


Built-in datatypes

Eight primitive scalar types

int, long, short, byte

float, double

char

boolean

String is a built-in class

Constants enclosed in double quotes

+ is overloaded for concatenation

Strings are immutable

String s = "Hello", t = "world";

String u = s + " " + t;

// "Hello world"

s = s.substring(0,3) + "p!";

// s is now "Help!"

Arrays are also objects

Size of the array can vary

Array constants: {v1, v2, v3}

int[] a;

int n;

n = 10;

a = new int[n];

n = 20;

a = new int[n];

a = {2, 3, 5, 7, 11};

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 2 / 36



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 3 / 36



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 3 / 36



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }

do { ... } while (condition)

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 3 / 36



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }

do { ... } while (condition)

Iteration

Two kinds of for

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 3 / 36



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }

do { ... } while (condition)

Iteration

Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 3 / 36



Conditional execution

if (c) {...} else {...}

else is optional

Condition must be in parentheses

If body is a single statement, braces are not

needed

No elif, à la Python

Indentation is not forced

Just align else if

Nested if is a single statement, no separate

braces required

No surprises

Aside: no def for function definition

public class MyClass {

...

public static int sign(int v) {

if (v < 0) {

return(-1);

} else if (v > 0) {

return(1);

} else {

return(0);

}

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 4 / 36



Conditional loops

while (c) {...}

Condition must be in parentheses

If body is a single statement, braces are not

needed

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

while (n > 0){

sum += n;

n--;

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 5 / 36



Conditional loops

while (c) {...}

Condition must be in parentheses

If body is a single statement, braces are not

needed

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

int i = 0;

do {

sum += i;

i++;

} while (i <= n);

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 5 / 36



Conditional loops

while (c) {...}

Condition must be in parentheses

If body is a single statement, braces are not

needed

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

do {

read input;

} while (input-condition);

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

int i = 0;

do {

sum += i;

i++;

} while (i <= n);

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 5 / 36



Iteration

for loop is inherited from C

for (init; cond; upd) {...}

init is initialization

cond is terminating condition

upd is update

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 6 / 36



Iteration

for loop is inherited from C

for (init; cond; upd) {...}

init is initialization

cond is terminating condition

upd is update

Intended use is

for(i = 0; i < n; i++){...}

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 6 / 36



Iteration

for loop is inherited from C

for (init; cond; upd) {...}

init is initialization

cond is terminating condition

upd is update

Intended use is

for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 6 / 36



Iteration

Intended use is

for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 7 / 36



Iteration

Intended use is

for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

However, not good style to write for

instead of while

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 7 / 36



Iteration

Intended use is

for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

However, not good style to write for

instead of while

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local

scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 7 / 36



Iterating over elements directly

Java later introduced a for in the style of

Python

for x in l:

do something with x

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 8 / 36



Iterating over elements directly

Java later introduced a for in the style of

Python

for x in l:

do something with x

Again for, different syntax

for (type x : a)

do something with x;

}

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int v : a){

sum += v;

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 8 / 36



Iterating over elements directly

Java later introduced a for in the style of

Python

for x in l:

do something with x

Again for, different syntax

for (type x : a)

do something with x;

}

It appears that loop variable must be

declared in local scope for this version of

for

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int v : a){

sum += v;

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 8 / 36



Multiway branching

switch selects between different

options

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 9 / 36



Multiway branching

switch selects between different

options

Be careful, default is to “fall

through” from one case to the next

Need to explicitly break out of

switch

break available for loops as well

Check the Java documentation

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 9 / 36



Multiway branching

switch selects between different

options

Be careful, default is to “fall

through” from one case to the next

Need to explicitly break out of

switch

break available for loops as well

Check the Java documentation

Options have to be constants

Cannot use conditional expressions

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 9 / 36



Multiway branching

switch selects between different

options

Be careful, default is to “fall

through” from one case to the next

Need to explicitly break out of

switch

break available for loops as well

Check the Java documentation

Options have to be constants

Cannot use conditional expressions

Aside: here return type is void

Non-void return type requires an

appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 9 / 36



Classes and objects

A class is a template for an encapsulated type

An object is an instance of a class

How do we create objects?

How are objects initialized?

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 10 / 36



Defining a class

Definition block using class, with class name

Modifier public to indicate visibility

Java allows public to be omitted

Default visibility is public to package

Packages are administrative units of code

All classes defined in same directory form part

of same package

public class Date {

private int day, month, year;

...

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 11 / 36



Defining a class

Definition block using class, with class name

Modifier public to indicate visibility

Java allows public to be omitted

Default visibility is public to package

Packages are administrative units of code

All classes defined in same directory form part

of same package

Instance variables

Each concrete object of type Date will have

local copies of date, month, year

These are marked private

Can also have public instance variables, but

breaks encapsulation

public class Date {

private int day, month, year;

...

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 11 / 36







Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

public void UseDate() {

Date d;

d = new Date();

...

}

public class Date {

private int day, month, year;

public void setDate(int d, int m,

int y){

day = d;

month = m;

year = y;

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 12 / 36



Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

public class Date {

...

public int getDay(){

return(day);

}

public int getMonth(){

return(month);

}

public int getYear(){

return(year);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 12 / 36



Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public class Date {

...

public int getDay(){

return(day);

}

public int getMonth(){

return(month);

}

public int getYear(){

return(year);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 12 / 36



Initializing objects

Would be good to set up an object when we

create it

Combine new Date() and setDate()

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 13 / 36



Initializing objects

Would be good to set up an object when we

create it

Combine new Date() and setDate()

Constructors — special functions called when

an object is created

Function with the same name as the class

d = new Date(13,8,2015);

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 13 / 36



Initializing objects

Would be good to set up an object when we

create it

Combine new Date() and setDate()

Constructors — special functions called when

an object is created

Function with the same name as the class

d = new Date(13,8,2015);

Constructors with different signatures

d = new Date(13,8); sets year to 2022

Java allows function overloading — same

name, different signatures

Python: default (optional) arguments, no
overloading

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public Date(int d, int m){

day = d;

month = m;

year = 2022;

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 13 / 36



Constructors . . .

A later constructor can call an earlier one using

this

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public Date(int d, int m){

this(d,m,2022);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 14 / 36



Constructors . . .

A later constructor can call an earlier one using

this

If no constructor is defined, Java provides a

default constructor with empty arguments

new Date() would implicitly invoke this

Sets instance variables to sensible defaults

For instance, int variables set to 0

Only valid if no constructor is defined

Otherwise need an explicit constructor without

arguments

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public Date(int d, int m){

this(d,m,2022);

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 14 / 36



Copy constructors

Create a new object from an existing one public class Date {

private int day, month, year;

public Date(Date d){

this.day = d.day;

this.month = d.month;

this.year = d.year;

}

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 15 / 36



Copy constructors

Create a new object from an existing one

Copy constructor takes an object of the same

type as argument

Copies the instance variables

Use object name to disambiguate which

instance variables we are talking about

Note that private instance variables of

argument are visible

public class Date {

private int day, month, year;

public Date(Date d){

this.day = d.day;

this.month = d.month;

this.year = d.year;

}

}

public void UseDate() {

Date d1,d2;

d1 = new Date(12,4,1954);

d2 = new.Date(d1);

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 15 / 36



Copy constructors

Create a new object from an existing one

Copy constructor takes an object of the same

type as argument

Copies the instance variables

Use object name to disambiguate which

instance variables we are talking about

Note that private instance variables of

argument are visible

Shallow copy vs deep copy

Want new object to be disjoint from old one

If instance variable are objects, we may end up

aliasing rather than copying

Discuss later — cloning objects

public class Date {

private int day, month, year;

public Date(Date d){

this.day = d.day;

this.month = d.month;

this.year = d.year;

}

}

public void UseDate() {

Date d1,d2;

d1 = new Date(12,4,1954);

d2 = new.Date(d1);

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 15 / 36



Digression: The philosophy of OO programming

Algorithms + Data Structures = Programs: Niklaus Wirth’s introduction to Pascal

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 16 / 36



Digression: The philosophy of OO programming

Algorithms + Data Structures = Programs: Niklaus Wirth’s introduction to Pascal

Traditionally, algorithms come first

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 16 / 36



Digression: The philosophy of OO programming

Algorithms + Data Structures = Programs: Niklaus Wirth’s introduction to Pascal

Traditionally, algorithms come first

Structured programming

Design a set of procedures for specific tasks

Combine them to build complex systems

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 16 / 36



Digression: The philosophy of OO programming

Algorithms + Data Structures = Programs: Niklaus Wirth’s introduction to Pascal

Traditionally, algorithms come first

Structured programming

Design a set of procedures for specific tasks

Combine them to build complex systems

Data representation comes later

Design data structures to suit procedural manipulations

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 16 / 36



Object Oriented design

Reverse the focus

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 / 36



Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 / 36



Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 / 36



Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 / 36



Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 / 36



Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 / 36



Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Much easier to grasp the design

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 / 36



Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Much easier to grasp the design

Debugging: an object is in an incorrect state

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 / 36



Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Much easier to grasp the design

Debugging: an object is in an incorrect state

Search among 20 methods rather than 2000 procedures

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 / 36



Object Oriented design: Example

An order processing system typically involves

Items

Orders

Shipping addresses

Payments

Accounts

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 18 / 36



Object Oriented design: Example

An order processing system typically involves

Items

Orders

Shipping addresses

Payments

Accounts

What happens to these objects?

Items are added to orders

Orders are shipped, cancelled

Payments are accepted, rejected

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 18 / 36



Object Oriented design: Example

An order processing system typically involves

Items

Orders

Shipping addresses

Payments

Accounts

What happens to these objects?

Items are added to orders

Orders are shipped, cancelled

Payments are accepted, rejected

Nouns signify objects, verbs denote methods that operate on objects

Associate with each order, a method to add an item

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 18 / 36



Designing objects

Behaviour — what methods do we need to operate on objects?

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 19 / 36



Designing objects

Behaviour — what methods do we need to operate on objects?

State — how does the object react when methods are invoked?

State is the information in the instance variables

Encapsulation — should not change unless a method operates on it

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 19 / 36



Designing objects

Behaviour — what methods do we need to operate on objects?

State — how does the object react when methods are invoked?

State is the information in the instance variables

Encapsulation — should not change unless a method operates on it

Identity — distinguish between different objects of the same class

State may be the same — two orders may contain the same item

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 19 / 36



Designing objects

Behaviour — what methods do we need to operate on objects?

State — how does the object react when methods are invoked?

State is the information in the instance variables

Encapsulation — should not change unless a method operates on it

Identity — distinguish between different objects of the same class

State may be the same — two orders may contain the same item

These features interact

State will typically affect behaviour

Cannot add an item to an order that has been shipped

Cannot ship an empty order

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 19 / 36



Relationship between classes

Dependence

Order needs Account to check credit status

Item does not depend on Account

Robust design minimizes dependencies, or coupling between classes

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 20 / 36



Relationship between classes

Dependence

Order needs Account to check credit status

Item does not depend on Account

Robust design minimizes dependencies, or coupling between classes

Aggregation

Order contains Item objects

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 20 / 36



Relationship between classes

Dependence

Order needs Account to check credit status

Item does not depend on Account

Robust design minimizes dependencies, or coupling between classes

Aggregation

Order contains Item objects

Inheritance

One object is a specialized versions of another

ExpressOrder inherits from Order

Extra methods to compute shipping charges, priority handling

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 20 / 36


