Java: control flow, classes

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 6, 10 February 2022

Built-in datatypes

m Eight primitive scalar types m Arrays are also objects
m int, long, short, byte m Size of the array can vary
m float, double m Array constants: {v1, v2, v3}
m char int[] a;
m boolean int n;

a. {Qnﬂh\,

m String is a built-in class

n = 10;
m Constants enclosed in double quotes a = new int[n];
m + is overloaded for concatenation

n = 20;

m Strings are immutable a = new int[n];

String s = "Hello", t = "world";

String u=s + " " + t; a
// "Hello world"

s = s.substring(0,3) + "p!";
// s is now "Help!"

{2, 3, 5, 7, 11};

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 2/36

Control flow

m Program layout
m Statements end with semi-colon

m Blocks of statements delimited by braces

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 3/36

Control flow

m Program layout
m Statements end with semi-colon

m Blocks of statements delimited by braces

m Conditional execution

m if (condition) { ... } else { ... } " OG’JCM$|V° Pr’ﬁfm—b

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 3/36

Control flow

m Program layout
m Statements end with semi-colon

m Blocks of statements delimited by braces

m Conditional execution

m if (condition) { ... } else { ... }

m Conditional loops
m wvhile (condition) { ... }

mdo{ ... } while (condition)

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 3/36

Control flow

m Program layout
m Statements end with semi-colon

m Blocks of statements delimited by braces

m Conditional execution

m if (condition) { ... } else { ... }

m Conditional loops

m wvhile (condition) { ... }
mdo{ ... } while (condition)
m [teration

m Two kinds of for

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 3/36

Control flow

m Program layout
m Statements end with semi-colon

m Blocks of statements delimited by braces

m Conditional execution

m if (condition) { ... } else { ... }

m Conditional loops

m wvhile (condition) { ... }
mdo{ ... } while (condition)
m [teration

m Two kinds of for

Multiway branching — switch

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 3/36

Conditional execution

m if (c) {"'} else {"'} public class MyClass {
m else is optional

m Condition must be in parentheses

m If body is a single statement, braces are not public static int sign(int v) {
needed if (v < 0) {

R return(-1);
" NO a la Python } else)if (v > 0) {
m Indentation is not forced return(1l);

},else {
return(0) ;

m Just align else if

m Nested if is a single statement, no separate
braces required T

m No surprises }

m Aside: no def for function definition

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Conditional loops

m while (¢) {...} public class MyClass {

m Condition must be in parentheses

m If body is a single statement, braces are not

needed) o)
public static int sumupto(int n) A

int sum = O;

while (n > 0){

sum += n;
n--;
}
return(sum) ;

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Conditional loops

m while (¢) {...} public class MyClass {

m Condition must be in parentheses

m If body is a single statement, braces are not

needed) o)
public static int sumupto(int n) A

mdo {...} while (c) int sum = O;
L int i = 0;
m Condition is checked at the end of the loop
m At least one iteration do {
sum += 1i;
i++;

} while (i <= n);

return(sum) ;

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Conditional loops

m while (¢) {...} public class MyClass {

m Condition must be in parentheses

m If body is a single statement, braces are not

needed pASCAb

public static int sumupto(int n) A

mdo {...} while (c) VCFA‘.'_,M\\\IG‘ int sum = O;
e int i = 0;
m Condition is checked at the end of the loop
m At least one iteration do {
sum += i;

m Useful for interactive user input
Vi l) i++;

do { “"P‘L’/ } while (i <= n);

read input; "“IW"L ()

} while (input-condition);
fu.L-w

}

g return(sum) ;
}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 5/36

[teration

m for loop is inherited from C

m for (init; cond; upd) {...}
® init is initialization
m cond is terminating condition

m upd is update

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 6/36

m for loop is inherited from C public class MyClass {

m for (init; cond; upd) {...}
® init is initialization
m cond is terminating condition public static int sumarray(int[] a) {
int sum = O;
int n = a.length;
int i;

m upd is update

m Intended use is

for(i = 0; i < nj i++){...} for (i = 0; i < n; i++){

sum += ali];

}

return(sum) ;

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

for loop is inherited from C

for (init; cond; upd) {...}
® init is initialization
m cond is terminating condition
m upd is update

Intended use is

for(i = 0; i < n; i++){...}

Completely equivalent to

i=20;

while
i+

)

i<n) {

}

public class MyClass {

public static int sumarray(int[] a) {

int sum = O;
int n = a.length;

int i;
for (i = 0; 1 < mn; i++){

sum += ali];

}

return(sum) ;

Madhavan Mukund/S P Suresh

: control flow, classes

PLC, Lecture 6, 10 Feb 2022

m Intended use is

public class MyClass {
for(i = 0; 1 < n; i++){...}

m Completely equivalent to

i=0; public static int sumarray(int[] a) {
while (i < n) { int sum = O;
i+

’ int n = a.length;
¥ int i;

for (i = 0; i < n; i+H){

sum += ali];

}

return(sum) ;

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

m Intended use is

public class MyClass {
for(i = 0; 1 < n; i++){...}

m Completely equivalent to

i=0; public static int sumarray(int[] a) {
while (i < n) { int sum = 0;

. 14+ ii I = a.length;

m However, not good style to write for

) . for (i = 0; i < n; i+H){
instead of while —

sum += ali];

}

return(sum) ;

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

m Intended use is

public class MyClass {
for(i = 0; 1 < n; i++){...}

m Completely equivalent to

i=0; public static int sumarray(int[] a) {
while (i < n) { int sum = O;
it+; int n = a.length;

} Sk mbc, X Cwr
for (int i = 0; i < n; i++){
sum += alil;

}
m Can define loop variable within loop Vo v i I -
return(sum) ;
m The scope of i is local to the loop ¥ }

m An instance of more general local
scoping allowed in Java

m However, not good style to write £oA
instead of wirte™ _ﬁ-..

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

lterating over elements directly

m Java later introduced a for in the style of
Python

for x in 1:
do something with x

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 8/36

lterating over elements directly

m Java later introduced a for in the style of public class MyClass {

Python
for x in 1:
do something with x
public static int sumarray(int[] a) {
m Again for, different syntax int sum = 0;

intn = 2 lencth: 0k v,

for (type x : a)

do something with x;
} for a){
" | sum T= v;
for eadn

)

return(sum) ;

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

lterating over elements directly

m Java later introduced a for in the style of

ublic class MyClass {
Python P v

for x in 1:

do something with x
public static int sumarray(int[] a) {

m Again for, different syntax int sum = 0;

for (type x : a) int n = a.length;

do something with x;

} for (int v : a){
sum += v;
m It appears that loop variable must be }
declared in local scope for this version of
for return(sum) ;
}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Multiway branching

m switch selects between different public static void printsign(int v) {
options switch (v) {
case -1: {
System.out.println("Negative");
break;
}
case 1: {
System.out.println("Positive");
break;
}
case 0: {
System.out.println("Zero");
break;

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 9/36

Multiway branching

m switch selects between different public static void printsign(int v) {
switch (v) {

options
case -1: {
m Be careful, default is to “fall System.out.println("Negative");
through” from one case to the next break;
m Need to explicitly break out of ¥
. case 1: {
switch . L
System.out.println("Positive");
m break available for loops as well break;
m Check the Java documentation b
case 0: {
System.out.println("Zero");
break;
}

}
}

PLC, Lecture 6, 10 Feb 2022 9/36

Madhavan Mukund/S P Suresh Java: control flow, classes

Multiway branching

m switch selects between different public static void printsign(int v) {
switch (v) {

options
case —1: {
m Be careful, default is to “fall System.out.println("Negative");
through” from one case to the next break;
m Need to explicitly break out of ¥
. case 1: {
switch —) L
System.out.println("Positive");
m break available for loops as well break;
m Check the Java documentation ¥
case 0: {
m Options have to be constants Sy&tem.out.println("Zero");
m Cannot use conditional expressions break;
}

}
}

PLC, Lecture 6, 10 Feb 2022 9/36

Madhavan Mukund/S P Suresh Java: control flow, classes

Multiway branching

m switch selects between different public static void printsign(int v) {
switch (v) {

options
case -1: {
m Be careful, default is to “fall System.out.println("Negative");
through” from one case to the next break;
m Need to explicitly break out of ¥
. case 1: {
switch) L
System.out.println("Positive");
m break available for loops as well break;
m Check the Java documentation ¥
case 0: {
m Options have to be constants System.out.println("Zero");
m Cannot use conditional expressions break;
}
m Aside: here return type is void
v : x=)

m Non-void return type requires an b
appropriate return value

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Classes and objects

m A class is a template for an encapsulated type
m An object is an instance of a class
m How do we create objects?

m How are objects initialized?

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 10 /36

Defining a class

m Definition block using class, with class name

m Modifier public to indicate visibility public class Date {

m Java allows public to be omitted private int day, month, year;

m Default visibility is public to package

Packages are administrative units of code

m All classes defined in same directory form part

f K)
of same package Da,"e,Jav&

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 11/36

Defining a class

m Definition block using class, with class name

m Modifier public to indicate visibility public class Date {

m Java allows public to be omitted private int day, month, year;
m Default visibility is public to package

Packages are administrative units of code

m All classes defined in same directory form part
of same package
m Instance variables

m Each concrete object of type Date will have
local copies of date, month, year

m These are marked private

m Can also have public instance variables, but
breaks encapsulation

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Creating objects

public void UseDate(} {

m Declare type using class name Date d;
d = new Date();

m new creates a new object

m How do we set the instance variables?

P - POI h"'((:?')

an Muku sh E *LC, Leeture 6, 10 F

Creating objects

public void UseDate(} {

m Declare type using class name Date d;
d = new Date();
m new creates a new object

m How do we set the instance variables?

m Can add methods to update values public class Date {

m this is a reference to current object private int day, month, year;
Y]
publie woid setDate(int d, int m,
int y){

this.day = d;
p—

this.month = m;
this.year = v;
H. ’

ukund /5 T Suresh LF PLC, Lecture 6, 10 Feb

Creating objects

m Declare type using class name

m new creates a new object

m How do we set the instance variables?

m Can add methods to update values

m this is a reference to current object

m Can omit this if reference is unambiguous

Madhavan Mukund/S P Suresh

public void UseDate() {
Date d;
d = new Date();

public class Date {
private int day, month, year;

public void setDate(int d, int m,
int y){
day = d;
month = m;
year = y;

} %MMM%Q

Java: control flow, classes

PLC, Lecture 6, 10 Feb 2022 12 /36

Creating objects

public class Date {
m Declare type using class name

m new creates a new object public int getDay(){
return(day) ;

}

m How do we set the instance variables?

m Can add methods to update values

o) public int getMonth(){
m this is a reference to current object

return(month) ;
m Can omit this if reference is unambiguous }
m What if we want to check the values? public int getYear(){
m Methods to read and report values return(year) ;
}

} (k1w b)) gDkl

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 12 /36

Creating objects

public class Date {

Declare type using class name

m new creates a new object public int getDay(){
return(day) ;
}

m How do we set the instance variables?

m Can add methods to update values

o) public int getMonth(){
m this is a reference to current object

return(month) ;
m Can omit this if reference is unambiguous }
m What if we want to check the values? public int getYear(){
m Methods to read and report values return(year) ;
}

m Accessor and Mutator methods

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Initializing objects

m Would be good to set up an object when we
create it

m Combine new Date() and setDate()

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 13 /36

Initializing objects

m Would be good to set up an object when we

create it

m Combine new Date() and setDate()

m Constructors — special functions called when

an object is created

m Function with the same name as the class

m d = new Date(13,8,2015);

public class Date {
private int day, month, year;

public Date(int d, int m, int y){
day = d;
month = m;

year = y;

}
%\ -—tmib- -

Madhavan Mukund/S P Suresh

Java: control flow, classes

PLC, Lecture 6, 10 Feb 2022 13 /36

Initializing objects

m Would be good to set up an object when we public class Date {
private int day, month, year;

create it
m Combine new Date() and setDate() public Date(int d, int m, int y){
. . day = d;
m Constructors — special functions called when month = m:
an object is created year = y;

m Function with the same name as the class +

m d = new Date(13,8,2015); public Date(int d, int m){

m Constructors with different signatures day = d;
month = m;
m d = new Date(13,8); sets year to 2022 year = 2022;
m Java allows function overloading — same +
name, different signatures b

m Python: default (optional) arguments, no
overloading

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 13 /36

Constructors . ..

m A later constructor can call an earlier one using

this

Madhavan Mukund/S P Suresh

Java: control flow, classes

public class Date {

3

private int day, month, year;

public Date(int d, int m, int y){
day = d;
month = m;
year = y;

}

public Date(int d, int m){
this(d,m,2022);
}

PLC, Lecture 6, 10 Feb 2022 14 /36

Constructors . ..

public class Date {

m A later constructor can call an earlier one using

this

m If no constructor is defined, Java provides a
default constructor with empty arguments

m new Date() would implicitly invoke this

m Sets instance variables to sensible defaults

m For instance, int variables set to 0

m Only valid if no constructor is defined

m Otherwise need an explicit constructor without

arguments

3

private int day, month, year;

public Date(int d, int m, int y){
day = d;
month = m;
year = y;

}
public Date(int d, int m){

this(d,m,2022) ;
b

nw Dake () X

Madhavan Mukund/S P Suresh

Java: control flow, classes

PLC, Lecture 6, 10 Feb 2022 14 /36

Copy constructors

m Create a new object from an existing one public class Date {
private int day, month, year;

public Date(Date d){
this.day = d.day;
this.month = d.month;
this.year = d.year;

}

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 15 /36

Copy constructors

m Create a new object from an existing one

m Copy constructor takes an object of the same
type as argument

m Copies the instance variables

m Use object name to disambiguate which
instance variables we are talking about

m Note that private instance variables of
argument are visible

public class Date {
private int day, month, year;

public Date(Date d){
this.day = d.day;
this.month = d.month;
this.year = d.year;

public void UseDate() { al’

Date d1,d2; ‘y

d1 new Date(12,4,1954); A —

d2 = new.Date(d1); fl 17‘

dZ’«l.l/" ?7 de'y

PLC, Lecture 6, 10 Feb 2022 15 /36

Madhavan Mukund/S P Suresh Java: control flow, classes

Copy constructors

m Create a new object from an existing one public class Date {
private int day, month, year;

m Copy constructor takes an object of the same
type as argument public Date(Date d){

this.day = d.day;

tha = d.month;

this.year = d.ye&

m Copies the instance variables

m Use object name to disambiguate which

instance variables we are talking about }
m Note that private instance variables of ¥
argument are visible
public
m Shallow copy vs deep copy Date di,d2;

m Want new object to be disjoint from old one d1 new Date(12,4,
d2 = new.Date(dl);

m If instance variable are objects, we may end up 3
aliasing rather than copying

m Discuss later — cloning objects 4@“‘

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Digression: The philosophy of OO programming

m Algorithms + Data Structures = Programs: Niklaus Wirth's introduction to Pascal

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 16 /36

Digression: The philosophy of OO programming

m Algorithms + Data Structures = Programs: Niklaus Wirth's introduction to Pascal

m Traditionally, algorithms come first

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 16 /36

Digression: The philosophy of OO programming

m Algorithms + Data Structures = Programs: Niklaus Wirth's introduction to Pascal
m Traditionally, algorithms come first

m Structured programming
m Design a set of procedures for specific tasks

m Combine them to build complex systems

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 16 /36

Digression: The philosophy of OO programming

m Algorithms + Data Structures = Programs: Niklaus Wirth's introduction to Pascal
m Traditionally, algorithms come first

m Structured programming
m Design a set of procedures for specific tasks

m Combine them to build complex systems

m Data representation comes later

m Design data structures to suit procedural manipulations

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Object Oriented design

m Reverse the focus

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 /36

Object Oriented design

m Reverse the focus

m First identify the data we want to maintain and manipulate

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 /36

Object Oriented design

m Reverse the focus
m First identify the data we want to maintain and manipulate

m Then identify algorithms to operate on the data

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 /36

Object Oriented design

m Reverse the focus
m First identify the data we want to maintain and manipulate
m Then identify algorithms to operate on the data

m Claim: works better for large systems

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 /36

Object Oriented design

m Reverse the focus
m First identify the data we want to maintain and manipulate

m Then identify algorithms to operate on the data

Claim: works better for large systems

m Example: simple web browser

m 2000 procedures manipulating global data

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 17 /36

Object Oriented design

m Reverse the focus
m First identify the data we want to maintain and manipulate

m Then identify algorithms to operate on the data

Claim: works better for large systems

m Example: simple web browser
m 2000 procedures manipulating global data

m ...vs 100 classes, each with about 20 methods

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Object Oriented design

m Reverse the focus
m First identify the data we want to maintain and manipulate

m Then identify algorithms to operate on the data

Claim: works better for large systems

m Example: simple web browser
m 2000 procedures manipulating global data
m ...vs 100 classes, each with about 20 methods

m Much easier to grasp the design

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Object Oriented design

m Reverse the focus
m First identify the data we want to maintain and manipulate

m Then identify algorithms to operate on the data

Claim: works better for large systems

m Example: simple web browser
m 2000 procedures manipulating global data
m ...vs 100 classes, each with about 20 methods
m Much easier to grasp the design

m Debugging: an object is in an incorrect state

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Object Oriented design

m Reverse the focus
m First identify the data we want to maintain and manipulate

m Then identify algorithms to operate on the data

Claim: works better for large systems

m Example: simple web browser
m 2000 procedures manipulating global data
m ...vs 100 classes, each with about 20 methods
m Much easier to grasp the design
m Debugging: an object is in an incorrect state

m Search among 20 methods rather than 2000 procedures

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Object Oriented design: Example

m An order processing system typically involves

Items

Orders

Shipping addresses
Payments
Accounts

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 18 /36

Object Oriented design: Example

m An order processing system typically involves

Items

Orders

Shipping addresses
Payments
Accounts

m What happens to these objects?

m Items are added to orders
m Orders are shipped, cancelled
m Payments are accepted, rejected

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 18 /36

Object Oriented design: Example

m An order processing system typically involves

Items

Orders

Shipping addresses
Payments
Accounts

m What happens to these objects?

m Items are added to orders
m Orders are shipped, cancelled
m Payments are accepted, rejected

m Nouns signify objects, verbs denote methods that operate on objects

m Associate with each order, a method to add an item

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Designing objects

m Behaviour — what methods do we need to operate on objects?

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 19 /36

Designing objects

m Behaviour — what methods do we need to operate on objects?

m State — how does the object react when methods are invoked?
m State is the information in the instance variables

m Encapsulation — should not change unless a method operates on it

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Designing objects

m Behaviour — what methods do we need to operate on objects?

m State — how does the object react when methods are invoked?
m State is the information in the instance variables
m Encapsulation — should not change unless a method operates on it

m |dentity — distinguish between different objects of the same class
m State may be the same — two orders may contain the same item

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 19 /36

Designing objects

m Behaviour — what methods do we need to operate on objects?

m State — how does the object react when methods are invoked?
m State is the information in the instance variables
m Encapsulation — should not change unless a method operates on it

m |dentity — distinguish between different objects of the same class
m State may be the same — two orders may contain the same item

m These features interact
m State will typically affect behaviour
m Cannot add an item to an order that has been shipped

m Cannot ship an empty order

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 19 /36

Relationship between classes

m Dependence
m Order needs Account to check credit status
m Item does not depend on Account

m Robust design minimizes dependencies, or coupling between classes

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 20 /36

Relationship between classes

m Dependence
m Order needs Account to check credit status
m Item does not depend on Account
m Robust design minimizes dependencies, or coupling between classes

m Aggregation
m Order contains Item objects

Madhavan Mukund/S P Suresh Java: control flow, classes PLC, Lecture 6, 10 Feb 2022 20 /36

Relationship between classes

m Dependence
m Order needs Account to check credit status

m Item does not depend on Account
m Robust design minimizes dependencies, or coupling between classes

m Aggregation
m Order contains Item objects

m Inheritance
m One object is a specialized versions of another

m ExpressOrder inherits from Order

m Extra methods to compute shipping charges, priority handling

Java: control flow, classes PLC, Lecture 6, 10 Feb 2022

Madhavan Mukund/S P Suresh

