Programming Language Concepts: Lecture 20

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 20, 06 April 2009

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

"Simply typed" λ -calculus

A separate set of variables Var_s for each type sDefine Λ_s , expressions of type s, by mutual recursion

- For each type s, every variable $x \in Var_s$ is in Λ_s
- If $M \in \Lambda_t$ and $x \in Var_s$ then $(\lambda x.M) \in \Lambda_{s \to t}$.
- If $M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ then $(MN) \in \Lambda_t$.
 - Note that application must be well typed

"Simply typed" λ -calculus

A separate set of variables Var_s for each type sDefine Λ_s , expressions of type s, by mutual recursion

- For each type s, every variable $x \in Var_s$ is in Λ_s
- If $M \in \Lambda_t$ and $x \in Var_s$ then $(\lambda x.M) \in \Lambda_{s \to t}$.
- If $M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ then $(MN) \in \Lambda_t$.

Note that application must be well typed

- β rule as usual
 - $\blacktriangleright (\lambda x.M) N \rightarrow_{\beta} M\{x \leftarrow N\}$
 - ▶ We must have $\lambda x.M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ for some types s, t
 - Moreover, if *λx*.*M* ∈ Λ_{s→t}, then *x* ∈ *Var_s*, so *x* and *N* are compatible

"Simply typed" λ -calculus . . .

- Extend \rightarrow_{β} to one-step reduction \rightarrow , as usual
- ► The reduction relation →* is Church-Rosser
- ▶ In fact, \rightarrow^* is strongly normalizing
 - ► *M* is normalizing : *M* has a normal form.
 - M is strongly normalizing : every reduction sequence leads to a normal form

No infinite computations!

Type checking

- Syntax of simply typed λ-calculus permits only well-typed terms
- Converse question; Given an arbitrary term, is it well-typed?

Theorem

The type-checking problem for the simply typed λ -calculus is decidable

Type checking

- Syntax of simply typed λ-calculus permits only well-typed terms
- Converse question; Given an arbitrary term, is it well-typed?

Theorem

The type-checking problem for the simply typed λ -calculus is decidable

Principal type scheme of a term M — unique type s such that every other valid type is an "instance" of s

Theorem

We can always compute the principal type scheme for any well-typed term in the simply typed λ -calculus.

- Add type variables, a, b, ...
- ▶ Use *i*, *j*, ... to denote concrete types
- Type schemes

 $s ::= a \mid i \mid s \to s \mid \forall a.s$

Syntax of second order polymorphic lambda calculus

- Every variable and (type) constant is a term.
- If M is a term, x is a variable and s is a type scheme, then (λx ∈ s.M) is a term.
- ▶ If *M* and *N* are terms, so is (*MN*).
 - Function application does not enforce type check
- If *M* is a term and *a* is a type variable, then $(\Lambda a.M)$ is a term.

- Type abstraction
- ▶ If *M* is a term and *s* is a type scheme, (*Ms*) is a term.
 - Type application

Example A polymorphic identity function

$\Lambda a.\lambda x \in a.x$

Two β rules, for two types of abstraction

- $(\lambda x \in s.M)N \rightarrow_{\beta} M\{x \leftarrow N\}$
- $\blacktriangleright (\Lambda a.M) s \rightarrow_{\beta} M\{a \leftarrow s\}$

- System F is also strongly normalizing
- but type inference is undecidable!
 - Given an arbitrary term, can it be assigned a sensible type?

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Type inference in System F

Notation

If A is a list of assumptions, $A + \{x : s\}$ is the list where

- Assumption for x in A (if any) is overridden by the new assumption x : s.
- For any variable $y \neq x$, assumption does not change

$$\frac{A + \{x : s\} \vdash M : t}{A \vdash (\lambda x \in s.M) : s \to t}$$

$$\frac{A \vdash M : s \to t, \quad A \vdash N : s}{A \vdash (MN) : t}$$

$$\frac{A \vdash M : s}{A \vdash (\Lambda a.M) : \forall a.s}$$

$$\frac{A \vdash M : \forall a.s}{A \vdash Mt : s\{a \leftarrow t\}}$$

Type inference in System F

- Type inference is undecidable for System F
- ... but we have type-checking algorithms for Haskell, ML, ... !
- Haskell etc use a restricted version of polymorphic types
 - All types are universally quantified at the top level
- When we write map :: (a -> b) -> [a] -> [b], we mean that the type is

map ::
$$\forall a, b. \ (a \rightarrow b) \rightarrow [a] \rightarrow [b]$$

- Also called shallow typing
- System F permits deep typing

$$\forall a. \ [(\forall b. \ a \rightarrow b) \rightarrow a \rightarrow a]$$

What is the type of twice f x = f (f x)?

► Generically, twice :: a -> b -> c

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

What is the type of twice f x = f (f x)?

- ► Generically, twice :: a -> b -> c
- ► We then reason as follows

 $a = d \rightarrow e$ (because f is a function)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

What is the type of twice f x = f (f x)?

- ► Generically, twice :: a -> b -> c
- ► We then reason as follows
 - $a = d \rightarrow e$ (because f is a function) b = d (because f is applied to x)

What is the type of twice f x = f (f x)?

- ► Generically, twice :: a -> b -> c
- ► We then reason as follows

a	=	d -> e	(because f is a function)
b	=	d	(because f is applied to \mathbf{x})
е	=	d	(because f is applied to $(f x)$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

What is the type of twice f x = f (f x)?

- ► Generically, twice :: a -> b -> c
- ► We then reason as follows

 $a = d \rightarrow e$ (because f is a function)b = d(because f is applied to x)e = d(because f is applied to (f x))c = e(because output of twice is f (f x))

What is the type of twice f x = f (f x)?

- ► Generically, twice :: a -> b -> c
- ► We then reason as follows

 $a = d \rightarrow e$ (because f is a function)b = d(because f is applied to x)e = d(because f is applied to (f x))c = e(because output of twice is f (f x))

• Thus b = c = d = e and $a = b \rightarrow b$

What is the type of twice f x = f (f x)?

- ► Generically, twice :: a -> b -> c
- ► We then reason as follows

a	=	d -> e	(because f is a function)
b	=	d	(because f is applied to x)
е	=	d	(because f is applied to $(f x)$)
с	=	е	(because output of twice is f (f x))

- Thus b = c = d = e and $a = b \rightarrow b$
- ▶ Most general type is twice :: (b -> b) -> b -> b

Start with a system of equations over terms

- Start with a system of equations over terms
- ► Find a substitution for variables that satisfies the equation

- Start with a system of equations over terms
- ► Find a substitution for variables that satisfies the equation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Least constrained solution : most general unifier (mgu)

► Fix a set of function symbols and constants : signature

- Each function symbol as an arity
- Constants are functions with arity 0

► Fix a set of function symbols and constants : signature

- Each function symbol as an arity
- Constants are functions with arity 0
- > Terms are well formed expressions, including variables

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

► Fix a set of function symbols and constants : signature

- Each function symbol as an arity
- Constants are functions with arity 0
- ► Terms are well formed expressions, including variables

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Every variable is a term.

- ► Fix a set of function symbols and constants : signature
 - Each function symbol as an arity
 - Constants are functions with arity 0
- Terms are well formed expressions, including variables
 - Every variable is a term.
 - If f is a k-ary function symbol in the signature and t₁, t₂, ..., tk are terms, then f(t₁, t₂, ..., tk) is a term.

- Fix a set of function symbols and constants : signature
 - Each function symbol as an arity
 - Constants are functions with arity 0
- Terms are well formed expressions, including variables
 - Every variable is a term.
 - If f is a k-ary function symbol in the signature and t₁, t₂, ..., tk are terms, then f(t₁, t₂,..., tk) is a term.

- Notation
 - $a, b, c, f, \ldots, x, y, \ldots$ are function symbos
 - $A, B, C, F, \ldots, X, Y, \ldots$ are variables

Example

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

Example

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

Substitution: assigns a term to each variable X, Y, Z

Example

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations

Example

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- ▶ For instance, $\{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\}$

Example

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

- ► Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- ▶ For instance, $\{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\} = \theta$

Example

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

- ► Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- ► For instance, $\{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\} = \theta$
- $t\theta$: apply substitution θ to term t

Example

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

- ► Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- ► For instance, $\{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\} = \theta$
- $t\theta$: apply substitution θ to term t (not $\theta(t)$!)

Example

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- ► For instance, $\{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\} = \theta$
- $t\theta$: apply substitution θ to term t (not $\theta(t)$!)
- Apply substitution in parallel

• t = g(p(X), q(f(Y)))

Example

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- ► For instance, $\{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\} = \theta$
- $t\theta$: apply substitution θ to term t (not $\theta(t)$!)
- Apply substitution in parallel
 - t = g(p(X), q(f(Y)))
 - $\bullet \ \gamma = \{X \leftarrow Y, Y \leftarrow f(a)\}$

Example

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- ► For instance, $\{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\} = \theta$
- $t\theta$: apply substitution θ to term t (not $\theta(t)$!)
- Apply substitution in parallel
 - t = g(p(X), q(f(Y)))
 - $\bullet \ \gamma = \{X \leftarrow Y, Y \leftarrow f(a)\}$
 - $t\gamma = g(p(Y), q(f(f(a))))$

Example

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- ► For instance, $\{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\} = \theta$
- $t\theta$: apply substitution θ to term t (not $\theta(t)$!)
- Apply substitution in parallel
 - t = g(p(X), q(f(Y)))
 - $\bullet \ \gamma = \{X \leftarrow Y, Y \leftarrow f(a)\}$
 - $t\gamma = g(p(Y), q(f(f(a))))$
 - g(p(Y)) does not become g(p(f(a)))!

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

Many solutions are possible:

$$\bullet \ \theta = \{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\}$$

$$\bullet \ \theta' = \{X \leftarrow f(a), Y \leftarrow a, Z \leftarrow a\}$$

•
$$\theta'' = \{X \leftarrow f(a), Y \leftarrow Z\}$$

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

Many solutions are possible:

- $\bullet \ \theta = \{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\}$
- $\theta' = \{X \leftarrow f(a), Y \leftarrow a, Z \leftarrow a\}$
- $\theta'' = \{X \leftarrow f(a), Y \leftarrow Z\}$

• θ'' is the "least constrained"

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

Many solutions are possible:

- $\bullet \ \theta = \{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\}$
- $\bullet \ \theta' = \{X \leftarrow f(a), Y \leftarrow a, Z \leftarrow a\}$
- $\theta'' = \{X \leftarrow f(a), Y \leftarrow Z\}$
- θ'' is the "least constrained"
- Any solution γ breaks up into two steps, first of which is θ''

• θ is θ'' followed by $\{Y \leftarrow g(a)\}$

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

Many solutions are possible:

- $\bullet \ \theta = \{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\}$
- $\bullet \ \theta' = \{X \leftarrow f(a), Y \leftarrow a, Z \leftarrow a\}$
- $\theta'' = \{X \leftarrow f(a), Y \leftarrow Z\}$
- θ'' is the "least constrained"
- Any solution γ breaks up into two steps, first of which is θ''

• θ is θ'' followed by $\{Y \leftarrow g(a)\}$

Least constrained solution: most general unifier

Obstacles to unification

Obstacles to unification

- Equations of the form $p(\ldots) = q(\ldots)$
 - Outermost function symbols don't agree
 - No substitution can make the terms equal

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Obstacles to unification

- Equations of the form $p(\ldots) = q(\ldots)$
 - Outermost function symbols don't agree
 - No substitution can make the terms equal
- Equations of the form $X = f(\ldots X \ldots)$
 - Any substitution for X also applies to X nested in f

Obstacles to unification

- Equations of the form $p(\ldots) = q(\ldots)$
 - Outermost function symbols don't agree
 - No substitution can make the terms equal
- Equations of the form $X = f(\ldots X \ldots)$
 - Any substitution for X also applies to X nested in f
- These are the only two reasons why unification can fail!

A unification algorithm

Start with equations

$$egin{array}{rcl} t_1^{l} &=& t_1' \ t_2^{l} &=& t_2' \ &dots & dots \ t_n^{l} &=& t_n' \end{array}$$

 Perform a sequence of transformations on these equations till no more transformations apply

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

1. t = X, t is not a variable $\rightarrow X = t$.

1. t = X, t is not a variable $\rightarrow X = t$.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

2. Erase equations of form X = X.

1. t = X, t is not a variable $\rightarrow X = t$.

2. Erase equations of form X = X.

3. Let t = t' where t = f(...), t' = f'(...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- 1. t = X, t is not a variable $\rightarrow X = t$.
- 2. Erase equations of form X = X.
- 3. Let t = t' where t = f(...), t' = f'(...)

• $f \neq f' \rightarrow$ terminate : unification not possible

- 1. t = X, t is not a variable $\rightarrow X = t$.
- 2. Erase equations of form X = X.
- 3. Let t = t' where t = f(...), t' = f'(...)
 - $f \neq f' \rightsquigarrow$ terminate : unification not possible
 - ▶ Otherwise, f(t₁, t₂,..., t_k) = f(t'₁, t'₂,..., t'_k) Replace by k new equations

$$t_1 = t'_1, t_2 = t'_2, \ldots, t_k = t'_k$$

- 1. t = X, t is not a variable $\rightarrow X = t$.
- 2. Erase equations of form X = X.
- 3. Let t = t' where t = f(...), t' = f'(...)
 - $f \neq f' \rightsquigarrow$ terminate : unification not possible
 - Otherwise, $f(t_1, t_2, ..., t_k) = f(t'_1, t'_2, ..., t'_k)$

Replace by k new equations

$$t_1 = t'_1, t_2 = t'_2, \ldots, t_k = t'_k$$

4. X = t, X occurs in $t \rightarrow$ terminate: unification not possible

- 1. t = X, t is not a variable $\rightarrow X = t$.
- 2. Erase equations of form X = X.
- 3. Let t = t' where t = f(...), t' = f'(...)
 - $f \neq f' \rightsquigarrow$ terminate : unification not possible
 - Otherwise, $f(t_1, t_2, ..., t_k) = f(t'_1, t'_2, ..., t'_k)$

Replace by k new equations

$$t_1 = t'_1, t_2 = t'_2, \dots, t_k = t'_k$$

4. X = t, X occurs in $t \rightarrow$ terminate: unification not possible

5. X = t, X does not occur in t, X occurs in other equations \sim Replace all occurrence of X in other equations by t.

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○</p>

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

$$\begin{array}{rcl} X & = & f(a) \\ g(Y) & = & g(Z) \end{array}$$

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

$$\begin{array}{rcl} X & = & f(a) \\ g(Y) & = & g(Z) \end{array}$$

$$\begin{array}{rcl} X & = & f(a) \\ Y & = & Z \end{array}$$

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

$$\begin{array}{rcl} X & = & f(a) \\ g(Y) & = & g(Z) \end{array}$$

$$\begin{array}{rcl} X & = & f(a) \\ Y & = & Z \end{array}$$

mgu is $\{X \leftarrow f(a), Z \leftarrow Y\}$

$$g(Y) = X$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$g(Y) = X$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$X = g(Y)$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$g(Y) = X$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$X = g(Y)$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$X = g(Y)$$

$$X = g(Z)$$

$$h(X) = W$$

$$Y = Z$$

g(Y) f(X, h(X), Y)		X f(g(Z), W, Z)
X f(X, h(X), Y)		g(Y) f(g(Z), W, Z)
$ \begin{array}{c} X \\ X \\ h(X) \\ Y \end{array} $	=	g(Y) g(Z) W Z
g(Z) X $h(g(Z))$ Y	=	g(Y) g(Z) W Z

g(Y) f(X, h(X), Y)		X f(g(Z), W, Z)
X f(X, h(X), Y)		g(Y) f(g(Z), W, Z)
$ \begin{array}{c} X \\ X \\ h(X) \\ Y \end{array} $	=	g(Y) g(Z) W Z
g(Z) X $h(g(Z))$ Y	=	g(Y) g(Z) W Z

$$Z = Y$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

$$Y = Z$$

$$Z = Y$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

$$Y = Z$$

$$Z = Z$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

$$Y = Z$$

Z = Y X = g(Z) h(g(Z)) = W Y = ZZ = Z X = g(Z) h(g(Z)) = W Y = Z $\begin{array}{lll} X & = & g(Z) \\ W & = & h(g(Z)) \\ Y & = & Z \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Z = Y X = g(Z) h(g(Z)) = W Y = ZZ = Z X = g(Z) h(g(Z)) = W Y = Z $\begin{array}{lll} X & = & g(Z) \\ W & = & h(g(Z)) \\ Y & = & Z \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$Z = Y$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

$$Y = Z$$

$$Z = Z$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

$$Y = Z$$

$$X = g(Z)$$

$$W = h(g(Z))$$

$$Y = Z$$

Equations : g(Y) = X, f(X, h(X), Y) = f(g(Z), W, Z)mgu : $\{X \leftarrow g(Z), W \leftarrow h(g(Z)), Y \leftarrow Z\}$

- 1. t = X, t is not a variable $\rightarrow X = t$.
- 2. Erase equations of form X = X.
- 3. Let t = t' where t = f(...), t' = f'(...)
 - $f \neq f' \rightsquigarrow$ terminate : unification not possible
 - Otherwise, $f(t_1, t_2, ..., t_k) = f(t'_1, t'_2, ..., t'_k)$

Replace by k new equations

$$t_1 = t'_1, t_2 = t'_2, \ldots, t_k = t'_k$$

4. X = t, X occurs in $t \rightarrow$ terminate: unification not possible

5. X = t, X does not occur in t, X occurs in other equations \sim Replace all occurrence of X in other equations by t.

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Rule 5 can be used at most once for each variable

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5
 - Rule 5 can be used at most once for each variable
- ▶ When the algorithm terminates, all equations are of the form X_i = t_i. This defines a substitution

$$\{X_1 \leftarrow t_1, X_2 \leftarrow t_2, \ldots, X_n \leftarrow t_n\}$$

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5
 - Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form X_i = t_i. This defines a substitution

$$\{X_1 \leftarrow t_1, X_2 \leftarrow t_2, \ldots, X_n \leftarrow t_n\}$$

- This substitution is a unifier
 - Every transformation preserves the set of unifiers

Unification algorithm : Correctness

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5
 - Rule 5 can be used at most once for each variable
- ▶ When the algorithm terminates, all equations are of the form X_i = t_i. This defines a substitution

$$\{X_1 \leftarrow t_1, X_2 \leftarrow t_2, \ldots, X_n \leftarrow t_n\}$$

A D M 4 目 M 4 日 M 4 1 H 4

- This substitution is a unifier
 - Every transformation preserves the set of unifiers
- This substitution is an mgu
 - More complicated, omit

Syntax

• Built-in types i, j, k, \ldots

Syntax

- Built-in types i, j, k, \ldots
- ► A set of constants *C_i* for each built-in type *i*

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• e.g.,
$$i = \text{Char}, C_i = \{ \text{'a'}, \text{'b'}, ... \}$$

Syntax

• Built-in types i, j, k, \ldots

► A set of constants *C_i* for each built-in type *i*

• e.g.,
$$i = \text{Char}, C_i = \{ \text{'a'}, \text{'b'}, ... \}$$

• λ -terms

 $\Lambda = c \mid x \mid \lambda x.M \mid MN$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

 $\blacktriangleright M = c \in C_i \rightsquigarrow M :: i$

- $\blacktriangleright M = c \in C_i \rightsquigarrow M :: i$
- $M = x \rightsquigarrow M :: \alpha$ for a fresh type variable α

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- $\blacktriangleright M = c \in C_i \rightsquigarrow M :: i$
- $M = x \rightsquigarrow M :: \alpha$ for a fresh type variable α
- $M = \lambda x.M' \rightsquigarrow M :: \alpha \rightarrow \beta$ for fresh type variables α, β .

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- $\blacktriangleright M = c \in C_i \rightsquigarrow M :: i$
- $M = x \rightsquigarrow M :: \alpha$ for a fresh type variable α
- $M = \lambda x.M' \rightsquigarrow M :: \alpha \rightarrow \beta$ for fresh type variables α, β .

• Inductively, $x :: \gamma$ in M'

- $\blacktriangleright M = c \in C_i \rightsquigarrow M :: i$
- $M = x \rightsquigarrow M :: \alpha$ for a fresh type variable α
- $M = \lambda x.M' \rightsquigarrow M :: \alpha \rightarrow \beta$ for fresh type variables α, β .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Inductively, $x :: \gamma$ in M'
- Add equation $\alpha = \gamma$

- $\blacktriangleright M = c \in C_i \rightsquigarrow M :: i$
- $M = x \rightsquigarrow M :: \alpha$ for a fresh type variable α
- $M = \lambda x.M' \rightsquigarrow M :: \alpha \rightarrow \beta$ for fresh type variables α, β .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Inductively, $x :: \gamma$ in M'
- Add equation $\alpha = \gamma$
- $M = M'N' \rightsquigarrow M :: \beta$ for fresh type variables β .

- $\blacktriangleright M = c \in C_i \rightsquigarrow M :: i$
- $M = x \rightsquigarrow M :: \alpha$ for a fresh type variable α
- $M = \lambda x.M' \rightsquigarrow M :: \alpha \rightarrow \beta$ for fresh type variables α, β .

A D M 4 目 M 4 日 M 4 1 H 4

- Inductively, $x :: \gamma$ in M'
- Add equation $\alpha = \gamma$
- $M = M'N' \rightsquigarrow M :: \beta$ for fresh type variables β .
 - Inductively, $M' :: \alpha \to \beta$, $N' :: \gamma$

- $\blacktriangleright M = c \in C_i \rightsquigarrow M :: i$
- $M = x \rightsquigarrow M :: \alpha$ for a fresh type variable α
- $M = \lambda x.M' \rightsquigarrow M :: \alpha \rightarrow \beta$ for fresh type variables α, β .

A D M 4 目 M 4 日 M 4 1 H 4

- Inductively, $x :: \gamma$ in M'
- Add equation $\alpha = \gamma$
- $M = M'N' \rightsquigarrow M :: \beta$ for fresh type variables β .
 - Inductively, $M' :: \alpha \to \beta$, $N' :: \gamma$
 - Add equation $\alpha = \gamma$

Consider

applypair f x y = (f x, f y)

Consider

```
applypair f x y = (f x,f y)
```

Is the following expression well typed, where id z = z?

applypair id 7 'c' = (id 7, id 'c') = (7, 'c')

Consider

```
applypair f x y = (f x, f y)
```

Is the following expression well typed, where id z = z?

A D M 4 目 M 4 日 M 4 1 H 4

applypair id 7 'c' = (id 7, id 'c') = (7, 'c')

We have to unify the following set of constraints

id	:: a -> a			
7	:: Int			
'c'	:: Char			
a =	Int	(from	id	7)
a =	Char	(from	id	'c')

Consider

```
applypair f x y = (f x, f y)
```

Is the following expression well typed, where id z = z?

applypair id 7 'c' = (id 7, id 'c') = (7, 'c')

We have to unify the following set of constraints

id	:: a -> a	
7	:: Int	
'c'	:: Char	
a =	Int	(from id 7)
a =	Char	(from id 'c')

Not possible! Haskell compiler says

applypair :: $(a \rightarrow b) \rightarrow a \rightarrow a \rightarrow (b,b)$

In the $\lambda\text{-calculus,}$ we have

 $\lambda fxy.pair (fx)(fy)$, where $pair \equiv \lambda xyz.(zxy)$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

In the $\lambda\text{-calculus,}$ we have

 $\lambda fxy.pair (fx)(fy)$, where $pair \equiv \lambda xyz.(zxy)$

When we pass a value for f, it has to unify with types of both x and y

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

In the $\lambda\text{-calculus,}$ we have

```
\lambda fxy.pair(fx)(fy), where pair \equiv \lambda xyz.(zxy)
```

When we pass a value for f, it has to unify with types of both x and y

Suppose, we write, instead

applypair x y = (f x, f y) where f z = z

In the $\lambda\text{-calculus,}$ we have

```
\lambda fxy.pair (fx)(fy), where pair \equiv \lambda xyz.(zxy)
```

When we pass a value for f, it has to unify with types of both x and y

Suppose, we write, instead

```
applypair x y = (f x, f y) where f z = z
```

Now, we have

applypair :: a -> b -> (a,b)

In the $\lambda\text{-calculus,}$ we have

```
\lambda fxy.pair (fx)(fy), where pair \equiv \lambda xyz.(zxy)
```

When we pass a value for f, it has to unify with types of both x and y

Suppose, we write, instead

```
applypair x y = (f x, f y) where f z = z
```

Now, we have

```
applypair :: a -> b -> (a,b)
```

What's going on?

Extend λ -calculus with "local" definitions, like where

 $\Lambda = C_i \mid x \mid \lambda x.M \mid MN \mid \text{let } f = e \text{ in } M$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Extend λ -calculus with "local" definitions, like where

 $\Lambda = C_i \mid x \mid \lambda x.M \mid MN \mid \text{let } f = e \text{ in } M$

Here is the λ -term for the second version of applypair

let $f = \lambda z.z$ in $\lambda xy.pair(fx)(fy)$

Extend λ -calculus with "local" definitions, like where

 $\Lambda = C_i \mid x \mid \lambda x.M \mid MN \mid \text{let } f = e \text{ in } M$

Here is the λ -term for the second version of applypair

let $f = \lambda z.z$ in $\lambda xy.pair(fx)(fy)$

In fact, Haskell allows both

let f z = z in applypair x y = (f x, f y)

and

```
applypair x y = (f x, f y) where f z = z
```

▶ let f = e in $\lambda x.M$ and $(\lambda f x.M)e$ are equivalent with respect to β -reduction

• let f = e in $\lambda x.M$ and $(\lambda fx.M)e$ are equivalent with respect to β -reduction

... but type inference works differently for the two

► let f = e in $\lambda x.M$ and $(\lambda f x.M)e$ are equivalent with respect to β -reduction

- ... but type inference works differently for the two
- One may be typeable while the other is not
 - $(\lambda I.(II))(\lambda x.x)$
 - let $I = \lambda x.x$ in (11)