Abstraction, modularity, object-oriented programming

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 4, 3 February 2022

Stepwise refinement

m Begin with a high level description of begin

print first thousand prime numbers
the task

end

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 2/13

Stepwise refinement

m Begin with a high level description of begin

print first thousand prime numbers
the task

end

m Refine the task into subtasks
begin
declare table p
fill table p with first thousand primes
print table p
end

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 2/13

Stepwise refinement

. . . — begin
m Begin with a high level description of print first thousand prime numbers

the task end
m Refine the task into subtasks
begin
m Further elaborate each subtask WPdeclare table p

fill table p with first thousand primes

“,’print table p
end

begin
« integer array p[1:1000]
(£or k from 1 through 1000
make p[k] equal to the kth prime number
for k from 1—€E;bugh 1000
print plk]

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 2/13

Stepwise refine

m Begin with a high level description of
the task

m Refine the task into subtasks
m Further elaborate each subtask

m Subtasks can be coded by different
people

begin
print first thousand prime numbers
end

begin
declare table p
fill table p with first thousand primes
print table p

end

begin
integer array p[1:1000]
for k from 1 through 1000
make p[k] equal to the kth prime number
for k from 1 through 1000
print plk]

Madhavan Mukund/S P Suresh

Abstraction, modularity, object-oriented programming

PLC, Lecture 4, 3 Feb 2022 2/13

Stepwise refine

m Begin with a high level description of
the task

m Refine the task into subtasks
m Further elaborate each subtask

m Subtasks can be coded by different
people

m Program refinement — focus on
code, not much change in data
structures

begin
print first thousand prime numbers
end

begin
declare table p
fill table p with first thousand primes
print table p

end

begin
integer array p[1:1000]
for k from 1 through 1000
make p[k] equal to the kth prime number
for k from 1 through 1000
print plk]

PLC, Lecture 4, 3 Feb 2022 2/13

Madhavan Mukund/S P Suresh

Abstraction, modularity, object-oriented programming

Data refin t

m Banking application

m Typical functions: CreateAccount (), Deposit()/Withdraw(), PrintStatement ()

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 3/13

Data refin t

m Banking application

m Typical functions: CreateAccount (), Deposit()/Withdraw(), PrintStatement ()

m How do we represent each account?
m Only need the current balance

m Overall, an array of balances

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 3/13

Data refine t

m Banking application

m Typical functions: CreateAccount (), Deposit()/Withdraw(), PrintStatement ()

m How do we represent each account?
m Only need the current balance

m Overall, an array of balances

m Refine PrintStatement () to include PrintTransactions ()
m Now we need to record transactions for each account
m Data representation also changes

m Cascading impact on other functions that operate on accounts

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Modular software development

m Use refinement to divide the solution into components

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 4/13

Modular software development

m Use refinement to divide the solution into components

m Build a prototype of each component to validate design

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 4/13

Modular software development

m Use refinement to divide the solution into components
m Build a prototype of each component to validate design

m Components are described in terms of

m Interfaces — what is visible to other components, typically function calls
m Specification — behaviour of the component, as visible through interface

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Modular software development

m Use refinement to divide the solution into components
m Build a prototype of each component to validate design

m Components are described in terms of

m Interfaces — what is visible to other components, typically function calls
m Specification — behaviour of the component, as visible through interface

Improve each component independently, preserving interface and specification

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Modular software development

m Use refinement to divide the solution into components
m Build a prototype of each component to validate design

m Components are described in terms of

m Interfaces — what is visible to other components, typically function calls
m Specification — behaviour of the component, as visible through interface

Improve each component independently, preserving interface and specification

Simplest example of a component: a function

m Interfaces — function header, arguments and return type
m Specification — intended input-output behaviour

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 4/13

Modular software development

m Use refinement to divide the solution into components
m Build a prototype of each component to validate design

m Components are described in terms of

m Interfaces — what is visible to other components, typically function calls
m Specification — behaviour of the component, as visible through interface

m Improve each component independently, preserving interface and specification

m Simplest example of a component: a function
m Interfaces — function header, arguments and return type Z VDM
m Specification — intended input-output behaviour '

m Main challenge: suitable language to write specifications S'DG*WM 6.53
m Balance abstraction and detail, should not be another programming language!
m Cannot algorithmically check that specification is met (halting problem!)

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 4/13

Programming language support for abstraction

m Control abstraction

m Functions and procedures A,P]:

m Encapsulate a block of code, reuse in different contexts

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 5/13

Programming language support for abstraction

m Control abstraction

m Functions and procedures
m Encapsulate a block of code, reuse in different contexts

Skeelc

m Data abstraction

————
m Abstract data types (ADTs) h
m Set of values along with operations permitted on them ?u
m Internal representation should not be accessible 00'
m Interaction restricted to public interface ("‘C“fb

m For example, when a stack is implemented as a list, we should not be able to observe or
modify internal elements

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 5/13

Programming language support for abstraction

m Control abstraction

m Functions and procedures E(“h, ACM

m Encapsulate a block of code, reuse in different contexts NAAN—

m Data abstraction

Crudrc.‘(
m Abstract data types (ADTs) wl)_‘:(;

m Set of values along with operations permitted on them
m Internal representation should not be accessible
m Interaction restricted to public interface

m For example, when a stack is implemented as a list, we should not be able to observe or
modify internal elements

m Object-oriented programming ﬁ‘ﬁ;i n r—“lh; p

m Organize ADTs in a hierarchy
m Implicit reuse of implementations — subtyping, inheritance £0 750/)

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 5/13

m An object is like an abstract datatype
m Hidden data with set of public operations

m All interaction through operations — messages, methods, member-functions, ...
S ———

® © o
€ 90 W)

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 6/13

m An object is like an abstract datatype
m Hidden data with set of public operations

m All interaction through operations — messages, methods, member-functions, ...

m Uniform way of encapsulating different combinations of data and functionality
m An object can hold single integer — e.g., a counter

m An entire filesystem or database could be a single object

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

m An object is like an abstract datatype
m Hidden data with set of public operations

m All interaction through operations — messages, methods, member-functions, ...

m Uniform way of encapsulating different combinations of data and functionality
m An object can hold single integer — e.g., a counter

m An entire filesystem or database could be a single object

m Distinguishing features of object-oriented programming
m Abstraction
m Subtyping
m Dynamic lookup

m Inheritance

Madhavan Mukund/S P Suresh

Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 6/13

History of object-oriented programming

m Objects first introduced in Simula —
simulation language, 1960s

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 7/13

History of object-oriented programming

m Objects first introduced in Simula —

. . Q := make-queue(first event)
simulation language, 1960s

repeat
remove next event e from Q
simulate e

m Maintain a queue of events to be simulated place all events generated

m Event-based simulation follows a basic pattern

m Simulate the event at the head of the queue by e on Q
until Q is empty

L'

sinllele (0)

m Add all events it spawns to the queue

s eyense

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 7/13

History of object-oriented programming

m Objects first introduced in Simula —

. . Q := make-queue(first event)
simulation language, 1960s

repeat
remove next event e from Q
simulate e

m Maintain a queue of events to be simulated place all events generated

m Event-based simulation follows a basic pattern

m Simulate the event at the head of the queue by e on Q
. until Q is empty
m Add all events it spawns to the queue

m Challenges

m Queue must be well-typed, yet hold all types
of events

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

History of object-oriented programming

m Objects first introduced in Simula —

. . Q := make-queue(first event)
simulation language, 1960s

repeat

remove next event e from Q
’ simulate e_‘
m Maintain a queue of events to be simulated Place. all events generated

m Event-based simulation follows a basic pattern

m Simulate the event at the head of the queue by e on Q
. until Q is empty
m Add all events it spawns to the queue

m Challenges e ’UP“ ¢-J
m Queue must be well-typed, yet hold all types ‘ e " . b" 2 i-,J

of events
c,L &g

m Use a generic simulation operation across
different types of events \ lSl‘)' V-i) , ' g(}

B Avoid elaborate checking of cases

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 7/13

Abstraction

m Objects are similar to abstract datatypes A'b“— # M S' we
m Public interface r\

|
m Private implementation A’L‘a'fl"k/ W‘l’] i«\uw

m Changing the implementation should not affect interactions with the object

Rw'»-‘n Queve H“‘f

AT Ds.

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 8/13

Abstraction

m Objects are similar to abstract datatypes
m Public interface
m Private implementation

m Changing the implementation should not affect interactions with the object

m Data-centric view of programming

m Focus on what data we need to maintain and manipulate

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 8/13

Abstraction

m Objects are similar to abstract datatypes
m Public interface
m Private implementation

m Changing the implementation should not affect interactions with the object

m Data-centric view of programming

m Focus on what data we need to maintain and manipulate

m Recall that stepwise refinement could affect both code and data
m Tying methods to data makes this easier to coordinate

m Refining data representation naturally tied to updating methods that operate on the
data

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 8/13

Subtyping

m Recall the Simula event queue
m A well-typed queue holds values of a fixed type
m In practice, the queue holds different types of objects

m How can this be reconciled?

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 9/13

Subtyping

m Recall the Simula event queue
m A well-typed queue holds values of a fixed type
m In practice, the queue holds different types of objects

m How can this be reconciled?

m Arrange types in a hierarchy
m A subtype is a specialization of a type

m If A is a subtype of B, wherever an object of type B is needed, an object of type A can

be used l g 'e“ ”‘)\4‘

m Every object & type A is also an dbject of type B O\v B
B Think subset — if X C Y, every x € X is also in Y

bt O

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 9/13

Subtyping

m Recall the Simula event queue

m A well-typed queue holds values of a fixed type «5/ L It Lje ()

m In practice, the queue holds different types of objects

m How can this be reconciled? /’\

m Arrange types in a hierarchy ? C’z E;
m A subtype is a specialization of a type Sin ‘ J ‘\g mdalz flm.l.k

m If A is a subtype of B, wherever an object of type B is needed, an object of type A can
be used

m Every object of type A is also an object of type B
B Think subset — if X C Y, every x € X is also in Y

m If £() is a method in B and A is a subtype of B, every object of A also supports £ ()

m Implementation of £ () can be different in A

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Dynamic lookup

m Whether a method can be invoked on an object is a static property — type-checking

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Dynamic lookup

m Whether a method can be invoked on an object is a static property — type-checking

m How the method acts is a dynamic property of how the object is implemented
g—#
UBI

'/4:)

A/

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 10/13

Dynamic lookup

m Whether a method can be invoked on an object is a static property — type-checking

m How the method acts is a dynamic property of how the object is implemented
m In the simulation queue, all events support a simulate method

m The action triggered by the method depends on the type of event

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Dynamic lookup

m Whether a method can be invoked on an object is a static property — type-checking

m How the method acts is a dynamic property of how the object is implemented
m In the simulation queue, all events support a simulate method
m The action triggered by the method depends on the type of event
m In a graphics application, different types of objects to be rendered

m Invoke using the same operation, each object “knows” how to render itself

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Dynamic lookup

m Whether a method can be invoked on an object is a static property — type-checking

m How the method acts is a dynamic property of how the object is implemented
m In the simulation queue, all events support a simulate method
m The action triggered by the method depends on the type of event
m In a graphics application, different types of objects to be rendered

m Invoke using the same operation, each object “knows” how to render itself

m Different from overloading
m Operation + is addition for int and float

m Internal implementation is different, but choice is determined by static type

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Dynamic lookup

m Whether a method can be invoked on an object is a static property — type-checking

m How the method acts is a dynamic property of how the object is implemented
m In the simulation queue, all events support a simulate method
m The action triggered by the method depends on the type of event
m In a graphics application, different types of objects to be rendered

m Invoke using the same operation, each object “knows” how to render itself

m Different from overloading
m Operation + is addition for int and float

m Internal implementation is different, but choice is determined by static type

m Dynamic lookup
m A variable v of type B can refer to an object of subtype A

m Static type of v is B, but method implementation depends on run-time-type A

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 10/13

Inheritance

m Re-use of implementations

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 11/13

Inheritance

m Re-use of implementations

m Example: different types of employees

m Employee objects store basic personal data, date of joining

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 11/13

Inheritance

m Re-use of implementations E |\4,."\

—
m Example: different types of employees 2
m Employee objects store basic personal data, date of joining 2 S
m Manager objects can add functionality M

m Retain basic data of Employee objects

m Additional fields and functions: date of promotion, seniority (in current role)

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 11/13

Inheritance

m Re-use of implementations

m Example: different types of employees
m Employee objects store basic personal data, date of joining
m Manager objects can add functionality
m Retain basic data of Employee objects

m Additional fields and functions: date of promotion, seniority (in current role)

m Usually one hierarchy of types to capture both subtyping and inheritance

® A can inherit from B iff A is a subtype of B g

l
A

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Inheritance

m Re-use of implementations

m Example: different types of employees
m Employee objects store basic personal data, date of joining
m Manager objects can add functionality
m Retain basic data of Employee objects

m Additional fields and functions: date of promotion, seniority (in current role)

Usually one hierarchy of types to capture both subtyping and inheritance
® A can inherit from B iff A is a subtype of B

Philosophically, however the two are different
m Subtyping is a relationship of interfaces

m Inheritance is a relationship of implementations

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Subtyping vs inheritance

m A deque is a double-ended queue

m Supports insert-front (), delete-front(), insert-rear () and delete-rear()

" J
@F’”‘j‘)

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 12 /13

Subtyping vs inheritance

m A deque is a double-ended queue v

m Supports insevxront(), delete‘—é}nt(), insert-rear () and de'],&rear()

m We can implement a stack or a queue using a deque
m Stack: use only insert-front(), delete-front(),

m Queue: use only insert-rear(), delete-front(),

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Subtyping vs inheritance

m A deque is a double-ended queue

m Supports insert-front (), delete-front(), insert-rear () and delete-rear()

m We can implement a stack or a queue using a deque
m Stack: use only insert-front(), delete-front(),

m Queue: use only insert-rear(), delete-front(),

m Stack and Queue inherit from Deque — reuse implementation

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Subtyping vs inheritance

m A deque is a double-ended queue

m Supports insert-front (), delete-front(), insert-rear () and delete-rear()

m We can implement a stack or a queue using a deque g K)
m Stack: use only insert-front(), delete-front ()
m Queue: use only insert-rear(), delete-front(), ‘

m Stack and Queue inherit from Deque — reuse implementation A — g’()

m But Stack and Queue are not subtypes of Deque

m If v of type Deque points an object of type Stack, cannot invoke insert-rear(),
delete-rear()

m Similarly, no insert-front (), delete-rear() in Queue

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

Subtyping vs inheritance

m A deque is a double-ended queue

m Supports insert-front (), delete-front(), insert-rear () and delete-rear()

m We can implement a stack or a queue using a deque
m Stack: use only insert-front(), delete-front(),

m Queue: use only insert-rear(), delete-front(),
m Stack and Queue inherit from Deque — reuse implementation

m But Stack and Queue are not subtypes of Deque

m If v of type Deque points an object of type Stack, cannot invoke insert-rear(),
delete-rear()

m Similarly, no insert-front (), delete-rear() in Queue

m Interfaces of Stack and Queue are not compatible with Deque

m In fact, Deque is a subtype of both Stack and Queue

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022

m Solving a complex task requires breaking it down into manageable components
m Top down: refine the task into subtasks; Bottom up: combine simple building blocks
m Modular description of components — interface and specification

m Build prototype implementation to validate design
m Reimplement the components independently, preserving interface and specification

m PL support for abstraction

m Control flow: functions and procedures
m Data: Abstract data types, object-oriented programming

m Distinguishing features of object-oriented programming

Abstraction: Public interface, private implementation, like ADTs

=

m Subtyping: Hierarchy of types, compatibility of interfaces

m Dynamic lookup: Choice of method implementation is determined at run-time
=

Inheritance: Reuse of implementations

Madhavan Mukund/S P Suresh Abstraction, modularity, object-oriented programming PLC, Lecture 4, 3 Feb 2022 13/13

