Programming Language Concepts: Lecture 21

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 21, 08 April 2009

Consider

```
applypair f x y = (f x, f y)
```

Consider

```
applypair f x y = (f x,f y)

Is the following expression well typed, where id z = z?
```

```
applypair id 7 'c' = (id 7, id 'c') = (7, c')
```

Consider

```
applypair f x y = (f x, f y)
```

Is the following expression well typed, where id z = z?

```
applypair id 7 'c' = (id 7, id 'c') = (7, c')
```

We have to unify the following set of constraints

Consider

```
applypair f x y = (f x, f y)
```

Is the following expression well typed, where id z = z?

```
applypair id 7 'c' = (id 7, id 'c') = (7, c')
```

We have to unify the following set of constraints

Not possible! Haskell compiler says

```
applypair :: (a -> b) -> b -> (b,b)}
```

In the λ -calculus, we have

$$\lambda fxy.pair(fx)(fy)$$
, where $pair \equiv \lambda xyz.(zxy)$

In the λ -calculus, we have

$$\lambda fxy.pair(fx)(fy)$$
, where $pair \equiv \lambda xyz.(zxy)$

When we pass a value for f, it has to unify with types of both x and y

In the λ -calculus, we have

$$\lambda fxy.pair(fx)(fy)$$
, where $pair \equiv \lambda xyz.(zxy)$

When we pass a value for f, it has to unify with types of both x and y

Suppose, we write, instead

```
applypair x y = (f x, f y) where f z = z
```

In the λ -calculus, we have

```
\lambda fxy.pair(fx)(fy), where pair \equiv \lambda xyz.(zxy)
```

When we pass a value for f, it has to unify with types of both x and y

Suppose, we write, instead

```
applypair x y = (f x, f y) where f z = z
```

Now, we have

```
applypair :: a \rightarrow b \rightarrow (a,b)
```

In the λ -calculus, we have

$$\lambda fxy.pair(fx)(fy)$$
, where $pair \equiv \lambda xyz.(zxy)$

When we pass a value for f, it has to unify with types of both x and y

Suppose, we write, instead

```
applypair x y = (f x, f y) where f z = z
```

Now, we have

```
applypair :: a \rightarrow b \rightarrow (a,b)
```

What's going on?

Extend λ -calculus with "local" definitions, like where

$$\Lambda = C_i \mid x \mid \lambda x.M \mid MN \mid \text{let } f = e \text{ in } M$$

Extend λ -calculus with "local" definitions, like where

$$\Lambda = C_i \mid x \mid \lambda x.M \mid MN \mid \text{let } f = e \text{ in } M$$

Here is the λ -term for the second version of applypair

let
$$f = \lambda z.z$$
 in $\lambda xy.pair(fx)(fy)$

Extend λ -calculus with "local" definitions, like where

$$\Lambda = C_i \mid x \mid \lambda x.M \mid MN \mid \text{let } f = e \text{ in } M$$

Here is the λ -term for the second version of applypair

let
$$f = \lambda z.z$$
 in $\lambda xy.pair(fx)(fy)$

In fact, Haskell allows both

```
let f z = z in applypair x y = (f x, f y)
```

and

```
applypair x y = (f x, f y) where f z = z
```

▶ let f = e in $\lambda x.M$ and $(\lambda fx.M)e$ are equivalent with respect to β -reduction

- ▶ let f = e in $\lambda x.M$ and $(\lambda fx.M)e$ are equivalent with respect to β -reduction
- ... but type inference works differently for the two

- ▶ let f = e in $\lambda x.M$ and $(\lambda fx.M)e$ are equivalent with respect to β -reduction
- ... but type inference works differently for the two
- One may be typeable while the other is not
 - $\blacktriangleright (\lambda I.(II))(\lambda x.x)$
 - $\blacktriangleright \text{ let } I = \lambda x.x \text{ in } (II)$

Type inference for M = let f = e in M'

Type inference for M = let f = e in M'

First attempt

- ▶ Assume f :: t where α, β, \ldots are type variables occurring in t
- ► Make a separate copy of type variables for each instance of f in M'

Type inference for M = let f = e in M'

First attempt

- ▶ Assume f :: t where α, β, \ldots are type variables occurring in t
- Make a separate copy of type variables for each instance of f in M'

Example

- ▶ let $f = \lambda z.z$ in $\lambda xy.pair(fx)(fy)$
- ▶ First instance of f has type $\alpha_1 \rightarrow \beta_1$
- ▶ Second instance of f has type $\alpha_2 \rightarrow \beta_2$

A subtle problem

```
applypair2 w x y = ((tag x),(tag y))
  where
   tag = pair w
  pair s t = (s,t)
```

A subtle problem

```
applypair2 w x y = ((tag x),(tag y))
  where
    tag = pair w
    pair s t = (s,t)

▶ applypair2 w x y → ((w,x),(w,y))

▶ Type should be
    applypair2 :: a → b → c → ((a,b),(a,c))
```

```
applypair2 w x y = ((tag x),(tag y))
  where
   tag = pair w
  pair s t = (s,t)
```

Type inference

```
applypair2 :: a -> b -> c -> (d,e)
pair :: f -> g -> (f,g)
tag :: h -> (i,h)
```

```
applypair2 w x y = ((tag x),(tag y))
  where
   tag = pair w
  pair s t = (s,t)
```

Type inference

```
applypair2 :: a \rightarrow b \rightarrow c \rightarrow (d,e)
pair :: f \rightarrow g \rightarrow (f,g)
tag :: h \rightarrow (i,h)
```

▶ a = i because tag uses input w from applypair2

```
applypair2 w x y = ((tag x),(tag y))
  where
   tag = pair w
  pair s t = (s,t)
```

Type inference

```
applypair2 :: a \rightarrow b \rightarrow c \rightarrow (d,e)
pair :: f \rightarrow g \rightarrow (f,g)
tag :: h \rightarrow (i,h)
```

- ▶ a = i because tag uses input w from applypair2
- Using let rule, two instances of tag get different types

```
b d = h1 -> (i1,h1)
b e = h2 -> (i2,h2)
```

```
applypair2 w x y = ((tag x),(tag y))
  where
    tag = pair w
  pair s t = (s,t)
```

Type inference

```
applypair2 :: a -> b -> c -> (d,e)
pair :: f -> g -> (f,g)
tag :: h -> (i,h)
```

- ▶ a = i because tag uses input w from applypair2
- Using let rule, two instances of tag get different types
 - b d = h1 -> (i1,h1) b e = h2 -> (i2,h2)
- End up with

```
applypair2 :: a \rightarrow b \rightarrow c \rightarrow ((i1,b),(i2,c))
```

► The connection a = i = i1 = i2 is lost!

- ▶ In tag :: h →> (i,h)
 - ▶ h is local to tag
 - ▶ i is unified with type passed directly to main function

- ▶ In tag :: h → (i,h)
 - ▶ h is local to tag
 - ▶ i is unified with type passed directly to main function
- ▶ h is called a generic variable
 - Should not make copies of non-generic variables!

- ▶ In tag :: h → (i,h)
 - ▶ h is local to tag
 - i is unified with type passed directly to main function
- ▶ h is called a generic variable
 - Should not make copies of non-generic variables!

Correct type inference rule for M = let f = e in M'

- Assume f :: t where α, β, \ldots are generic type variables occurring in t
- ▶ Make a separate copy of these generic type variables for each instance of f in M'
- ▶ Non-generic variables retain their name across all copies of *f*

- ▶ Programming with relations . . .
 - lacksquare ...as opposed to programming with functions

- Programming with relations . . .
 - ...as opposed to programming with functions
- ▶ Function f with n arguments defines a relation R_f with n+1 arguments

$$f(x_1, x_2, \dots, x_n) = y \text{ iff } (x_1, x_2, \dots, x_n, y) \in R_f$$

- Programming with relations . . .
 - ...as opposed to programming with functions
- ▶ Function f with n arguments defines a relation R_f with n+1 arguments

$$f(x_1, x_2, \dots, x_n) = y \text{ iff } (x_1, x_2, \dots, x_n, y) \in R_f$$

▶ Functional programs compute y given $(x_1, x_2, ..., x_n)$

- Programming with relations . . .
 - ...as opposed to programming with functions
- ▶ Function f with n arguments defines a relation R_f with n+1 arguments

$$f(x_1, x_2, \dots, x_n) = y \text{ iff } (x_1, x_2, \dots, x_n, y) \in R_f$$

- ▶ Functional programs compute y given $(x_1, x_2, ..., x_n)$
- Logic programming allows computation of more general relations

- Programming with relations . . .
 - ...as opposed to programming with functions
- ▶ Function f with n arguments defines a relation R_f with n+1 arguments

$$f(x_1, x_2, \dots, x_n) = y \text{ iff } (x_1, x_2, \dots, x_n, y) \in R_f$$

- ▶ Functional programs compute y given $(x_1, x_2, ..., x_n)$
- Logic programming allows computation of more general relations
- ► Will follow Prolog syntax

Variables and constants

Two kinds of entities

- ▶ Variables
 - Names starting with a capital letter
 - ► X, Y, Name, ...

Variables and constants

Two kinds of entities

- ▶ Variables
 - Names starting with a capital letter
 - ► X, Y, Name, ...
- ► Constants
 - Names starting with a small letter
 - ▶ ball, node, graph, a, b,

Variables and constants

Two kinds of entities

- ▶ Variables
 - Names starting with a capital letter
 - ► X, Y, Name, ...
- ► Constants
 - Names starting with a small letter
 - ▶ ball, node, graph, a, b,
 - ▶ Uninterpreted no types like Char, Bool etc!

Variables and constants

Two kinds of entities

- ▶ Variables
 - Names starting with a capital letter
 - ► X, Y, Name, ...
- ► Constants
 - Names starting with a small letter
 - ▶ ball, node, graph, a, b,
 - ▶ Uninterpreted no types like Char, Bool etc!
 - Exception: natural numbers, some arithmetic

Defining relations

A Prolog program describes a relation

Defining relations

A Prolog program describes a relation

Example: A graph

Defining relations

A Prolog program describes a relation

Example: A graph

- ► Want to define a relation path(X,Y)
- ▶ path(X,Y) holds if there is a path from X to Y

Facts and rules

Represent edge relation using the following facts.

```
edge(3,4).
edge(5,4).
edge(5,1).
edge(1,2).
edge(3,5).
edge(2,3).
```


Define path using the following rules.

```
path(X,Y) := X = Y.

path(X,Y) := edge(X,Z), path(Z,Y).
```


Define path using the following rules.

```
path(X,Y) := X = Y.

path(X,Y) := edge(X,Z), path(Z,Y).
```

Read the rules read as follows:

- Rule 1 For all X,Y, $(X,Y) \in path$ if X is same as (i.e., unifies with) Y.
- Rule 2 For all X,Y, $(X,Y) \in path$ if there exists Z such that $(X,Z) \in edge$ and $(Z,Y) \in path$.

```
path(X,Y) := X = Y.

path(X,Y) := edge(X,Z), path(Z,Y).
```

Each rule is of the form

Conclusion if $Premise_1$ and $Premise_2$... and $Premise_n$

```
path(X,Y) := X = Y.

path(X,Y) := edge(X,Z), path(Z,Y).
```

Each rule is of the form

- ▶ if is written :-
- and is written ,

```
path(X,Y) := X = Y.

path(X,Y) := edge(X,Z), path(Z,Y).
```

Each rule is of the form

- ▶ if is written :-
- and is written ,
- ► This type of logical formula is called a Horn Clause

```
path(X,Y) := X = Y.

path(X,Y) := edge(X,Z), path(Z,Y).
```

► Each rule is of the form

- ▶ if is written :-
- and is written .
- ► This type of logical formula is called a Horn Clause
- Quantification of variables

```
path(X,Y) := X = Y.

path(X,Y) := edge(X,Z), path(Z,Y).
```

► Each rule is of the form

- ▶ if is written :-
- and is written ,
- ► This type of logical formula is called a Horn Clause
- Quantification of variables
 - Variables in goal are universally quantified
 - ► X, Y above

```
path(X,Y) := X = Y.

path(X,Y) := edge(X,Z), path(Z,Y).
```

► Each rule is of the form

- ▶ if is written :-
- and is written ,
- ► This type of logical formula is called a Horn Clause
- Quantification of variables
 - Variables in goal are universally quantified
 - ► X, Y above
 - Variables in premise are existentially quantified
 - Z above

```
?- path(3,1).
```

```
?-path(3,1).
```

- Prolog scans facts and rules top-to-bottom
 - ▶ 3 cannot be unified with 1, skip Rule 1.

```
?- path(3,1).
```

- Prolog scans facts and rules top-to-bottom
 - ▶ 3 cannot be unified with 1, skip Rule 1.
 - ▶ Rule 2 generates two subgoals. Find Z such that
 - ightharpoonup (3,Z) \in edge and
 - ▶ (Z,1) ∈ path.

```
?-path(3,1).
```

- Prolog scans facts and rules top-to-bottom
 - ▶ 3 cannot be unified with 1, skip Rule 1.
 - ▶ Rule 2 generates two subgoals. Find Z such that
 - ightharpoonup (3,Z) \in edge and
 - ightharpoonup (Z,1) \in path.
- Sub goals are tried depth-first
 - ▶ (3,Z) ∈ edge?
 - \blacktriangleright (3,4) \in edge, set Z = 4

```
?-path(3,1).
```

- Prolog scans facts and rules top-to-bottom
 - ▶ 3 cannot be unified with 1, skip Rule 1.
 - ▶ Rule 2 generates two subgoals. Find Z such that
 - ightharpoonup (3,Z) \in edge and
 - ightharpoonup (Z,1) \in path.
- Sub goals are tried depth-first
 - ▶ (3,Z) ∈ edge?
 - \blacktriangleright (3,4) \in edge, set Z = 4
 - ► (4,1) ∈ path? 4 cannot be unifed with 1, two subgoals, new Z'
 - ▶ (4,Z') ∈ edge
 - ightharpoonup (Z',1) \in path

```
?-path(3,1).
```

- Prolog scans facts and rules top-to-bottom
 - ▶ 3 cannot be unified with 1, skip Rule 1.
 - ▶ Rule 2 generates two subgoals. Find Z such that
 - ightharpoonup (3,Z) \in edge and
 - ightharpoonup (Z,1) \in path.
- Sub goals are tried depth-first
 - ▶ (3,Z) ∈ edge?
 - \blacktriangleright (3,4) \in edge, set Z = 4
 - ► (4,1) ∈ path? 4 cannot be unifed with 1, two subgoals, new Z'
 - ▶ (4,Z') ∈ edge
 - ▶ (Z',1) ∈ path
 - ► Cannot find Z' such that (4,Z') ∈ edge!

- (3,Z) ∈ edge?(3,4) ∈ edge, set Z = 4
- ▶ (4,1) ∈ path? 4 cannot be unified with 1, two subgoals, new Z'
 - ▶ (4,Z') ∈ edge
 - ▶ (Z',1) ∈ path
- ▶ No Z' such that (4,Z') ∈ edge

- ▶ $(3,Z) \in edge$?
 - \blacktriangleright (3,4) \in edge, set Z = 4
- ▶ (4,1) ∈ path? 4 cannot be unified with 1, two subgoals, new Z'
 - ▶ (4,Z') ∈ edge
 - ▶ (Z',1) ∈ path
- ▶ No Z' such that (4,Z') ∈ edge
- Backtrack and try another value for Z
 - edge(3,5) \in edge, set Z = 5

- (3,Z) ∈ edge?(3,4) ∈ edge, set Z = 4
- ▶ (4,1) ∈ path? 4 cannot be unified with 1, two subgoals, new Z'
 - ▶ (4,Z') ∈ edge
 - ► (Z',1) ∈ path
- ▶ No Z' such that (4,Z') ∈ edge
- Backtrack and try another value for Z
 - ▶ edge(3,5) \in edge, set Z = 5
- ▶ (5,1) ∈ path? (5,1) ∈ edge, path(1,1), $\sqrt{}$

- (3,Z) ∈ edge?(3,4) ∈ edge, set Z = 4
- ▶ (4,1) ∈ path? 4 cannot be unified with 1, two subgoals, new Z'
 - ▶ (4,Z') ∈ edge
 - ► (Z',1) ∈ path
- No Z' such that (4,Z') ∈ edge
- Backtrack and try another value for Z
 - ightharpoonup edge(3,5) \in edge, set Z = 5
- ▶ (5,1) ∈ path? (5,1) ∈ edge, path(1,1), $\sqrt{}$

Backtracking is sensitive to order of facts

► We had put edge(3,4) before edge(3,5)

Reversing the question

► Consider the question

```
?- edge(3,X).
```

Reversing the question

► Consider the question

```
?- edge(3,X).
```

► Find all X such that (3,X) ∈ edge

Reversing the question

Consider the question

```
?- edge(3,X).
```

- ► Find all X such that (3,X) ∈ edge
- ▶ Prolog lists out all satisfying values, one by one

```
X=4;
X=5;
X=2;
No.
```