Programming Language Concepts: Lecture 19

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 19, 01 April 2009

- ▶ The basic λ -calculus is untyped
- The first functional programming language, LISP, was also untyped
- ▶ Modern languages such as Haskell, ML, ... are strongly typed
- What is the theoretical foundation for such languages?

The structure of types in Haskell

▶ Basic types—Int, Bool, Float, Char

The structure of types in Haskell

- ▶ Basic types—Int, Bool, Float, Char
- Structured types

```
[Lists] If a is a type, so is [a]
[Tuples] If a1, a2, ..., ak are types, so is
(a1,a2,...,ak)
```

The structure of types in Haskell

- ▶ Basic types—Int, Bool, Float, Char
- Structured types

```
[Lists] If a is a type, so is [a]
[Tuples] If a1, a2, ..., ak are types, so is
(a1,a2,...,ak)
```

- Function types
 - ▶ If a, b are types, so is a → b
 - Function with input a, output b

The structure of types in Haskell

- ▶ Basic types—Int, Bool, Float, Char
- Structured types

```
[Lists] If a is a type, so is [a]
[Tuples] If a1, a2, ..., ak are types, so is
(a1,a2,...,ak)
```

- Function types
 - ▶ If a, b are types, so is a → b
 - Function with input a, output b
- User defined types
 - ▶ Data day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
 - ▶ Data BTree a = Nil | Node (BTree a) a (Btree a)

ightharpoonup Set Λ of untyped lambda expressions is given by

$$\Lambda = x \mid \lambda x.M \mid MM'$$

where $x \in Var$, $M, M' \in \Lambda$.

 \blacktriangleright Set Λ of untyped lambda expressions is given by

$$\Lambda = x \mid \lambda x.M \mid MM'$$

where $x \in Var$, $M, M' \in \Lambda$.

- Add a syntax for basic types
- ▶ When constructing expressions, build up the type from the types of the parts

ightharpoonup Restrict our language to have just one basic type, written as au

- lacktriangleright Restrict our language to have just one basic type, written as au
- ▶ No structured types (lists, tuples, . . .)

- lacktriangleright Restrict our language to have just one basic type, written as au
- ▶ No structured types (lists, tuples, . . .)
- ▶ Function types arise naturally $(\tau \to \tau, (\tau \to \tau) \to \tau \to \tau, \dots)$

A separate set of variables *Var_s* for each type *s*

A separate set of variables Var_s for each type sDefine Λ_s , expressions of type s, by mutual recursion

A separate set of variables Var_s for each type sDefine Λ_s , expressions of type s, by mutual recursion

▶ For each type s, every variable $x \in Var_s$ is in Λ_s

A separate set of variables Var_s for each type sDefine Λ_s , expressions of type s, by mutual recursion

- ▶ For each type s, every variable $x \in Var_s$ is in Λ_s
- ▶ If $M \in \Lambda_t$ and $x \in Var_s$ then $(\lambda x.M) \in \Lambda_{s \to t}$.

A separate set of variables Var_s for each type sDefine Λ_s , expressions of type s, by mutual recursion

- ▶ For each type s, every variable $x \in Var_s$ is in Λ_s
- ▶ If $M \in \Lambda_t$ and $x \in Var_s$ then $(\lambda x.M) \in \Lambda_{s \to t}$.
- ▶ If $M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ then $(MN) \in \Lambda_t$.
 - Note that application must be well typed

A separate set of variables Var_s for each type sDefine Λ_s , expressions of type s, by mutual recursion

- ▶ For each type s, every variable $x \in Var_s$ is in Λ_s
- ▶ If $M \in \Lambda_t$ and $x \in Var_s$ then $(\lambda x.M) \in \Lambda_{s \to t}$.
- ▶ If $M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ then $(MN) \in \Lambda_t$.
 - Note that application must be well typed

 β rule as usual

A separate set of variables Var_s for each type sDefine Λ_s , expressions of type s, by mutual recursion

- ▶ For each type s, every variable $x \in Var_s$ is in Λ_s
- ▶ If $M \in \Lambda_t$ and $x \in Var_s$ then $(\lambda x.M) \in \Lambda_{s \to t}$.
- ▶ If $M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ then $(MN) \in \Lambda_t$.
 - Note that application must be well typed

 β rule as usual

- ▶ We must have $\lambda x.M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ for some types s, t

A separate set of variables Var_s for each type sDefine Λ_s , expressions of type s, by mutual recursion

- ▶ For each type s, every variable $x \in Var_s$ is in Λ_s
- ▶ If $M \in \Lambda_t$ and $x \in Var_s$ then $(\lambda x.M) \in \Lambda_{s \to t}$.
- ▶ If $M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ then $(MN) \in \Lambda_t$.
 - Note that application must be well typed

β rule as usual

- ▶ We must have $\lambda x.M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ for some types s, t
- ▶ Moreover, if $\lambda x.M \in \Lambda_{s \to t}$, then $x \in Var_s$, so x and N are compatible

▶ Extend \rightarrow_{β} to one-step reduction \rightarrow , as usual

- ▶ Extend \rightarrow_{β} to one-step reduction \rightarrow , as usual
- ▶ The reduction relation \rightarrow^* is Church-Rosser

- ▶ Extend \rightarrow_{β} to one-step reduction \rightarrow , as usual
- ▶ The reduction relation \rightarrow^* is Church-Rosser
- In fact, →* satisifies a much strong property

A λ -expression is

normalizing if it has a normal form.

A λ -expression is

- normalizing if it has a normal form.
- strongly normalizing if every reduction sequence leads to a normal form

A λ -expression is

- normalizing if it has a normal form.
- strongly normalizing if every reduction sequence leads to a normal form

Examples

• $(\lambda x.xx)(\lambda x.xx)$ is not normalizing

A λ -expression is

- normalizing if it has a normal form.
- strongly normalizing if every reduction sequence leads to a normal form

Examples

- \blacktriangleright $(\lambda x.xx)(\lambda x.xx)$ is not normalizing
- ▶ $(\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$ is not strongly normalizing.

Strong normalization . . .

A $\lambda\text{-calculus}$ is strongly normalizing if every term in the calculus is strongly normalizing

Strong normalization . . .

A $\lambda\text{-calculus}$ is strongly normalizing if every term in the calculus is strongly normalizing

Theorem

The simply typed λ -calculus is strongly normalizing

Strong normalization . . .

A λ -calculus is strongly normalizing if every term in the calculus is strongly normalizing

Theorem

The simply typed λ -calculus is strongly normalizing

Proof intuition

- **Each** β -reduction reduces the type complexity of the term
- Cannot have an infinite sequence of reductions

ightharpoonup Syntax of simply typed λ -calculus permits only well-typed terms

- ightharpoonup Syntax of simply typed λ -calculus permits only well-typed terms
- ► Converse question; Given an arbitrary term, is it well-typed?

- ightharpoonup Syntax of simply typed λ -calculus permits only well-typed terms
- ► Converse question; Given an arbitrary term, is it well-typed?
 - \blacktriangleright For instance, we cannot assign a valid type to f f ...
 - ...so f f is not a valid expression in this calculus

- ightharpoonup Syntax of simply typed λ -calculus permits only well-typed terms
- ► Converse question; Given an arbitrary term, is it well-typed?
 - \triangleright For instance, we cannot assign a valid type to f f ...
 - ...so f f is not a valid expression in this calculus

Theorem

The type-checking problem for the simply typed λ -calculus is decidable

Type checking . . .

- ► A term may admit multiple types
 - $\lambda x.x$ can be of type au o au, (au o au) o (au o au), ...

Type checking . . .

- A term may admit multiple types
 - \blacktriangleright $\lambda x.x$ can be of type $\tau \to \tau$, $(\tau \to \tau) \to (\tau \to \tau)$, ...
- ▶ Principal type scheme of a term M unique type s such that every other valid type is an "instance" of s
 - ▶ Uniformly replace $\tau \in s$ by another type

Type checking . . .

- A term may admit multiple types
 - \blacktriangleright $\lambda x.x$ can be of type $\tau \to \tau$, $(\tau \to \tau) \to (\tau \to \tau)$, ...
- ▶ Principal type scheme of a term M unique type s such that every other valid type is an "instance" of s
 - ▶ Uniformly replace $\tau \in s$ by another type
 - ▶ $\tau \to \tau$ is principal type scheme of $\lambda x.x$

Type checking . . .

- A term may admit multiple types
 - \blacktriangleright $\lambda x.x$ can be of type $\tau \to \tau$, $(\tau \to \tau) \to (\tau \to \tau)$, ...
- ▶ Principal type scheme of a term M unique type s such that every other valid type is an "instance" of s
 - ▶ Uniformly replace $\tau \in s$ by another type
 - ▶ $\tau \to \tau$ is principal type scheme of $\lambda x.x$

Theorem

We can always compute the principal type scheme for any well-typed term in the simply typed λ -calculus.

► Church numerals are well typed

- Church numerals are well typed
- Translations of basic recursive functions (zero, successor, projection) are well-typed

- Church numerals are well typed
- Translations of basic recursive functions (zero, successor, projection) are well-typed
- ► Translation of function composition is well typed

- Church numerals are well typed
- Translations of basic recursive functions (zero, successor, projection) are well-typed
- ► Translation of function composition is well typed
- ► Translation of primitive recursion is well typed

- Church numerals are well typed
- Translations of basic recursive functions (zero, successor, projection) are well-typed
- ► Translation of function composition is well typed
- ► Translation of primitive recursion is well typed
- Translation of minimalization requires elimination of recursive definitions
 - Uses untypable expressions of the form f f

- Church numerals are well typed
- Translations of basic recursive functions (zero, successor, projection) are well-typed
- ► Translation of function composition is well typed
- ► Translation of primitive recursion is well typed
- Translation of minimalization requires elimination of recursive definitions
 - Uses untypable expressions of the form f f
- Minimalization introduces non terminating computations, but we have strong normalization!

- Church numerals are well typed
- Translations of basic recursive functions (zero, successor, projection) are well-typed
- ► Translation of function composition is well typed
- ► Translation of primitive recursion is well typed
- Translation of minimalization requires elimination of recursive definitions
 - ▶ Uses untypable expressions of the form *f f*
- Minimalization introduces non terminating computations, but we have strong normalization!
- ► However, there do exist total recursive functions that are not primitive recursive e.g. Ackermann's function

Polymorphism

ightharpoonup Simply typed λ -calculus has explicit types

Polymorphism

- Simply typed λ -calculus has explicit types
- ► Languages like Haskell have polymorphic types

```
► Compare id :: a -> a with \lambda x.x : \tau \to \tau
```

Polymorphism

- Simply typed λ -calculus has explicit types
- Languages like Haskell have polymorphic types

```
► Compare id :: a -> a with \lambda x.x : \tau \rightarrow \tau
```

- ► Second-order polymorhpic typed lambda calculus (System F)
 - Jean-Yves Girard
 - ▶ John Reynolds

► Add type variables, *a*, *b*, . . .

- ► Add type variables, *a*, *b*, . . .
- ▶ Use i, j, . . . to denote concrete types

- ► Add type variables, a, b, . . .
- ▶ Use i, j, . . . to denote concrete types
- Type schemes

$$s ::= a \mid i \mid s \rightarrow s \mid \forall a.s$$

Syntax of second order polymorphic lambda calculus

▶ Every variable and (type) constant is a term.

- ▶ Every variable and (type) constant is a term.
- ▶ If M is a term, x is a variable and s is a type scheme, then $(\lambda x \in s.M)$ is a term.

- Every variable and (type) constant is a term.
- ▶ If M is a term, x is a variable and s is a type scheme, then $(\lambda x \in s.M)$ is a term.
- ▶ If M and N are terms, so is (MN).
 - Function application does not enforce type check

- ▶ Every variable and (type) constant is a term.
- ▶ If M is a term, x is a variable and s is a type scheme, then $(\lambda x \in s.M)$ is a term.
- ▶ If M and N are terms, so is (MN).
 - Function application does not enforce type check
- ▶ If M is a term and a is a type variable, then $(\Lambda a.M)$ is a term.
 - Type abstraction

- ► Every variable and (type) constant is a term.
- ▶ If M is a term, x is a variable and s is a type scheme, then $(\lambda x \in s.M)$ is a term.
- ▶ If M and N are terms, so is (MN).
 - Function application does not enforce type check
- ▶ If M is a term and a is a type variable, then $(\Lambda a.M)$ is a term.
 - ▶ Type abstraction
- If M is a term and s is a type scheme, (Ms) is a term.
 - Type application

Example A polymorphic identity function

 $\Lambda a.\lambda x \in a.x$

Example A polymorphic identity function

$$\Lambda a.\lambda x \in a.x$$

Two β rules, for two types of abstraction

Example A polymorphic identity function

$$\Lambda a.\lambda x \in a.x$$

Two β rules, for two types of abstraction

 $(\lambda x \in s.M) N \to_{\beta} M\{x \leftarrow N\}$

Example A polymorphic identity function

$$\Lambda a.\lambda x \in a.x$$

Two β rules, for two types of abstraction

▶ System F is also strongly normalizing

- System F is also strongly normalizing
- ... but type inference is undecidable!
 - ▶ Given an arbitrary term, can it be assigned a sensible type?

► Type of a complex expression can be deduced from types assigned to its parts

- ▶ Type of a complex expression can be deduced from types assigned to its parts
- ▶ To formalize this, define a relation $A \vdash M : s$
 - ▶ A is list $\{x_i : t_i\}$ of type "assumptions" for variables
 - ▶ Under the assumptions in *A*, the expression *M* has type *s*.

- ► Type of a complex expression can be deduced from types assigned to its parts
- ▶ To formalize this, define a relation $A \vdash M : s$
 - ▶ A is list $\{x_i : t_i\}$ of type "assumptions" for variables
 - ▶ Under the assumptions in *A*, the expression *M* has type *s*.
- ▶ Inference rules to derive type judgments of the form $A \vdash M$: s

Notation

- ► Assumption for x in A (if any) is overridden by the new assumption x : s.
- ▶ For any variable $y \neq x$, assumption does not change

Notation

- ► Assumption for x in A (if any) is overridden by the new assumption x : s.
- ▶ For any variable $y \neq x$, assumption does not change

$$\frac{A + \{x : s\} \vdash M : t}{A \vdash (\lambda x \in s.M) : s \to t}$$

Notation

- ► Assumption for x in A (if any) is overridden by the new assumption x : s.
- ▶ For any variable $y \neq x$, assumption does not change

$$\frac{A + \{x : s\} \vdash M : t}{A \vdash (\lambda x \in s.M) : s \to t}$$
$$\frac{A \vdash M : s \to t, \quad A \vdash N : s}{A \vdash (MN) : t}$$

Notation

- ► Assumption for x in A (if any) is overridden by the new assumption x : s.
- For any variable $y \neq x$, assumption does not change

$$\frac{A + \{x : s\} \vdash M : t}{A \vdash (\lambda x \in s.M) : s \to t}$$

$$\frac{A \vdash M : s \to t, \quad A \vdash N : s}{A \vdash (MN) : t}$$

$$\frac{A \vdash M : s}{A \vdash (\Lambda a.M) : \forall a.s}$$

Notation

- ► Assumption for x in A (if any) is overridden by the new assumption x : s.
- ▶ For any variable $y \neq x$, assumption does not change

$$\frac{A + \{x : s\} \vdash M : t}{A \vdash (\lambda x \in s.M) : s \to t}$$

$$\frac{A \vdash M : s \to t, \quad A \vdash N : s}{A \vdash (MN) : t}$$

$$\frac{A \vdash M : s}{A \vdash (\Lambda a.M) : \forall a.s}$$

$$\frac{A \vdash M : \forall a.s}{A \vdash Mt : s\{a \leftarrow t\}}$$

Example Deriving the type of polymorphic identity function

 $\Lambda a.\lambda x \in a.x$

Example Deriving the type of polymorphic identity function

$$\Lambda a.\lambda x \in a.x$$

$$x:a\vdash x:a$$

Example Deriving the type of polymorphic identity function

$$\Lambda a.\lambda x \in a.x$$

$$x: a \vdash x: a$$
$$\vdash (\lambda x \in a.x): a \to a$$

Example Deriving the type of polymorphic identity function

$$\Lambda a.\lambda x \in a.x$$

$$x: a \vdash x: a$$

$$\vdash (\lambda x \in a.x): a \to a$$

$$\vdash (\Lambda a.\lambda x \in a.x): \forall a.a \to a$$

► Type inference is undecidable for System F

- ► Type inference is undecidable for System F
- ▶ ... but we have type-checking algorithms for Haskell, ML, ...!

- ► Type inference is undecidable for System F
- ▶ ... but we have type-checking algorithms for Haskell, ML, ...!
- ▶ Haskell etc use a restricted version of polymorphic types
 - ▶ All types are universally quantified at the top level

- ► Type inference is undecidable for System F
- ▶ ... but we have type-checking algorithms for Haskell, ML, ...!
- ▶ Haskell etc use a restricted version of polymorphic types
 - All types are universally quantified at the top level
- When we write map :: (a → b) → [a] → [b], we mean that the type is

map
$$:: \forall a, b. (a \rightarrow b) \rightarrow [a] \rightarrow [b]$$

- ► Type inference is undecidable for System F
- ▶ ... but we have type-checking algorithms for Haskell, ML, ...!
- ▶ Haskell etc use a restricted version of polymorphic types
 - All types are universally quantified at the top level
- When we write map :: (a → b) → [a] → [b], we mean that the type is

$$\mathsf{map} \ :: \forall a, b. \ (a \to b) \to [a] \to [b]$$

Also called shallow typing

- Type inference is undecidable for System F
- ▶ ...but we have type-checking algorithms for Haskell, ML, ...!
- ▶ Haskell etc use a restricted version of polymorphic types
 - All types are universally quantified at the top level
- When we write map :: (a → b) → [a] → [b], we mean that the type is

$$\mathsf{map} \ :: \forall a, b. \ (a \to b) \to [a] \to [b]$$

- Also called shallow typing
- System F permits deep typing

$$\forall a. \ [(\forall b. \ a \rightarrow b) \rightarrow a \rightarrow a]$$

