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M-calculus

» A notation for computable functions

» Alonzo Church

» How do we describe a function?

» By its graph — a binary relation between domain and
codomain

» Single-valued
» Extensional — graph completely defines the function

» An extensional definition is not suitable for computation

» All sorting functions are the same!

» Need an intensional definition

» How are outputs computed from inputs?
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A-calculus: syntax

» Assume a set Var of variables

» Set A of lambda expressions is given by

A=x| x.M| MM

where x € Var, M, M" € A.
» \x.M : Abstraction

» A function of x with computation rule M.

» “Abstracts” the computation rule M over arbitrary input
values x

» Like writing f(x) = e without assigning a name f
» MM’ : Application
» Apply the function M to the argument M’
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A-calculus: syntax . ..

» Can write expressions such as xx — no types!

» What can we do without types?

» Set theory as a basis for mathematics

» Bit strings in memory

» In an untyped world, some data is meaningful

» Functions manipulate meaningful data to yield meaningful
data

» Can also apply functions to non-meaningful data, but the
result has no significance
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The computation rule (3

» Basic rule for computing (rewriting) is called /3

(Ax.M)M" —5 M{x — M}

» M{x < M’} : substitute free occurrences of x in M by M’
» This is the normal rule we use for functions:

f(x) =2x>+3x+4

F(7T)=2-724+3-7T+4=(2x% +3x + 4){x — 7}.

» [ is the only rule we need!

» MM’ is meaningful only if M is of the form Ax.M"

» Cannot do anything with expressions like xx



» Consider (Ax.(A\y.xy))y

«O> «F»r «=>»
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Variable capture

» Consider (Ax.(Ay.xy))y

> [ yields \y.yy

» The y substituted for inner x has been “confused” with the y
bound by Ay

» Rename bound variables to avoid capture

(Ax.(Ay-xy))y = (Ax.(Az.x2))y —p Az.yz

» Renaming bound variables does not change the function
» f(x)=2x+5vsf(z)=2z+5



Variable capture

Formally, bound and free variables are defined as

» FV(x) = {x}, for any variable x
> FV(Ax.M) = FV(M) — {x}
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Variable capture

Formally, bound and free variables are defined as

v

FV/(x) = {x}, for any variable x
FV(Ax.M) = FV(M) — {x}
FV(MM') = FV(M)U FV(M')

v

v

» BV(x) =0, for any variable x
> BV(\x.M) = BV(M) U {x}
> BV(MM') = BV(M)U BV(M')

When we apply 3 to MM'’, assume that we always rename the
bound variables in M to avoid “capturing” free variables from M’.
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Encoding arithmetic

In set theory, use nesting depth to encode numbers

» Encoding of n: (n)

Thus
0 = 0
1 = {0}
2 = {0,{0}}
3 = {0,{0},{0,{0}}}

In A-calculus, encode n by number of times we apply a function
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Encoding arithmetic . ..

Church numerals

(0) = Afx.x
(n+1) Afx.f((n)fx)

For instance

(1) = Mx.f((0)fx) = AMx.(F((Afx.x)fx))

Note that (0)gy —3 (Ax.x)y —3 y.
Hence

(1) = ... = Mx.(f((Mx.x)fx)) —g Afx.(fx)
apply 5

So (1)gy —p (Mx.(gx))y —p 8y



Church numerals . ..

(2) = Mx.f((1)fx) = Mx.(F(AMx.(fx)Fx)) —p5 Ax.(f(fx))
apply s

S0,

(2)gy —p Ax.(g(gx))y = g(gy)



Church numerals . ..

(2) = Mx.f((1)fx) = Mx.(F(Mx.(fx)x)) — g AMx.(F(fx))
apply s

S0,

(2)gy —p Ax.(g(gx))y = g(8y)

> Let g¥y denote g(g(...(gy))) with k applications of g to y

» Show by induction that

(n) = Mx.f((n—1)fx) —g ... =g AMx.(f"x)
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Encoding arithmetic functions . ..

Successor

» succ(n) =n+1

» Define as Apfx.f(pfx)

(Apfx.f(pfx))(n) — g Mx.f((n)fx) —p Mx.F(F"x) = Mx.f 1 1x
= (n+1)

plus: Apgfx.pf(gfx).



