

m Square inherits definitions of area()
and perimeter () from Rectangle

class Rectangle:
def __init__(self,w=0,h=0):
self.width = w
self.height = h

def area(self):
return(self.width*self .height)

def perimeter(self):
return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):
self.width = s
self .height = s

Madhavan Mukund/S P Suresh

Classes, objects, Java

PLC, Lecture 5, 7 Feb 2022



Subtyping and inheritance ...

m Can change the instance variable in class Rectangle:

Square def __init__(self,w=0,h=0):
self.width = w
self.height = h

m self.side

m The following gives a run-time error
def area(self):

= Square(b
quare (5) return(self.widthxself.height)

= s.area()
= s.perimeter ()

T w0

def perimeter(self):
m Square inherits definitions of area() return(2*(self.width+self.height))
and perimeter () from Rectangle

m But s.width and s.height have not class Square(Rectangle):
been defined! def __init__(self,s=0):

m Subtype is not forced to be an extension self.side = s

of the parent type

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 8/28



Subtyping and inheritance ...

m Subclass and parent class are usually
developed separately

class Rectangle:
def __init__(self,w=0,h=0):
self.width = w
self.height = h

def area(self):
return(self.width*self .height)

def perimeter(self):
return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):
self.width = s
self .height = s

Madhavan Mukund/S P Suresh

Classes, objects, Java

PLC, Lecture 5, 7 Feb 2022 9/28



Subtyping and inheritance ...

m Subclass and parent class are usually class Rectangle:
developed separately def __init__(self,w=0,h=0):
self.wd = w

m Implementor of Rectangle changes the self.ht = h

instance variables

def area(self):

m The following gives a run-time error return(self.wd*self.ht)

s = Square(5)
a = s.area() def perimeter(self):
p = s.perimeter() return(2*(self.wd+self.ht))

m Square constructor sets s.width and
s.height class Square(Rectangle):
def __init__(self,s=0):
self.width = s
self .height = s

m But the instance variable names have
changed!

m Why should Square be affected by this?

Madhavan Mukund/S P Suresh Classes, objects, Java

PLC, Lecture 5, 7 Feb 2022



Subtyping and inheritance ...

m Need a mechanism to hide private class Rectangle:
implementation details def __init__(self,w=0,h=0):

m Declare component private or public self.wd =w

self .ht = h

m Working within privacy constraints
| b q ¢ def area(self):
m Instance variables wd and ht o return(self .wd*self.ht)

Rectangle are private

m How can the constructor for Square set def perimeter(self):
these private variables? return(2*(self.wd+self.ht))
m Square doesn't (and shouldn't) know the
names of the private instance variables class Square(Rectangle) :
. def __init__(self,s=0):
m Need to have elaborate declarations self.width = s
m Type and visibility of variables self .height = s

m Static type checking catches errors early

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022



Getting started with Java

. In Pyth
The C Programming Language, = In Fythen
Brian W Kernighan, Dennis M Ritchie print("hello, world")
The only way to learn a new programming m...C

language is by writing programs in it. The
first program is the same for all languages.

#include <stdio.h>

main()
Print the words {
hello. world printf("hello, world\n");
’ }

This is a big hurdle; to leap over it you have

to create the program text somewhere, m ...and Java

compile it successfully, load it, run it, and public class helloworld{
find out where your output went. With these public static void main(Stringl] args)
mechanical details mastered, everything else {

System.out.println("hello, world");

is comparatively easy

4 }
¥

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 12 /28



Why so complicated?

m Let's unpack the syntax

m All code in Java lives within a class public static void main(String[] args)
{

m No free floating functions, unlike System.out.println("hello, world");

Python and other languages }
m Modifier public specifies visibility

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 13 /28



Why so complicated?

m Let's unpack the syntax public class helloworld{
m All code in Java lives within a class fan
m No free floating functions, unlike { ‘
Python and other languages System.out.println("hello, world");
}

m Modifier public specifies visibility }

m How does the program start?

m Fix a function name that will be
called by default

m From C, the convention is to call
this function main()

PLC, Lecture 5, 7 Feb 2022 14 /28

Madhavan Mukund/S P Suresh Classes, objects, Java



Why so complicated ...

m Need to specify input and output

] public class helloworld{
types for main ()

void String[] args
m The signature of main() {
= Input parameter is an array of System.out.println("hello, world");
strings; command line arguments ¥

m No output, so return type is void ¥

Madhavan Mukund/S P Suresh

Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 15/28



Why so complicated ...

m Need to specify input and output

] public class helloworld{
types for main ()

public
m The signature of main() {
= Input parameter is an array of System.out.println("hello, world");
strings; command line arguments ¥
m No output, so return type is void ¥
m Visibility

m Function has be available to run
from outside the class

m Modifier public

Madhavan Mukund/S P Suresh

Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 16 /28



Why so complicated ...

m Availability public class helloworld{

m Functions defined inside classes are static
attached to objects

m How can we create an object before System.out.println("hello, world");
starting? }
m Modifier static — function that }

exists independent of dynamic
creation of objects

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 17 /28



Why so complicated ...

m The actual operation

m System is a public class public class helloworld{
public static void main(String[] args)

{
System

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 18 /28



Why so complicated ...

m The actual operation

m System is a public class public class helloworld{
m out is a stream object defined in public static void main(Stringl] args)
System {

. out
m Like a file handle

m Note that out must also be
static b

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 19 /28



Why so complicated ...

m The actual operation

m System is a public class public class helloworld{
m out is a stream object defined in public static void main(Stringl] args)
System {
rintln
m Like a file handle P
}

m Note that out must also be
static

m println() is a method associated
with streams

m Prints argument with a newline,
like Python print ()

m Punctuation {, }, ; to delimit blocks, statements

m Unlike layout and indentation in Python

PLC, Lecture 5, 7 Feb 2022 20/28

Madhavan Mukund/S P Suresh Classes, objects, Java



Compiling and running Java code

m A Java program is a collection of

public class helloworld{
classes

public static void main(String[] args)

m Each class is defined in a separate file t
with the same name, with extension }
java }

System.out.println("hello, world");

m Class helloworld in
helloworld. java

m Java programs are usually interpreted on Java Virtual Machine (JVM)
m JVM provides a uniform execution environment across operating systems
m Semantics of Java is defined in terms of JVM, OS-independent

m "“Write once, run anywhere”

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 21/28



Compiling and running Java code

m javac compiles into JVM bytecode

m javac helloworld.java creates public class helloworld{
bytecode file helloworld.class public static void main(String[] args)
m java helloworld interprets and ‘ System.out.println("hello, world");
runs bytecode in helloworld.class }
}
m Note:

® javac requires file extension . java
m java should not be provided file extension .class
m javac automatically follows dependencies and compiles all classes required

m Sufficient to trigger compilation for class containing main ()

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 22/28



Scalar types

m In an object-oriented language, all data should be
encapsulated as objects

Type Size in bytes
m However, this is cumbersome int 4
m Useful to manipulate numeric values like long 8
conventional languages short 2
m Java has eight primitive scalar types byte 1
float 4
m int, long, short, byte double 8
m float, double char 2
m char boolean 1
m boolean
m Size of each type is fixed by JVM m 2-byte char for Unicode

m Does not depend on native architecture

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 23/28



Declarations, assigning values

m We declare variables before we use them ]

int x, y;
double y;

char c;

boolean bl, b2;

m Note the semicolons after each
statement

m The assignment statement works as
usual

int x,y;
x = b;
y =7

Characters are written with
single-quotes (only)

char c,d;
c = %7,
d = ’\u03C0’; // Greek pi, unicode

m Double quotes denote strings
Boolean constants are true, false

boolean bl, b2;

bl
b2

false;
true;

Madhavan Mukund/S P Suresh Classes, objects, Java

PLC, Lecture 5, 7 Feb 2022 24 /28



Initialization, constants

m Declarations can come anywhere m Can we declare a value to be a
?
int x: constant’
x = 10; float pi = 3.1415927f;
double y;

m Use this judiciously to retain pi = 22/7; // Disallow?

readability m Note: Append f after number for

m Initialize at time of declaration float, else interpreted as double

int x = 10; m Modifier final indicates a constant

double y = 5.7; final float pi = 3.1415927f;

pi = 22/7; // Flagged as error;

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022



Operators, shortcuts, type casting

m Arithmetic operators are the usual ones m Special operators for incrementing and
m - % /Y decrementing integers

int a = 0, b = 10;

a++; // Same as a = a+1

b--; // Same as b = b-1

m No separate integer division operator //

m When both arguments are integer, / is
integer division
float f = 22/7; // Value is 3.0

m Shortcut for updating a variable

int a = 0, b = 10;
m Note implicit conversion from int to a +=7; // Same as a = a+7
float b *= 12; // Same as b = b*12

m No exponentiation operater, use
Math.pow ()

m Math.pow(a,n) returns 3"

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022



m String is a built in class m Strings are not arrays of characters
String s,t; m Cannot write
: : s[3] = ’p’;
m String constants enclosed in double s[4a] = 1

quotes
m Instead, invoke method substring in

String s = "Hello", t = "world"; .
class String

m + is overloaded for string concatenation m s = s.substring(0,3) + "p!";
Str%ng N - "Hello®; m If we change a String, we get a new
String t = "world"; .

String u = s + " " + t; object
// "Hello world" m After the update, s points to a new
String

m Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 27/28



m Arrays are also objects m Size of the array can vary
m Typical declaration m Array constants: {vl, v2, v3}
int[] a;
a = new int[100]; m For example
m Or int al] instead of int[] a %nt [] a;
int n;
m Combine as int[] a = new
int[lOO]; n = 10;

. . a = new int[n]:
m a.length gives size of a new int[n]

m Note, for String, it is a method n = 20;
s.length()! a = new int[n];
m Array indices run from 0 to a.length-1 a=1{2, 3,5, 7, 11};

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 5, 7 Feb 2022 28/28



