
Programming Language Concepts: Lecture 19

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 19, 01 April 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009

Adding types to λ-calculus

◮ The basic λ-calculus is untyped

◮ The first functional programming language, LISP, was also
untyped

◮ Modern languages such as Haskell, ML, . . . are strongly typed

◮ What is the theoretical foundation for such languages?

Types in functional programming

The structure of types in Haskell

◮ Basic types—Int, Bool, Float, Char

Types in functional programming

The structure of types in Haskell

◮ Basic types—Int, Bool, Float, Char

◮ Structured types

[Lists] If a is a type, so is [a]
[Tuples] If a1, a2, . . . , ak are types, so is

(a1,a2,...,ak)

Types in functional programming

The structure of types in Haskell

◮ Basic types—Int, Bool, Float, Char

◮ Structured types

[Lists] If a is a type, so is [a]
[Tuples] If a1, a2, . . . , ak are types, so is

(a1,a2,...,ak)

◮ Function types

◮ If a, b are types, so is a -> b
◮ Function with input a, output b

Types in functional programming

The structure of types in Haskell

◮ Basic types—Int, Bool, Float, Char

◮ Structured types

[Lists] If a is a type, so is [a]
[Tuples] If a1, a2, . . . , ak are types, so is

(a1,a2,...,ak)

◮ Function types

◮ If a, b are types, so is a -> b
◮ Function with input a, output b

◮ User defined types

◮ Data day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
◮ Data BTree a = Nil | Node (BTree a) a (Btree a)

Adding types to λ-calculus . . .

◮ Set Λ of untyped lambda expressions is given by

Λ = x | λx .M | MM ′

where x ∈ Var , M,M ′ ∈ Λ.

Adding types to λ-calculus . . .

◮ Set Λ of untyped lambda expressions is given by

Λ = x | λx .M | MM ′

where x ∈ Var , M,M ′ ∈ Λ.

◮ Add a syntax for basic types

◮ When constructing expressions, build up the type from the
types of the parts

Adding types to λ-calculus . . .

◮ Restrict our language to have just one basic type, written as τ

Adding types to λ-calculus . . .

◮ Restrict our language to have just one basic type, written as τ

◮ No structured types (lists, tuples, . . .)

Adding types to λ-calculus . . .

◮ Restrict our language to have just one basic type, written as τ

◮ No structured types (lists, tuples, . . .)

◮ Function types arise naturally (τ → τ , (τ → τ)→ τ → τ , . . .

“Simply typed” λ-calculus

A separate set of variables Vars for each type s

“Simply typed” λ-calculus

A separate set of variables Vars for each type s

Define Λs , expressions of type s, by mutual recursion

“Simply typed” λ-calculus

A separate set of variables Vars for each type s

Define Λs , expressions of type s, by mutual recursion

◮ For each type s, every variable x ∈ Vars is in Λs

“Simply typed” λ-calculus

A separate set of variables Vars for each type s

Define Λs , expressions of type s, by mutual recursion

◮ For each type s, every variable x ∈ Vars is in Λs

◮ If M ∈ Λt and x ∈ Vars then (λx .M) ∈ Λs→t.

“Simply typed” λ-calculus

A separate set of variables Vars for each type s

Define Λs , expressions of type s, by mutual recursion

◮ For each type s, every variable x ∈ Vars is in Λs

◮ If M ∈ Λt and x ∈ Vars then (λx .M) ∈ Λs→t.

◮ If M ∈ Λs→t and N ∈ Λs then (MN) ∈ Λt .

◮ Note that application must be well typed

“Simply typed” λ-calculus

A separate set of variables Vars for each type s

Define Λs , expressions of type s, by mutual recursion

◮ For each type s, every variable x ∈ Vars is in Λs

◮ If M ∈ Λt and x ∈ Vars then (λx .M) ∈ Λs→t.

◮ If M ∈ Λs→t and N ∈ Λs then (MN) ∈ Λt .

◮ Note that application must be well typed

β rule as usual

◮ (λx .M)N →β M{x ← N}

“Simply typed” λ-calculus

A separate set of variables Vars for each type s

Define Λs , expressions of type s, by mutual recursion

◮ For each type s, every variable x ∈ Vars is in Λs

◮ If M ∈ Λt and x ∈ Vars then (λx .M) ∈ Λs→t.

◮ If M ∈ Λs→t and N ∈ Λs then (MN) ∈ Λt .

◮ Note that application must be well typed

β rule as usual

◮ (λx .M)N →β M{x ← N}

◮ We must have λx .M ∈ Λs→t and N ∈ Λs for some types s, t

“Simply typed” λ-calculus

A separate set of variables Vars for each type s

Define Λs , expressions of type s, by mutual recursion

◮ For each type s, every variable x ∈ Vars is in Λs

◮ If M ∈ Λt and x ∈ Vars then (λx .M) ∈ Λs→t.

◮ If M ∈ Λs→t and N ∈ Λs then (MN) ∈ Λt .

◮ Note that application must be well typed

β rule as usual

◮ (λx .M)N →β M{x ← N}

◮ We must have λx .M ∈ Λs→t and N ∈ Λs for some types s, t

◮ Moreover, if λx .M ∈ Λs→t, then x ∈ Vars , so x and N are
compatible

“Simply typed” λ-calculus . . .

◮ Extend →β to one-step reduction →, as usual

“Simply typed” λ-calculus . . .

◮ Extend →β to one-step reduction →, as usual

◮ The reduction relation →∗ is Church-Rosser

“Simply typed” λ-calculus . . .

◮ Extend →β to one-step reduction →, as usual

◮ The reduction relation →∗ is Church-Rosser

◮ In fact, →∗ satisifies a much strong property

Strong normalization

A λ-expression is

◮ normalizing if it has a normal form.

Strong normalization

A λ-expression is

◮ normalizing if it has a normal form.

◮ strongly normalizing if every reduction sequence leads to a
normal form

Strong normalization

A λ-expression is

◮ normalizing if it has a normal form.

◮ strongly normalizing if every reduction sequence leads to a
normal form

Examples

◮ (λx .xx)(λx .xx) is not normalizing

Strong normalization

A λ-expression is

◮ normalizing if it has a normal form.

◮ strongly normalizing if every reduction sequence leads to a
normal form

Examples

◮ (λx .xx)(λx .xx) is not normalizing

◮ (λyz .z)((λx .xx)(λx .xx)) is not strongly normalizing.

Strong normalization . . .

A λ-calculus is strongly normalizing if every term in the calculus is
strongly normalizing

Strong normalization . . .

A λ-calculus is strongly normalizing if every term in the calculus is
strongly normalizing

Theorem

The simply typed λ-calculus is strongly normalizing

Strong normalization . . .

A λ-calculus is strongly normalizing if every term in the calculus is
strongly normalizing

Theorem

The simply typed λ-calculus is strongly normalizing

Proof intuition

◮ Each β-reduction reduces the type complexity of the term

◮ Cannot have an infinite sequence of reductions

Type checking

◮ Syntax of simply typed λ-calculus permits only well-typed
terms

Type checking

◮ Syntax of simply typed λ-calculus permits only well-typed
terms

◮ Converse question; Given an arbitrary term, is it well-typed?

Type checking

◮ Syntax of simply typed λ-calculus permits only well-typed
terms

◮ Converse question; Given an arbitrary term, is it well-typed?

◮ For instance, we cannot assign a valid type to f f . . .

◮ . . . so f f is not a valid expression in this calculus

Type checking

◮ Syntax of simply typed λ-calculus permits only well-typed
terms

◮ Converse question; Given an arbitrary term, is it well-typed?

◮ For instance, we cannot assign a valid type to f f . . .

◮ . . . so f f is not a valid expression in this calculus

Theorem

The type-checking problem for the simply typed

λ-calculus is decidable

Type checking . . .

◮ A term may admit multiple types

◮ λx .x can be of type τ → τ , (τ → τ)→ (τ → τ), . . .

Type checking . . .

◮ A term may admit multiple types

◮ λx .x can be of type τ → τ , (τ → τ)→ (τ → τ), . . .

◮ Principal type scheme of a term M — unique type s such that
every other valid type is an “instance” of s

◮ Uniformly replace τ ∈ s by another type

Type checking . . .

◮ A term may admit multiple types

◮ λx .x can be of type τ → τ , (τ → τ)→ (τ → τ), . . .

◮ Principal type scheme of a term M — unique type s such that
every other valid type is an “instance” of s

◮ Uniformly replace τ ∈ s by another type

◮ τ → τ is principal type scheme of λx .x

Type checking . . .

◮ A term may admit multiple types

◮ λx .x can be of type τ → τ , (τ → τ)→ (τ → τ), . . .

◮ Principal type scheme of a term M — unique type s such that
every other valid type is an “instance” of s

◮ Uniformly replace τ ∈ s by another type

◮ τ → τ is principal type scheme of λx .x

Theorem

We can always compute the principal type scheme for

any well-typed term in the simply typed λ-calculus.

Computability with simple types

◮ Church numerals are well typed

Computability with simple types

◮ Church numerals are well typed

◮ Translations of basic recursive functions (zero, successor,
projection) are well-typed

Computability with simple types

◮ Church numerals are well typed

◮ Translations of basic recursive functions (zero, successor,
projection) are well-typed

◮ Translation of function composition is well typed

Computability with simple types

◮ Church numerals are well typed

◮ Translations of basic recursive functions (zero, successor,
projection) are well-typed

◮ Translation of function composition is well typed

◮ Translation of primitive recursion is well typed

Computability with simple types

◮ Church numerals are well typed

◮ Translations of basic recursive functions (zero, successor,
projection) are well-typed

◮ Translation of function composition is well typed

◮ Translation of primitive recursion is well typed

◮ Translation of minimalization requires elimination of recursive
definitions

◮ Uses untypable expressions of the form f f

Computability with simple types

◮ Church numerals are well typed

◮ Translations of basic recursive functions (zero, successor,
projection) are well-typed

◮ Translation of function composition is well typed

◮ Translation of primitive recursion is well typed

◮ Translation of minimalization requires elimination of recursive
definitions

◮ Uses untypable expressions of the form f f

◮ Minimalization introduces non terminating computations, but
we have strong normalization!

Computability with simple types

◮ Church numerals are well typed

◮ Translations of basic recursive functions (zero, successor,
projection) are well-typed

◮ Translation of function composition is well typed

◮ Translation of primitive recursion is well typed

◮ Translation of minimalization requires elimination of recursive
definitions

◮ Uses untypable expressions of the form f f

◮ Minimalization introduces non terminating computations, but
we have strong normalization!

◮ However, there do exist total recursive functions that are not
primitive recursive — e.g. Ackermann’s function

Polymorphism

◮ Simply typed λ-calculus has explicit types

Polymorphism

◮ Simply typed λ-calculus has explicit types

◮ Languages like Haskell have polymorphic types

◮ Compare id :: a -> a

with λx .x : τ → τ

Polymorphism

◮ Simply typed λ-calculus has explicit types

◮ Languages like Haskell have polymorphic types

◮ Compare id :: a -> a

with λx .x : τ → τ

◮ Second-order polymorhpic typed lambda calculus (System F)

◮ Jean-Yves Girard
◮ John Reynolds

System F

◮ Add type variables, a, b, . . .

System F

◮ Add type variables, a, b, . . .

◮ Use i , j , . . . to denote concrete types

System F

◮ Add type variables, a, b, . . .

◮ Use i , j , . . . to denote concrete types

◮ Type schemes

s ::= a | i | s → s | ∀a.s

System F

Syntax of second order polymorphic lambda calculus

◮ Every variable and (type) constant is a term.

System F

Syntax of second order polymorphic lambda calculus

◮ Every variable and (type) constant is a term.

◮ If M is a term, x is a variable and s is a type scheme, then
(λx ∈ s.M) is a term.

System F

Syntax of second order polymorphic lambda calculus

◮ Every variable and (type) constant is a term.

◮ If M is a term, x is a variable and s is a type scheme, then
(λx ∈ s.M) is a term.

◮ If M and N are terms, so is (MN).

◮ Function application does not enforce type check

System F

Syntax of second order polymorphic lambda calculus

◮ Every variable and (type) constant is a term.

◮ If M is a term, x is a variable and s is a type scheme, then
(λx ∈ s.M) is a term.

◮ If M and N are terms, so is (MN).

◮ Function application does not enforce type check

◮ If M is a term and a is a type variable, then (Λa.M) is a term.

◮ Type abstraction

System F

Syntax of second order polymorphic lambda calculus

◮ Every variable and (type) constant is a term.

◮ If M is a term, x is a variable and s is a type scheme, then
(λx ∈ s.M) is a term.

◮ If M and N are terms, so is (MN).

◮ Function application does not enforce type check

◮ If M is a term and a is a type variable, then (Λa.M) is a term.

◮ Type abstraction

◮ If M is a term and s is a type scheme, (Ms) is a term.

◮ Type application

System F

Example A polymorphic identity function

Λa.λx ∈ a.x

System F

Example A polymorphic identity function

Λa.λx ∈ a.x

Two β rules, for two types of abstraction

System F

Example A polymorphic identity function

Λa.λx ∈ a.x

Two β rules, for two types of abstraction

◮ (λx ∈ s.M)N →β M{x ← N}

System F

Example A polymorphic identity function

Λa.λx ∈ a.x

Two β rules, for two types of abstraction

◮ (λx ∈ s.M)N →β M{x ← N}

◮ (Λa.M)s →β M{a← s}

System F

◮ System F is also strongly normalizing

System F

◮ System F is also strongly normalizing

◮ . . . but type inference is undecidable!

◮ Given an arbitrary term, can it be assigned a sensible type?

Type inference in System F

◮ Type of a complex expression can be deduced from types
assigned to its parts

Type inference in System F

◮ Type of a complex expression can be deduced from types
assigned to its parts

◮ To formalize this, define a relation A ⊢ M : s

◮ A is list {xi : ti} of type “assumptions” for variables

◮ Under the assumptions in A, the expression M has type s.

Type inference in System F

◮ Type of a complex expression can be deduced from types
assigned to its parts

◮ To formalize this, define a relation A ⊢ M : s

◮ A is list {xi : ti} of type “assumptions” for variables

◮ Under the assumptions in A, the expression M has type s.

◮ Inference rules to derive type judgments of the form A ⊢ M : s

Type inference in System F

Notation
If A is a list of assumptions, A + {x : s} is the list where

◮ Assumption for x in A (if any) is overridden by the new
assumption x : s.

◮ For any variable y 6= x , assumption does not change

Type inference in System F

Notation
If A is a list of assumptions, A + {x : s} is the list where

◮ Assumption for x in A (if any) is overridden by the new
assumption x : s.

◮ For any variable y 6= x , assumption does not change

A + {x : s} ⊢ M : t

A ⊢ (λx ∈ s.M) : s → t

Type inference in System F

Notation
If A is a list of assumptions, A + {x : s} is the list where

◮ Assumption for x in A (if any) is overridden by the new
assumption x : s.

◮ For any variable y 6= x , assumption does not change

A + {x : s} ⊢ M : t

A ⊢ (λx ∈ s.M) : s → t

A ⊢ M : s → t, A ⊢ N : s

A ⊢ (MN) : t

Type inference in System F

Notation
If A is a list of assumptions, A + {x : s} is the list where

◮ Assumption for x in A (if any) is overridden by the new
assumption x : s.

◮ For any variable y 6= x , assumption does not change

A + {x : s} ⊢ M : t

A ⊢ (λx ∈ s.M) : s → t

A ⊢ M : s → t, A ⊢ N : s

A ⊢ (MN) : t

A ⊢ M : s

A ⊢ (Λa.M) : ∀a.s

Type inference in System F

Notation
If A is a list of assumptions, A + {x : s} is the list where

◮ Assumption for x in A (if any) is overridden by the new
assumption x : s.

◮ For any variable y 6= x , assumption does not change

A + {x : s} ⊢ M : t

A ⊢ (λx ∈ s.M) : s → t

A ⊢ M : s → t, A ⊢ N : s

A ⊢ (MN) : t

A ⊢ M : s

A ⊢ (Λa.M) : ∀a.s

A ⊢ M : ∀a.s

A ⊢ Mt : s{a← t}

Type inference in System F

Example Deriving the type of polymorphic identity function

Λa.λx ∈ a.x

Type inference in System F

Example Deriving the type of polymorphic identity function

Λa.λx ∈ a.x

x : a ⊢ x : a

Type inference in System F

Example Deriving the type of polymorphic identity function

Λa.λx ∈ a.x

x : a ⊢ x : a

⊢ (λx ∈ a.x) : a→ a

Type inference in System F

Example Deriving the type of polymorphic identity function

Λa.λx ∈ a.x

x : a ⊢ x : a

⊢ (λx ∈ a.x) : a→ a

⊢ (Λa.λx ∈ a.x) : ∀a.a→ a

Type inference in System F

◮ Type inference is undecidable for System F

Type inference in System F

◮ Type inference is undecidable for System F

◮ . . . but we have type-checking algorithms for Haskell, ML, . . . !

Type inference in System F

◮ Type inference is undecidable for System F

◮ . . . but we have type-checking algorithms for Haskell, ML, . . . !

◮ Haskell etc use a restricted version of polymorphic types
◮ All types are universally quantified at the top level

Type inference in System F

◮ Type inference is undecidable for System F

◮ . . . but we have type-checking algorithms for Haskell, ML, . . . !

◮ Haskell etc use a restricted version of polymorphic types
◮ All types are universally quantified at the top level

◮ When we write map :: (a -> b) -> [a] -> [b], we
mean that the type is

map :: ∀a, b. (a→ b)→ [a]→ [b]

Type inference in System F

◮ Type inference is undecidable for System F

◮ . . . but we have type-checking algorithms for Haskell, ML, . . . !

◮ Haskell etc use a restricted version of polymorphic types
◮ All types are universally quantified at the top level

◮ When we write map :: (a -> b) -> [a] -> [b], we
mean that the type is

map :: ∀a, b. (a→ b)→ [a]→ [b]

◮ Also called shallow typing

Type inference in System F

◮ Type inference is undecidable for System F

◮ . . . but we have type-checking algorithms for Haskell, ML, . . . !

◮ Haskell etc use a restricted version of polymorphic types
◮ All types are universally quantified at the top level

◮ When we write map :: (a -> b) -> [a] -> [b], we
mean that the type is

map :: ∀a, b. (a→ b)→ [a]→ [b]

◮ Also called shallow typing

◮ System F permits deep typing

∀a. [(∀b. a→ b)→ a→ a]

