
august 2008 | vol. 51 | no. 8 | communications of the acm 91

Doi:10.1145/1378704.1378725

Composable Memory Transactions
By Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

abstract
Writing concurrent programs is notoriously difficult and
is of increasing practical importance. A particular source
of concern is that even correctly implemented concurrency
abstractions cannot be composed together to form larger
abstractions. In this paper we present a concurrency model,
based on transactional memory, that offers far richer com-
position. All the usual benefits of transactional memory are
present (e.g., freedom from low-level deadlock), but in addi-
tion we describe modular forms of blocking and choice that
were inaccessible in earlier work.

1. intRoDuction
The free lunch is over.25 We have been used to the idea that
our programs will go faster when we buy a next- generation
processor, but that time has passed. While that next-
 generation chip will have more CPUs, each individual CPU
will be no faster than the previous year’s model. If we want
our programs to run faster, we must learn to write parallel
programs.

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they
make it hard to design computer systems that are reliable
and scalable. Furthermore, systems built using locks are dif-
ficult to compose without knowing about their internals.

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program-
ming language features over software transactional memory
(STM), which can perform groups of memory operations
atomically.23 Using transactional memory instead of locks
brings well-known advantages: freedom from deadlock and
priority inversion, automatic roll-back on exceptions or tim-
eouts, and freedom from the tension between lock granular-
ity and concurrency.

Early work on software transactional memory suffered
several shortcomings. Firstly, it did not prevent transactional
code from bypassing the STM interface and accessing data
directly at the same time as it is being accessed within a trans-
action. Such conflicts can go undetected and prevent transac-
tions executing atomically. Furthermore, early STM systems
did not provide a convincing story for building operations
that may block—for example, a shared work-queue support-
ing operations that wait if the queue becomes empty.

Our work on STM-Haskell set out to address these prob-
lems. In particular, our original paper makes the following
contributions:

•	We re-express the ideas of transactional memory in the
setting of the purely functional language Haskell
(Section 3). As we show, STM can be expressed particu-
larly elegantly in a declarative language, and we are able
to use Haskell’s type system to give far stronger guaran-

tees than are conventionally possible. In particular, we
guarantee “strong atomicity”15 in which transactions
always appear to execute atomically, no matter what
the rest of the program is doing. Furthermore transac-
tions are compositional: small transactions can be
glued together to form larger transactions.

•	We present a modular form of blocking (Section 3.2).
The idea is simple: a transaction calls a retry opera-
tion to signal that it is not yet ready to run (e.g., it is try-
ing to take data from an empty queue). The programmer
does not have to identify the condition which will
enable it; this is detected automatically by the STM.

•	The retry function allows possibly blocking transac-
tions to be composed in sequence. Beyond this, we also
provide orElse, which allows them to be composed as
alternatives, so that the second is run if the first retries
(see Section 3.4). This ability allows threads to wait for
many things at once, like the Unix select system
call—except that orElse composes, whereas select
does not.

Everything we describe is fully implemented in the Glas-
gow Haskell Compiler (GHC), a fully fledged optimizing
compiler for Concurrent Haskell; the STM enhancements
were incorporated in the GHC 6.4 release in 2005. Further
examples and a programmer-oriented tutorial are also
available.19

Our main war cry is compositionality: a programmer can
control atomicity and blocking behavior in a modular way
that respects abstraction barriers. In contrast, lock-based
approaches lead to a direct conflict between abstraction and
concurrency (see Section 2). Taken together, these ideas offer
a qualitative improvement in language support for modular
concurrency, similar to the improvement in moving from as-
sembly code to a high-level language. Just as with assembly
code, a programmer with sufficient time and skills may ob-
tain better performance programming directly with low-level
concurrency control mechanisms rather than transactions—
but for all but the most demanding applications, our higher-
level STM abstractions perform quite well enough.

This paper is an abbreviated and polished version of an
earlier paper with the same title.9 Since then there has been
a tremendous amount of activity on various aspects of trans-
actional memory, but almost all of it deals with the question
of atomic memory update, while much less attention is paid
to our central concerns of blocking and synchronization be-
tween threads, exemplified by retry and orElse. In our
view this is a serious omission: locks without condition vari-
ables would be of limited use.

Transactional memory has tricky semantics, and the
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both
are omitted here due to space limitations.

1_CACM_V51.8.indb 91 7/21/08 10:13:41 AM

92 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

2. BacKGRounD
Throughout this paper we study concurrency between
threads running on a shared-memory machine; we do not
consider questions of external interaction through storage
systems or databases, nor do we address distributed systems.
The kinds of problem we have in mind are building collection
classes (queues, lists, and so on) and other data structures
that concurrent threads use to maintain shared informa-
tion. There are many other approaches to concurrency that
we do not discuss, including data-parallel abstractions from
languages like NESL2 and those from the high-performance
computing community such as OpenMP and MPI.

Even in this restricted setting, concurrent programming
is extremely difficult. The dominant programming tech-
nique is based on locks, an approach that is simple and di-
rect, but that simply does not scale with program size and
complexity. To ensure correctness, programmers must iden-
tify which operations conflict; to ensure liveness, they must
avoid introducing deadlock; to ensure good performance,
they must balance the granularity at which locking is per-
formed against the costs of fine-grain locking.

Perhaps the most fundamental objection, though, is that
lock-based programs do not compose. For example, consider
a hash table with thread-safe insert and delete operations.
Now suppose that we want to delete one item A from table
t1, and insert it into table t2; but the intermediate state (in
which neither table contains the item) must not be visible
to other threads. Unless the implementer of the hash table
anticipates this need, there is simply no way to satisfy this re-
quirement without somehow locking out all other accesses
to the table. One approach is to expose concurrency control
methods such as LockTable and UnlockTable—but this
breaks the hash table abstraction, and invites lock-induced
deadlock, depending on the order in which the client takes
the locks, or race conditions if the client forgets. Yet more
complexity is required if the client wants to await the pres-
ence of A in t1—but this blocking behavior must not lock
the table (else A cannot be inserted). In short, operations
that are individually correct (insert, delete) cannot be com-
posed into larger correct operations.

The same phenomenon shows up trying to compose al-
ternative blocking operations. Suppose a procedure p1 waits
for one of two input pipes to have data, using a call to the
Unix select procedure; and suppose another procedure
p2 does the same thing, on two other pipes. In Unix there
is no way to perform a select between p1 and p2, a funda-
mental loss of compositionality. Instead, Unix programmers
learn awkward programming techniques to gather up all the
file descriptors that must be waited for, perform a single top-
level select, and then dispatch back to the correct handler.
Again, two individually correct abstractions, p1 and p2, can-
not be composed into a larger one; instead, they must be
ripped apart and awkwardly merged, in direct conflict with
the goals of abstraction.

Rather than fixing locks, a more promising and radical
alternative is to base concurrency control on atomic mem-
ory transactions, also known as transactional memory. We
will show that transactional memory offers a solution to
the tension between concurrency and abstraction. For ex-

ample, with memory transactions we can manipulate the
hash table thus:

and to wait for either p1 or p2 we can say

These simple constructions require no knowledge of the
implementation of insert, delete, p1 or p2, and they
continue to work correctly if these operations may block, as
we shall see.

2.1. transactional memory
The idea of transactions is not new. They have been a fun-
damental mechanism in database design for many years,
and there has been much subsequent work on transactional
memory. Larus and Rajwar provide a recent survey.14

The key idea is that a block of code, including nested calls,
can be enclosed by an atomic block, with the guarantee that
it runs atomically with respect to every other atomic block.
Transactional memory can be implemented using optimistic
synchronization. Instead of taking locks, an atomic block
runs without locking, accumulating a thread-local transaction
log that records every memory read and write it makes. When
the block completes, it first validates its log, to check that
it has seen a consistent view of memory, and then commits
its changes to memory. If validation fails, because memory
read by the method was altered by another thread during the
block’s execution, then the block is re-executed from scratch.

Suitably implemented transactional memory eliminates
many of the low-level difficulties that plague lock-based pro-
gramming. There are no lock-induced deadlocks (because
there are no locks); there is no priority inversion; and there is
no painful tension between granularity and concurrency. How-
ever, initial work made little progress on transactional abstrac-
tions that compose well. There are three particular problems.

Firstly, since a transaction may be rerun automatically,
it is essential that it does nothing irrevocable. For example,
the transaction

might launch a second salvo of missiles if it were re-execut-
ed. It might also launch the missiles inadvertently if, say, the
thread was de-scheduled after reading n but before reading
k, and another thread modified both before the thread was
resumed. This problem begs for a guarantee that the body of
the atomic block can only perform memory operations, and
hence can only make benign modifications to its own transac-
tion log, rather than performing irrevocable input/output.

Secondly, many systems do not support synchroniza-
tion between transactions, and those that do rely on a a
 programmer-supplied Boolean guard on the atomic block.8
For example, a method to get an item from a buffer might be:

atomic {v := delete(t1, A); insert(t2, A, v)}

atomic {p1 ‘orElse‘ p2}

atomic {if (n > k) then launchMissiles(); S2}

1_CACM_V51.8.indb 92 7/21/08 10:13:41 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 93

The thread waits until the guard (n_items > 0) holds,
before executing the block. But how could we take two con-
secutive items? We cannot call get(); get(), because an-
other thread might perform an intervening get. We could
try wrapping two calls to get in a nested atomic block,
but the semantics of this are unclear unless the outer block
checks there are two items in the buffer. This is a disaster
for abstraction, because the client (who wants to get the two
items) has to know about the internal details of the imple-
mentation. If several separate abstractions are involved,
matters are even worse.

Thirdly, no previous transactional memory supports choice,
exemplified by the select example mentioned earlier.

We tackle all three issues by presenting transactional
memory in the context of the declarative language Concur-
rent Haskell, which we briefly review next.

2.2. concurrent haskell
Concurrent Haskell20 is an extension to Haskell 98, a pure,
lazy, functional language. It provides explicitly forked
threads, and abstractions for communicating between
them. This naturally involves side effects and so, given the
lazy evaluation strategy, it is necessary to be able to control
exactly when they occur. The big breakthrough came from a
mechanism called monads.21

Here is the key idea: a value of type IO a is an I/O action
that, when performed, may do some I/O before yielding a
value of type a. For example, the functions putChar and
getChar have types:

That is, putChar takes a Char and delivers an I/O action
that, when performed, prints the character on the standard
output; while getChar is an action that, when performed,
reads a character from the console and delivers it as the re-
sult of the action. A complete program must define an I/O
action called main; executing the program means perform-
ing that action. For example:

I/O actions can be glued together by a monadic bind
 combinator. This is normally used through some syntac-
tic sugar, allowing a C-like syntax. Here, for example, is a
complete program that reads a character and then prints
it twice:

As well as performing external input/output, I/O actions in-
clude operations with side effects on mutable cells. A value
of type IORef a is a mutable storage cell which can hold
values of type a, and is manipulated (only) through the fol-
lowing interface:

newIORef takes a value of type a and creates a mutable stor-
age location holding that value. readIORef takes a refer-
ence to such a location and returns the value that it contains.
writeIORef provides the corresponding update operation.
Since these cells can only be created, read, and written using
operations in the IO monad, there is a type-secure guaran-
tee that ordinary functions are unaffected by state—for ex-
ample, a pure function sin cannot read or write an IORef
because sin has type Float -> Float.

Concurrent Haskell supports threads, each indepen-
dently performing input/output. Threads are created using
a function forkIO:

forkIO takes an I/O action as its argument, spawns a fresh
thread to perform that action, and immediately returns its
thread identifier to the caller. For example, here is a program
that forks a thread that prints ‘x’, while the main thread goes
on to print ‘y’:

Peyton Jones provides a fuller introduction to concur-
rency, I/O, exceptions and cross-language interfacing
(the “awkward squad” for pure, lazy, functional program-
ming),18 and Daume III provides a general online tutorial
to Haskell.6

3. comPosaBLe tRansactions
We are now ready to present the key ideas of the paper. Our
starting point is this: a purely declarative language is a per-
fect setting for transactional memory, for two reasons. First,
the type system explicitly separates computations which
may have side effects from effect-free ones. As we shall see,
it is easy to refine it so that transactions can perform mem-
ory effects but not irrevocable input/output effects. Second,
reads from and writes to mutable cells are explicit, and
relatively rare: most computation takes place in the purely
 functional world. These functional computations perform
many, many memory operations—allocation, update of
thunks, stack operations, and so on—but none of these
need to be tracked by the STM, because they are pure and
never need to be rolled back. Only the relatively rare explicit
operations need be logged, so a software implementation is
entirely appropriate.

Item get () {
 atomic (n_items > 0) {... remove item ...}
}

putChar :: Char -> IO ()
getChar :: IO Char

main :: IO ()
main = putChar ’x’

main = do {c <- getChar; putChar c; putChar c}

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

forkIO :: IO a -> IO ThreadId

main = do {forkIO (print ’x’); print ’y’}

1_CACM_V51.8.indb 93 7/21/08 10:13:41 AM

94 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

So our approach is to use Haskell as a kind of “labora-
tory” in which to study the ideas of transactional memory
in a setting with a very expressive type system. As we go, we
will mention primitives from the STM library, whose inter-
face is summarized in Figure 1. In this paper, we focus on
examples of how STM can be used in building simple con-
currency abstractions. Our original paper9 formally defines
the details of the design via an operational semantics
which we developed alongside our implementations; we
found this invaluable in highlighting interactions between
the constructs—for example, what happens if an excep-
tion is raised deep inside an atomic block, nested within
catch handlers and orElse? For the moment we return to
 simpler examples.

3.1. transactional variables and atomicity
Suppose we wish to implement a resource manager, which
holds an integer-valued resource. The call (getR r n) should
acquire n units of resource r, blocking if r holds insufficient re-
source; the call (putR r n) should return n units of resource
to r.

Here is how we might program putR in STM-Haskell:

The currently available resource is held in a transactional
variable of type TVar Int. The type declaration simply
gives a name to this type. The function putR reads the value
v of the resource from its cell, and writes back (v + i) into
the same cell. (We discuss getR next, in Section 3.2.)

The readTVar and writeTVar operations both return
STM actions (Figure 1), but Haskell allows us to use the same

do {. . .} syntax to compose STM actions as we did for I/O ac-
tions. These STM actions remain tentative during their ex-
ecution: to expose an STM action to the rest of the system, it
can be passed to a new function atomic, with type:

It takes a memory transaction, of type STM a, and delivers
an I/O action that, when performed, runs the transaction
atomically with respect to all other memory transactions.
One might say:

The underlying transactional memory deals with maintain-
ing a per-thread transaction log to record the tentative access-
es made to TVars. When atomic is invoked, the STM checks
that the logged accesses are valid—i.e., no concurrent trans-
action has committed conflicting updates to those TVars. If
the log is valid then the STM commits it atomically to the heap,
thereby exposing its effects to other transactions. Otherwise
the memory transaction is rerun with a fresh log.

Splitting the world into STM actions and I/O actions pro-
vides two valuable properties, both statically checked by the
type system:

•	There is no way to perform general I/O within a transac-
tion, because there is no operation that takes an IO
computation and performs it in the STM monad. Hence
only STM actions and pure computation can be per-
formed inside a memory transaction. This is precisely
the guarantee we sought in Section 2.1. It statically pre-
vents the programmer from calling launchMissiles
inside a transaction, because launching missiles is an
I/O action with type IO (), and cannot be composed
with STM actions.

•	No STM actions can be performed outside a transac-
tion, so the programmer cannot accidentally read or
write a TVar without the protection of atomic. Of
course, one can always say atomic (readTVar v) to
read a TVar in a trivial transaction, but the call to
atomic cannot be omitted.

3.2. Blocking memory transactions
Any concurrency mechanism must provide a way for a
thread to await an event or events caused by other threads.
In lock-based programming, this is typically done us-
ing condition variables; message-based systems offer a
construct to wait for messages on a number of channels;
POSIX provides select; Win32 provides WaitForMul-
tipleObjects; and STM systems to date allow the pro-
grammer to guard the atomic block with a Boolean condi-
tion (see Section 2.1).

The Haskell setting led us to a remarkably simple new
mechanism for blocking. Furthermore, as we show in Sec-
tions 3.3 and 3.4, it supports composition in ways that are
not possible with lock-based programming.

type Resource = TVar Int
putR :: Resource -> Int -> STM ()
putR r i = do { v <- readTVar r
 ; writeTVar r (v + i)}

atomic :: STM a -> IO a

main = do {...; atomic (putR r 3); ...}

figure 1: the stm interface.

-- The STM monad itself
data STM a
instance Monad STM
-- Monads support “do” notation and sequencing

-- Exceptions
throw :: Exception -> STM a
catch :: STM a -> (Exception->STM a) -> STM a

-- Running STM computations
atomic :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a

-- Transactional variables
data TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

1_CACM_V51.8.indb 94 7/21/08 10:13:41 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 95

The idea is to provide a retry operation to indicate that
the current atomic action is not yet ready to run to comple-
tion. Here is the code for getR:

It reads the value v of the resource and, if v >= i, decreases
it by i. If v < i, there is insufficient resource in the variable,
in which case it calls retry. Conceptually, retry aborts
the transaction with no effect, and restarts it at the begin-
ning. However, there is no point in actually re-executing the
transaction until at least one of the TVars read during the at-
tempted transaction has been written by another thread. Hap-
pily, the transaction log (which is needed anyway) already
records exactly which TVars were read. The implementa-
tion, therefore, blocks the thread until at least one of these
is updated. Notice that retry’s type (STM a) allows it to be
used wherever an STM action may occur.

Unlike the validation check, which is automatic and im-
plicit, retry is called explicitly by the programmer. It does
not indicate anything bad or unexpected; rather, it shows up
when some kind of blocking would take place in other ap-
proaches to concurrency.

Notice that there is no need for the putR operation to re-
member to signal any condition variables. Simply by writing
to the TVars involved, the producer will wake up the consum-
er. A whole class of lost-wake-up bugs is thereby eliminated.

From an efficiency point of view, it makes sense to call
retry as early as possible, and to refrain from reading unre-
lated locations until after the test succeeds. Nevertheless,
the programming interface is delightfully simple, and easy
to reason about.

3.3. sequential composition
By using atomic, the programmer identifies atomic trans-
actions, in the classic sense that the entire set of operations
that it contains appears to take place indivisibly. This is the
key to sequential composition for concurrency abstractions.
For example, to grab three units of one resource and seven of
another, a thread can say

The standard do {. . ; . .} notation combines the STM actions
from the two getR calls and the underlying transactional
memory commits their updates as a single atomic I/O action.

The retry function is central to making transactions
composable when they may block. The transaction above
will block if either r1 or r2 has insufficient resource: there
is no need for the caller to know how getR is implemented,
or what condition guarantees its success. Nor is there any
risk of deadlock by awaiting r2 while holding r1.

This ability to compose STM actions is why we did not
 define getR as an I/O action, wrapped in a call to atomic.

By leaving it as an STM action, we allow the programmer to
compose it with other STM actions before finally sealing it
into a transaction with atomic. In a lock-based setting, one
would worry about crucial locks being released between the
two calls, and about deadlock if another thread grabbed the
resources in the opposite order, but there are no such con-
cerns here.

The STM type on an atomic action provides a strong guar-
antee: the only way the action can be executed is for it to be
passed to atomic. Any STM action can be robustly composed
with other STM actions: the resulting sequence will still ex-
ecute atomically.

3.4. composing alternatives
We have discussed composing transactions in sequence, so
that both are executed. STM-Haskell also allows us to com-
pose transactions as alternatives, so that only one is executed.
For example, to get either 3 units from r1 or 7 units from r2:

The orElse function is provided by the STM module
(Figure 1); here, it is written infix, by enclosing it in back-
quotes, but it is a perfectly ordinary function of two argu-
ments. The transaction s1 ‘orElse‘ s2 first runs s1; if s1
calls retry, then s1 is abandoned with no effect, and s2
is run. If s2 also calls retry then the entire call retries—
but it waits on the variables read by either of the two nested
transactions (i.e., on the union of two variable sets). Again,
the programmer needs know nothing about the enabling
conditions of s1 and s2.

Using orElse provides an elegant way for library imple-
menters to defer to their caller the question of whether or
not to block. For instance, it is straightforward to convert the
blocking version of getR into one which returns a Boolean
success or failure result:

If getR completes normally, nonBlockGetR will return
True; on the other hand, if getR blocks (i.e., retries), the
orElse will try its second alternative, which succeeds im-
mediately, returning False. Notice that this idiom depends
on the left-biased nature of orElse. The same kind of con-
struction can be also used to build a blocking operation from
one that returns a Boolean result: simply invoke retry on
receiving a False result:

getR :: Resource -> Int -> STM ()
getR r i = do { v <- readTVar r
 ; if (v < i) then retry
 else writeTVar r (v - i)}

atomic (do {getR r1 3; getR r2 7})

atomic (getR r1 3 ‘orElse‘ getR r2 7)

nonBlockGetR :: Resource -> Int
 -> STM Bool
nonBlockGetR r i =
 do {getR r i ; return True}
 ‘orElse‘ return False

blockGetR :: Resource -> Int -> STM ()
blockGetR r i =
 do {s <- nonBlockGetR r i;
 if s then return () else retry}

1_CACM_V51.8.indb 95 7/21/08 10:13:41 AM

96 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

The orElse function obeys useful laws: it is associative and
has unit retry:

Haskell aficionados will recognize that STM may thus be an
instance of MonadPlus.

3.5. exceptions
The STM monad supports exceptions just like the IO monad,
and in much the same way as (say) C#. Two new primitive func-
tions, catch and throw, are required; their types are given in
Figure 1. The question is: how should transactions and excep-
tions interact? For example, what should this transaction do?

The programmer throws an exception if n > lim, in which
case the. . .write data. . . part will clearly not take place. But
what about the write to v_n from before the exception was
thrown?

Concurrent Haskell encourages programmers to use ex-
ceptions for signalling error conditions, rather than for nor-
mal control flow. Built-in exceptions, such as divide-by-zero,
also fall into this category. For consistency, then, in the above
program we do not want the programmer to have to take ac-
count of the possibility of exceptions, when reasoning that
if v_n is (observably) written then data is written into the
buffer. We, therefore, specify that exceptions have abort se-
mantics: if an atomic transaction throws an exception, then
the transaction must be validated as if it had completed
normally; however, no changes are committed. If validation
succeeds, then the exception is propagated; but if valida-
tion fails, then the throwing of the exception may have been
based on an inconsistent view of memory, so the exception
is discarded and the transaction is re-executed from scratch.
Abort semantics make it much easier to reason about invari-
ants: the programmer only has to worry about the invariant
being preserved when the transaction commits; exceptions
raised during the transaction always restore the invariant, by
definition.

Our use of exceptions to abort atomic blocks is a free de-
sign choice. In other languages, especially in ones where ex-
ceptions are used more frequently, it might be appropriate
to distinguish exceptions that cause the enclosing atomic

block to abort from exceptions that allow it to commit be-
fore they are propagated.

Notice the difference between calling throw and calling
retry. The former signals an error, and aborts the transac-
tion; the latter only indicates that the transaction is not yet
ready to run, and causes it to be re-executed when the situa-
tion changes.

An exception can carry a value out of the STM world. For
example, consider

Here, the external world gets to see the exception value hold-
ing the string s that was read out of the TVar. However, since
the transaction is aborted before the exception propagates,
its write to svar is not externally observable. One might
argue that it is wrong to allow even reads to “leak” from an
aborted transaction, but we do not agree. The values carried
by an exception can only represent a consistent view of the
heap (or validation would fail, and the transaction would
re-execute without propagating the exception), and it is al-
most impossible to debug an error condition that only says
“something bad happened” while deliberately discarding
all clues to what the bad thing was. The basic transactional
guarantees are not threatened.

What if the exception carries a TVar allocated in the
aborted transaction? A dangling pointer would be unpleas-
ant. To avoid this we refine the semantics of exceptions to
say that a transaction that throws an exception is aborted
so far as its write effects are concerned, but its allocation ef-
fects are retained; after all, they are thread-local. As a result,
the TVar is visible after the transaction, in the state it had
when it was allocated. Cases like these are tricky, which is
why we developed a full formal semantics.9

Concurrent Haskell also provides asynchronous
 exceptions which can be thrown into a thread as a signal—
typical examples are error conditions like stack overflow,
or when a master thread wishes to shut down a helper. If
a thread is in the midst of an STM transaction, then the
 transaction log can be discarded without externally visible
effects.

What if an exception is raised inside orElse? We con-
sidered a design in which, if the first alternative throws an
exception, we could discard its effects and try the second
alternative instead. But that would invalidate the beautiful
identify which makes retry a unit for orElse and would
also make orElse asymmetric in its treatment of excep-
tions (discarded from the first alternative but propagated by
the second). We, therefore, chose that exceptions do propa-
gate from the first alternative: the second alternative is ex-
amined only if the first one calls a retry.

What about catching an exception within an atomic
block? Consider this example:

atomic (do
{ s <- readTVar svar
; writeTVar svar ”Wuggle”
; is length s < 10 then
 throw (AssertionFailed s)
 else . . .})

atomic (do
{ n <- readTVar v_n
; lim <- readTVar v_lim
; writeTVar v_n (n + 1)
; if n > lim

 then throw
 (AssertionFailed ”Urk”)

 else if (n == lim) then retry
 else return ()
; . . . write data into buffer. . .})

 M1 ‘orElse‘ (M2 ‘orElse‘ M3)
 = (M1 ‘orElse‘ M2) ‘orElse‘ M3
 retry ‘orElse‘ M = M
 M ‘orElse‘ retry = M

1_CACM_V51.8.indb 96 7/21/08 10:13:41 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 97

If g goes wrong (throws an exception), the author of f might
reasonably want to ensure that the item is not read from
the port p and then discarded. And indeed, if f is called in
an atomic context, such as atomic (f p), the effects of
readPort are discarded, so that the item is not read. But
suppose f is called in a context that catches the exception
before leaving the STM world:

In our original paper we proposed that the effects of (f p1)
would be retained and be visible to the call (f p2). Further-
more, if the latter succeeds without itself throwing an excep-
tion or retrying, the effects of (f p1) would be permanently
committed.

Ultimately we felt that this treatment of effects that pre-
cede an exception seemed inconsistent. Consider the author
of f; in an effort to ensure that the item is indeed not read if
g throws an exception, he might try this:

But that relies on the existence of unReadPort to manually
replicate the roll-back supported by the underlying STM.
The conclusion is clear: the effects of the first argument of
catch should be reverted if the computation raises an ex-
ception. Again, this works out nicely in the context of STM-
Haskell because the catch operation used here has an STM
type, which indicates to the programmer that the code is
transactional.

4. aPPLications anD eXamPLes
In this section we provide some examples of how compos-
able memory transactions can be used to build higher-
level concurrency abstractions. We focus on operations
that involve potentially blocking communication between
threads. Previous work has shown, many times over, how
standard shared-memory data structures can be developed
from sequential code using transactional memory opera-
tions.8,11

4.1. mVars
Prior to our STM work, Concurrent Haskell provided MVars
as its primitive mechanism for allowing threads to com-

municate safely. An MVar is a mutable location like a TVar,
except that it may be either empty, or full with a value. The
take MVar function leaves a full MVar empty, but blocks
on an empty MVar. A putMVar on an empty MVar leaves it
full, but blocks on a full MVar. So MVars are, in effect, a one-
place channel.

It is easy to implement MVars on top of TVars. An MVar
holding a value of type a can be represented by a TVar holding
a value of type Maybe a; this is a type that is either an empty
value (“Nothing”), or actually holds an a (e.g., “Just 42”).

The takeMVar operation reads the contents of the TVar
and retries until it sees a value other than Nothing:

The corresponding putMVar operation retries until it sees
Nothing, at which point it updates the underlying TVar:

Notice how operations that return a Boolean success / fail-
ure result can be built directly from these blocking designs.
For instance:

4.2. multicast channels
MVars effectively provide communication channels
with a single buffered item. In this section we show how
to program buffered, multi-item, multicast channels,
in which items written to the channel (writeMChan in
the interface below) are buffered internally and received
once by each read-port created from the channel. The
full interface is:

f :: Port Int -> STM ()
f p = do { item <- readPort p
 ; g item}

bad :: Port Int -> Port Int -> STM ()
bad p1 p2 = catch (f p1) (\exn -> f p2)

f :: Port Int -> STM ()
f p = do { item <- readPort p
 ; catch (g item)
 (recover exn item)}
 where
 recover exn item
 = do { unReadPort p item
 ; throw exn}

type MVar a = TVar (Maybe a)
newEmptyMVar :: STM (MVar a)
newEmptyMVar = newTVar Nothing

takeMVar :: MVar a -> STM a
takeMVar mv
 = do { v <- readTVar mv
 ; case v of
 Nothing -> retry
 Just val -> do { writeTVar mv Nothing
 ; return val}}

putMVar :: MVar a -> a -> STM ()
putMVar mv newval
 = do { v <- readTVar mv
 ; case v of
 Nothing -> writeTVar mv
 (Just newval)
 Just val -> retry}

tryPutMVar :: MVar a -> a -> STM Bool
tryPutMVar mv val
 = do {putMVar mv val ; return True}
 ‘orElse‘ return False

1_CACM_V51.8.indb 97 7/21/08 10:13:41 AM

98 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

We represent the buffered data by a linked list, or Chain, of
items, with a transactional variable in each tail, so that it can
be extended by writeMChan:

An MChan is represented by a mutable pointer to the “write”
end of the chain, while a Port points to the read end:

With these definitions, the code writes itself:

Notice the use of retry to block readPort when the buf-
fer is empty. Although this implementation is very simple, it
ensures that each item written into the MChan is delivered to
every Port; it allows multiple writers (their writes are inter-
leaved); it allows multiple readers on each port (data read by
one is not seen by the other readers on that port); and when
a port is discarded, the garbage collector recovers the buff-
ered data.

More complicated variants are simple to program. For ex-
ample, suppose we wanted to ensure that the writer could
get no more than N items ahead of the most advanced read-
er. One way to do this would be for the writer to include a se-
rially increasing Int in each Item, and have a shared TVar

holding the maximum serial number read so far by any read-
er. It is simple for the readers to keep this up to date, and for
the writer to consult it before adding another item.

4.3. merge
We have already stressed that transactions are composable.
For example, to read from either of the two different multi-
cast channels, we can say:

No changes need to be made to either multicast channel.
If neither port has any data, the STM machinery will cause
the thread to wait simultaneously on the TVars at the ex-
tremity of each channel.

Equally, the programmer can wait on a condition that in-
volves a mixture of MVars and MChans (perhaps the multi-
cast channel indicates ordinary data and an MVar is being
used to signal a termination request), for instance:

This example is contrived for brevity, but it shows how oper-
ations taken from different libraries, implemented without
anticipation of their being used together, can be composed.
In the most general case, we can select between values re-
ceived from a number of different sources. Given a list of
computations of type STM a we can take the first value to be
produced from any of them by defining a merge operator:

(The function foldr1 f simply reduces a list [a1 a2 . . . an] to
the value a1 ‘f‘ a2 ‘f‘ . . . ‘f‘ an.) This example is childishly
simple in STM-Haskell. In contrast, a function of type

is unimplementable in Concurrent Haskell, or indeed in
other settings with operations built from mutual exclusion
locks and condition variables.

5. imPLementation
Since our original paper there has been a lot of work on build-
ing fast implementations of STM along with hardware sup-
port to replace or accelerate them.14 The techniques we have
used in STM-Haskell are broadly typical of much of this work
and so we do not go into the details here. In summary, how-
ever, while a transaction is running, it builds up a private log
that records the TVars it has accessed, the values it has read
from them and (in the case of writes) the new values that it
wants to store to them. When a transaction attempts to com-
mit, it has to reconcile this log with the heap. Logically this
has two steps: validating the transaction to check that there

data MChan a
data port a
newMChan :: STM (MChan a)
-- Write an item to the channel:
writeMChan :: MChan a -> a -> STM ()
-- Create a new read port:
newPort :: MChan a -> STM (Port a)
-- Read the next buffered item:
readPort :: Port a -> STM a

type Chain a = TVar (Item a)
data Item a = Empty | Full a (Chain a)

type MChan a = TVar (Chain a)
type Port a = TVar (Chain a)

newMChan = do {c <- newTVar Empty; newTVar c}
newPort mc = do {c <- readTVar mc; newTVar c}

readPort p
 = do { c <- readTVar p
 ; i <- readTVar c
 ; case i of
 Empty -> retry
 Full v c’ -> do {writeTVar p c’;
 return v}}

writeMChan mc v
= do { c <- readTVar mc
 ; c’ <- newTVar Empty
 ; writeTVar c (Full v c’)
 ; writeTVar mc c’}

atomic (readPort p1 ‘orElse‘ readPort p2)

atomic (readPort p1 ‘orElse‘ takeMVar m1)

merge :: [STM a] -> STM a
merge = foldr1 orElse

mergeI0 :: [I0 a] -> I0 a

1_CACM_V51.8.indb 98 7/21/08 10:13:42 AM

august 2008 | vol. 51 | no. 8 | communications of the acm 99

have been no conflicting updates to the locations read, and
then writing-back the updates to the TVars that have been
modified.

However, the retry and orElse abstractions led us to
think more carefully about how to integrate blocking op-
erations with this general approach. Following Harris and
Fraser’s work8 we built retry by using a transaction’s log
to identify the TVars that it has read and then adding “trip
wires” to those TVars before blocking: subsequent updates
to any of those TVars will unblock the thread.

The orElse and catch constructs are both implemented
using closed nested transactions17 so that the updates made
by the enclosed work can be rolled back without discarding
the outer transaction. There is one subtlety that we did not
appreciate in our original paper: if the enclosed transaction
is rolled back then the log of locations it has read must be re-
tained by the parent. In retrospect the reason is clear—the
decision of whether or not to roll back must be validated at
the same atomic point as the outer transaction.

5.1. Progress
The STM implementation guarantees that one transaction
can force another to abort only when the first one commits.
As a result, the STM implementation is lock-free in the sense
that it guarantees at any time that some running transac-
tion can successfully commit. For example, no deadlock
will occur if one transaction reads and writes to TVar x
and then TVar y, while a second reads and writes to those
TVars in the opposite order. Each transaction will observe
the original value of those TVars; the first to validate will
commit, and the second will abort and restart. Similarly,
synchronization conflicts over TVars cannot cause cyclic
restart, where two or more transactions repeatedly abort
one another.

Starvation is possible, however. For example, a transaction
that runs for a very long time may repeatedly be aborted by
 shorter transactions that conflict with it. We think that star-
vation is unlikely to occur in practice, but we cannot tell with-
out further experience. A transaction may also never commit
if it is waiting for a condition that never becomes true.

6. ReLateD WoRK
Transactions have long been used for fault tolerance in
databases7 and distributed systems. These transactions
rely on stable storage and distributed commit protocols
to protect system integrity against crashes and commu-
nication failures. Transactional memory of the kind we
are studying provides access to memory within a single
process; it is not intended to survive crashes, so there is
no need for distributed commit protocols or stable stor-
age. It follows that many design and implementation
 issues are quite different from those arising in distributed
or persistence-only transaction systems. TM was origi-
nally proposed as a hardware architecture12,24 to support
nonblocking synchroni zation, and architectural support
for this model remains the subject of ongoing research,
as does the construction of efficient implementations
in software. Larus and Rajwar provide a recent survey of
 implementation techniques.14

Transactional composition requires the ability to run
transactions of arbitrary size and duration, presenting a
challenge to hardware-based transactional memory designs,
which are inherently resource-limited. One way for hard-
ware to support large transactions is by virtualization,4,22
providing transparent overflow mechanisms. Another way is
by hybrid STM designs5,13 that combine both hardware and
software mechanisms.

After our original paper, Carlstrom et al. examined a form
of retry that watches for updates to a specified set of loca-
tions,3 arguing that this is easier to support in hardware and
may be more efficient than our form of retry. However,
unless the watch set is defined carefully, this sacrifices the
composability that retry provides because updates to non-
watched locations may change the control flow within the
transaction.

Our original paper also discusses related programming
abstractions for concurrency, notably Concurrent ML’s com-
posable events and Scheme48’s proposals.

7. concLusion
In this paper we have introduced the ideas from STM-
Haskell for composable memory transactions, providing
a substrate for concurrent programming that offers far
richer composition than has been available to date: two
atomic actions can be glued together in sequence with
the guarantee that the result will run atomically, and two
atomic actions can be glued together as alternatives with
the guarantee that exactly one of them will run. In subse-
quent work we have further enhanced the STM interface
with invariants.10

We have used Haskell as a particularly suitable laboratory
to explore these ideas and their implementation. An obvi-
ous question is this: to what extent can our results be car-
ried back into the mainstream world of imperative program-
ming? This is a question that we and many others have been
investigating since our original paper. The ideas of compos-
able blocking through retry and orElse seem straightfor-
ward to apply in other settings—subject, of course, to sup-
port for blocking and wake-up within the lower levels of the
systems.

A more subtle question is the way in which our separa-
tion between transacted state and nontransacted state can
be applied, or our separation between transacted code and
nontransacted code. In Haskell, mutable state and impure
code are expected to be the exception rather than the norm,
and so it seems reasonable to distinguish the small amount
of impure transacted code from the small amount of impure
nontransacted code; both, in any case, can call into pure
functions.

In contrast, in mainstream languages, most code is writ-
ten in an impure style using mutable state. This creates a ten-
sion: statically separating transacted code and data retains
the strong guarantees of STM-Haskell (no irrevocable calls
to “launchMissiles” within a transaction, and no direct
access to transacted state without going through the STM
interface), but it requires source code duplication to cre-
ate transacted variants of library functions and marshaling
 between transacted data formats and normal data formats.

1_CACM_V51.8.indb 99 7/21/08 10:13:42 AM

100 communications of the acm | august 2008 | vol. 51 | no. 8

research highlights

Investigating the complex trade-offs in this design space is
the subject of current research.1,16

Whether or not one believes in transactions, it does seem
likely that some combination of effect systems and/or own-
ership types will play an increasingly important role in con-
current programming languages, and these may contribute
to the guarantees desirable for memory transactions.

Our main claim is that transactional memory qualita-
tively raises the level of abstraction offered to programmers.
Just as high-level languages free programmers from worry-
ing about register allocation, so transactional memory frees
the programmer from concerns about locks and lock acqui-
sition order in designing shared-memory data structures.
More fundamentally, one can combine such abstractions
without knowing their implementations, a property that is
the key to constructing large programs.

Like high-level languages, transactional memory does
not banish bugs altogether; for example, two threads can
easily deadlock if each awaits some communication from
the other. But the gain is very substantial: transactions pro-
vide a programming platform for concurrency that elimi-
nates whole classes of concurrency errors, and allows the
programmer to concentrate on the really interesting bits.

acknowledgments
We would like to thank Byron Cook, Austin Donnelly,
 Matthew Flatt, Jim Gray, Dan Grossman, Andres Löh, Jon
Howell, Jan-Willem Maessen, Jayadev Misra, Norman Ram-
sey, Michael Ringenburg, David Tarditi, and especially Tony
Hoare, for their helpful feedback on earlier versions of this
paper, and Guy Steele for his meticulous suggestions in pre-
paring this revised version.

 1. Abadi, M., Birrell, A., Harris, T., and
Isard, M. Semantics of transactional
memory and automatic mutual
exclusion. POPL’08: Proceedings of
the 35th ACM SIGPLAn-SIGACT
Symposium on Principles of
Programming Languages, pp. 63–74,
ACM, Jan. 2008.

 2. Blelloch, G.E., Hardwick, J.C.,
Sipelstein, J., Zagha, M., and
Chatterjee, S. Implementation of
a portable nested data-parallel
language. J. Parallel Distrib. Comput.,
21 (1): 4–14, 1994.

 3. Carlstrom, B.D., McDonald, A., Chafi,
H., Chung, J., Minh, C.C., Kozyrakis,
C., and Olukotun, K. The Atomos
transactional programming language.
PLDI’06: Proceedings of the 2006
ACM SIGPLAn Conference on
Programming Language Design and
Implementation, pp. 1–13, ACM, June
2006.

 4. Chung, J., Minh, C.C., McDonald,
A., Skare, T., Chafi, H., Carlstrom,
B.D., Kozyrakis, C., and Olukotun,
K. Tradeoffs in transactional
memory virtualization. ASPLOS’06:
Proceedings of the 12th International
Conference on Architectural Support
for Programming Languages and
Operating Systems, pp. 371–381,
ACM, Oct. 2006.

 5. Damron, P., Fedorova, A., Lev,
Y., Luchangco, V., Moir, M., and
Nussbaum, D. Hybrid transactional
memory. ASPLOS’06: Proceedings
of the 12th International Conference
on Architectural Support for
Programming Languages and
Operating Systems, pp. 336–346,
ACM, Oct. 2006.

 6. Daume III, H. Yet another Haskell
tutorial. http://www.cs.utah.edu/~hal/

docs/daume02yaht.pdf, 2006.
 7. Gray, J., and Reuter, A. Transaction

Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, Inc.,
1992.

 8. Harris, T., and Fraser, K. Language
support for lightweight transactions.
OOPSLA’03: Proceedings of the 18th
ACM SIGPLAn Conference on Object-
Oriented Programming, Systems,
Languages, and Applications, pp.
388–402, ACM, Oct. 2003.

 9. Harris, T., Marlow, S., Peyton Jones,
S., and Herlihy, M. Composable
memory transactions. PPoPP’05:
Proceedings of the 10th ACM
SIGPLAn Symposium on Principles
and Practice of Parallel Programming,
pp. 48–60, ACM, June 2005.

 10. Harris, T., and Peyton Jones,
S. Transactional memory with
data invariants. TRAnSACT’06:
Proceedings of the 1st ACM
SIGPLAn Workshop on Languages,
Compilers, and Hardware Support for
Transactional Computing, June 2006.

 11. Herlihy, M., Luchangco, V., Moir, M.,
and Scherer, III, W.N. Software
transactional memory for dynamic-sized
data structures. PODC’03: Proceedings
of the 22nd ACM Symposium on
Principles of Distributed Computing, pp.
92–101, ACM, July 2003.

 12. Herlihy, M. and Moss, J.E.B.
Transactional memory: Architectural
support for lock-free data structures.
ISCA’93: Proceedings of the 20th
International Symposium on
Computer Architecture, pp. 289–300,
ACM, May 1993.

 13. Kumar, S., Chu, M., J. Hughes, C.,
Kundu, P., and Nguyen, A. Hybrid
transactional memory. PPoPP’06:
Proceedings of the 11th ACM

References

SIGPLAn Symposium on Principles
and Practice of Parallel Programming,
pp. 209–220, ACM, Mar 2006.

 14. Larus, J., and Rajwar, R. Transactional
Memory (Synthesis Lectures on
Computer Architecture). Morgan &
Claypool Publishers, 2007.

 15. Martin, M., Blundell, C., and Lewis, E.
Subtleties of transactional memory
atomicity semantics. IEEE Comput.
Archit. Lett. 5(2):17, 2006.

 16. Moore, K.F. and Grossman, D. High-
level small-step operational semantics
for transactions. POPL’08: Proceedings
of the 35th ACM SIGPLAn-SIGACT
Symposium on Principles of
Programming Languages, pp. 51–62,
ACM, Jan. 2008.

 17. Moss, E.B. Nested transactions: An
approach to reliable distributed
computing. Tech. Rep. MIT/LCS/
TR-260, Massachusetts Institute of
Technology, Apr. 1981.

 18. Peyton Jones, S. Tackling the
awkward squad: Monadic input/
output, concurrency, exceptions, and
foreign-language calls in Haskell.
Engineering Theories of Software
Construction, Marktoberdorf Summer
School 2000.

 19. Peyton Jones, S. Beautiful
concurrency. In Beautiful Code (2007),
A. Oran and G. Wilson, Eds., O’Reilly.

 20. Peyton Jones, S., Gordon, A., and
Finne, S. Concurrent Haskell. POPL’96:
Proceedings of the 23rd ACM
SIGPLAn-SIGACT Symposium on
Principles of Programming Languages,
pp. 295–308, ACM, Jan. 1996.

 21. Peyton Jones, S. and Wadler, P.
Imperative functional programming.
POPL’93: Proceedings of the 20th ACM
SIGPLAn-SIGACT Symposium on
Principles of Programming Languages,
pp. 71–84, ACM, Jan. 1993.

 22. Rajwar, R., Herlihy, M., and Lai, K.
Virtualizing transactional memory.
ISCA’05: Proceedings of the 32nd
International Symposium on
Computer Architecture, pp. 494–505,
IEEE Computer Society, June 2005.

 23. Shavit, N., and Touitou, D. Software
transactional memory. PODC’95:
Proceedings of the 14th ACM
Symposium on Principles of
Distributed Computing, pp. 204–213,
ACM, Aug. 1995.

 24. Stone, J.M., Stone, H.S., Heidelberger,
P., and Turek, J. Multiple reservations
and the Oklahoma update. IEEE
Parallel and Distributed Technology
1(4):58–71, 1993.

 25. Sutter, H. The free lunch is over:
A fundamental turn toward
concurrency in software. Dr. Dobb’s J.
(March 2005).

Tim harris (tharris@microsoft.com)
Microsoft Research

Simon Marlow (simonmar@microsoft.
com) Microsoft Research

Simon Peyton Jones (simonpj@microsoft.
com) Microsoft Research

Maurice herlihy (mph@cs.brown.edu)
Brown University

© 2008 ACM 0001-0782/08/0800 $5.00

1_CACM_V51.8.indb 100 7/21/08 10:13:42 AM

