
Applied
Automata
Theory

Prof. Dr. Wolfgang Thomas
RWTH Aachen

Course Notes compiled by
Thierry Cachat

Kostas Papadimitropoulos
Markus Schlütter

Stefan Wöhrle

November 2, 2005

2

i

Note

These notes are based on the courses “Applied Automata Theory” and
“Angewandte Automatentheorie” given by Prof. W. Thomas at RWTH
Aachen University in 2002 and 2003.

In 2005 they have been revised and corrected but still they may contain
mistakes of any kind. Please report any bugs you find, comments, and
proposals on what could be improved to
skript@i7.informatik.rwth-aachen.de

ii

Contents

0 Introduction 1

0.1 Notation . 6

0.2 Nondeterministic Finite Automata 6

0.3 Deterministic Finite Automata 7

1 Automata and Logical Specifications 9

1.1 MSO-Logic over words . 9

1.2 The Equivalence Theorem . 16

1.3 Consequences and Applications in Model Checking 28

1.4 First-Order Definability . 31

1.4.1 Star-free Expressions 31

1.4.2 Temporal Logic LTL 32

1.5 Between FO- and MSO-definability 35

1.6 Exercises . 39

2 Congruences and Minimization 43

2.1 Homomorphisms, Quotients and Abstraction 43

2.2 Minimization and Equivalence of DFAs 48

2.3 Equivalence and Reduction of NFAs 57

2.4 The Syntactic Monoid . 67

2.5 Exercises . 74

3 Tree Automata 77

3.1 Trees and Tree Languages . 78

3.2 Tree Automata . 82

3.2.1 Deterministic Tree Automata 82

3.2.2 Nondeterministic Tree Automata 88

3.2.3 Emptiness, Congruences and Minimization 91

3.3 Logic-Oriented Formalisms over Trees 94

3.3.1 Regular Expressions 94

3.3.2 MSO-Logic . 99

3.4 XML-Documents and Tree Automata 102

3.5 Automata over Two-Dimensional Words (Pictures) 109

iii

iv CONTENTS

3.6 Exercises . 120

4 Pushdown and Counter Systems 123
4.1 Pushdown and Counter Automata 123
4.2 The Reachability Problem for Pushdown Systems 130
4.3 Recursive Hierarchical Automata 136
4.4 Undecidability Results . 140
4.5 Retrospection: The Symbolic Method 145
4.6 Exercises . 147

5 Communicating Systems 149
5.1 Synchronized Products . 149
5.2 Communication via FIFO Channels 152
5.3 Message sequence charts . 156
5.4 Exercises . 161

6 Petri Nets 165
6.1 Basic Definitions . 165
6.2 Petri Nets as Language Acceptors 169
6.3 Matrix Representation of Petri Nets 172
6.4 Decision Problems for Petri Nets 175
6.5 Exercises . 180

Index 181

Chapter 0

Introduction

Automata are systems consisting of states, some of them designated as initial
or final, and (usually) labeled transitions. In classical automata theory
recognizable languages or sets of state sequences have been investigated.
Non-classical theory deals with several aspects, e.g. infinite sequences and
non terminating behavior, with bisimulation, or with different kinds of input
objects, e.g. trees as input structures.

Automata (more generally: transition systems) are the main modeling
tools in Computer Science. Whenever we want to design a program, a
protocol or an information system, or even just describe what it is intended
to do, its characteristics, and its behavior, we use these special kinds of
diagrams. Consequently, there is a variety of applications of automata in
Computer Science, for example:

• as sequential algorithms (pattern matching, see Figure 1)

They implement exactly those tasks that we normally connect to au-
tomata, namely they accept letters as an input, and on termination
they reach a state, which describes whether or not the text that has
been read possesses a certain property.

• as models of the execution structure of algorithms (flow diagrams, see
Figure 2.)

Before actually implementing an algorithm in some programming lan-
guage, one usually describes it by using some 2-dimensional model,
that represents the steps that a run of this algorithm may take and
the phases that it may go through.

• as a formalism to system description (see Figure 3)

• as a formalism to system specification (see Figure 4)
Before developing a system, we want to express its potential capabili-
ties.

1

2 CHAPTER 0. INTRODUCTION

q0
1

0

q1
1

0
q2

0

1

q3
1

0

q4

0,1

Figure 1: Deterministic automaton searching for 1101

In this course we are almost always concerned with finite automata,
which is the area of automata theory where most questions are decidable.
As we know, even Turing Machines can be seen as automata, but in this
case, all main questions are undecidable. On the contrary, in the area of
finite automata, practically all interesting questions that one may ask can
be answered by an algorithm; and this is what makes them so special and
useful in Computer Science.

Considered as mathematical objects, automata are simply labeled, di-
rected graphs. However, this view on automata is not very interesting, since
it can only be used to answer rather elementary questions like connectivity
or reachability. What makes automata theory more complicated, is the fact
that these special kinds of graphs have a certain behavior, they express a
special meaning. This leads us to the semantics of finite automata. Some
typical kinds of semantics are:

• the language being recognized (consisting of finite or infinite words)

• the word function being computed (automata with output)

• a (bi-)simulation class

• a partial order of actions (in Petri Nets)

• a set of expressions (in tree automata)

By considering these semantics, we can for example define an equivalence
between two completely different automata in case they recognize exactly the
same language. Moreover one can ask, which one of these two automata is
the “best” in terms of space complexity (e.g. number of states) and whether
there exists a better automaton. Furthermore, we can ask whether there is
a way even to compute the best possible automaton that can recognize this
language. Some other questions and problems that arise are listed below.

• Compare automata with respect to their expressive power in defin-
ing languages, connect this with alternative formalisms like regular
expressions or logic.

3

Figure 2: Flow diagram

4 CHAPTER 0. INTRODUCTION

Figure 3: Transition diagram

5

Figure 4: SDL-diagram

• Describe and evaluate algorithms for transformation and composition
of automata and evaluate their complexity.

• Is it possible to find the simplest structure or expression to recognize
a given language? In the case of automata, simplicity is measured on
the number of states (minimization). In the case of logic formulas it
may be measured e.g. on its length.

• Which questions about automata are decidable and, for those that are,
what complexity do the corresponding algorithms have (e.g. concern-
ing equivalence)?

Consequently, automata theory has to intersect with other related areas
of Computer Science like:

• computability and complexity theory

• logic

• circuit theory

• algorithmic graph theory

6 CHAPTER 0. INTRODUCTION

The course and therefore these course notes are structured as follows:
Chapter 1 deals with the connection of automata and logic and with the
paradigm of model checking. In Chapter 2 equivalence issues including mini-
mization and bisimulation are discussed. Chapter 3 focuses on tree automata
and their applications. In Chapter 4 pushdown systems as a first model with
an infinite set of configurations are investigated. The next two chapters deal
with automata models which allow communication and concurrency between
different processes, namely communicating finite state machines in Chapter
5, including the graphical formalism of message sequence charts, and Petri
nets in Chapter 6.

0.1 Notation

An alphabet is a finite set. Its elements are called symbols. We usually denote
an alphabet by Σ, and its elements by a, b, c, A word over an alphabet
Σ is a finite sequence of letters a1a2 . . . an with ai ∈ Σ for 1 ≤ i ≤ n. n is
called the length of a1a2 . . . an. Words are usually named u, v, w, u1, u2,
By ε we denote the word of length 0, i.e. the empty word. Σ∗ (Σ+) is the set
of all (nonempty) words over Σ. The concatenation of words u = a1 . . . an

and v = b1 . . . bm is the word uv := a1 . . . anb1 . . . bm. Finally, we use capital
calligraphic letters A,B, . . . to name automata.

A set L ⊆ Σ∗ is called a language over Σ. Let L, L1, L2 ⊆ Σ∗ be lan-
guages. We define the concatenation of L1 and L2 to be the set L1 · L2 :=
{uv | u ∈ L1 and v ∈ L2}, also denoted by L1L2. We define L0 to be the
language {ε}, and Li := LLi−1. The Kleene closure of L is the language
L∗ :=

⋃

i≥0 Li, and the positive Kleene closure L+ is the Kleene closure of

L without adding the empty word, i.e. L+ :=
⋃

i≥1 Li.
Regular expressions over an alphabet Σ are recursively defined: ∅, ε, and

a for a ∈ Σ are regular expressions denoting the languages ∅, {ε}, and {a}
respectively. Let r, s be regular expressions denoting the languages R and
S respectively. Then also (r + s), (r · s), and (r∗) are regular expressions
denoting the languages R ∪ S, RS, and R∗, respectively. We usually omit
the parentheses assuming that ∗ has higher precedence than · and +, and
that · has higher precedence than +.We also denote the regular expression
(r + s) by r ∪ s, and r · s by rs.

0.2 Nondeterministic Finite Automata

Definition 0.1 A nondeterministic finite automaton (NFA) is a tuple A =
(Q,Σ, q0, ∆, F) where

• Q is a finite set of states,

• Σ is a finite alphabet,

0.3. DETERMINISTIC FINITE AUTOMATA 7

• q0 ∈ Q is an initial state,

• ∆ ⊆ Q × Σ × Q is a transition relation, and

• F ⊆ Q is a set of final states.

A run of A from state p via a word w = a1 . . . an ∈ Σ∗ is a sequence
% = %(1) . . . %(n+1) with %(1) = p and (%(i), ai, %(i+1)) ∈ ∆, for 1 ≤ i ≤ n.
We write A : p

w−→ q if there exists a run of A from p via w to q.

We say that A accepts w if A : q0
w−→ q for some q ∈ F .

The language recognized by an NFA A = (Q,Σ, q0, ∆, F) is

L(A) = {w ∈ Σ∗ | A : q0
w−→ q for some q ∈ F}.

Two NFAs A and B are equivalent if L(A) = L(B). An NFA A = (Q,Σ, q0, ∆, F)
is called complete if for every p ∈ Q and every a ∈ Σ there is a q ∈ Q such
that (p, a, q) ∈ ∆.

Example 0.2 Let A0 be the NFA presented by the following transition
graph.

q0
b

a,b

q1
a

a,b

q2
a q3

The language accepted by A0 is

L(A0) = {w ∈ {a, b}∗ | w contains a b and endswith aa}.

The word abbaaa is accepted by A0, because there exists a run, e.g. 1122234,
yielded by this word that starts in the initial state and leads the automaton
to a final one. We notice the nondeterminism in state q0, where on the
occurrence of b the automaton can choose between staying in the same state
or proceeding to state q1, as well as in state q1, where an analogous choice
has to be made when reading an a. £

0.3 Deterministic Finite Automata

Definition 0.3 (DFA) A deterministic finite automaton (DFA) is a tuple
A = (Q,Σ, q0, δ, F) where

• Q is a finite set of states,

• Σ is a finite alphabet,

• q0 ∈ Q is an initial state,

• δ : Q × Σ → Q is a transition function, and

8 CHAPTER 0. INTRODUCTION

• F ⊆ Q is a set of final states.

We can extend the transition function δ to words by defining

δ∗ : Q × Σ∗ → Q

(p, w) 7→ q if A : p
w−→ q

This can also be defined inductively by δ∗(p, ε) = p and δ∗(p, wa) = δ(δ∗(p, w), a).
The language accepted by a DFA A = (Q,Σ, q0, δ, F) is L(A) := {w ∈ Σ∗ |
δ∗(q0, w) ∈ F}. To simplify notation we often write δ instead of δ∗. Note
that by definition every DFA is complete. As every automaton with a par-
tially defined transition function can easily be transformed in to DFA by
adding an additional state, we often also consider automata with partial
transition function as DFAs.

Example 0.4 Consider the following DFA A1.

q0
a

b

q1
b

a

q2
b

a
q3

a,b

It is easy to evaluate the extended transition function δ∗ by following the cor-
responding path in the automaton, e.g. δ∗(q0, aaa) = q1 or δ∗(q0, aabb) = q3.
The language accepted by A1 is L(A1) = {w ∈ {a, b}∗ | w has an infix abb} =
Σ∗abbΣ∗. A1 is indeed complete, because from every state, there is a tran-
sition for every letter of the alphabet. £

Chapter 1

Automata and Logical
Specifications

1.1 MSO-Logic over words

This chapter is concerned with the relation between finite automata and
logical formulas. In the first section we focus on the so called Monadic
Second-Order (MSO) Logic, by explaining its characteristics and expressive-
ness. Before going into the details of the definition of this logic, we illustrate
the motivation that leads us to study it as a helping tool in the area of au-
tomata.

Example 1.1 We consider the following automaton over Σ = {a, b, c}:

1

a,b,c

b
2

a

b
3

a,b,c

It is rather easy to see that this nondeterministic automaton accepts the
words that have the following property:

“There are two occurrences of b between which only a’s occur.”

This can also be expressed in terms of logic by requiring the existence
of two positions in the word (say x and y) labeled with b, such that x is
before y, and every position that comes after x and before y (if there is such
a position at all) is labeled by a. A logical formula ϕ that expresses this
kind of property is:

∃x∃y(x < y ∧ Pb(x) ∧ Pb(y) ∧ ∀z((x < z ∧ z < y) → Pa(z)))

A word w is accepted by the above automaton iff w satisfies ϕ. £

9

10 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

x z

s

u

Figure 1.1: A half-adder.

Our final goal is to find a general equivalence between automata and
logical formulas. This means that the language that we choose to represent
logical formulas has to be of exactly the same expressive power as finite
automata. Furthermore, we want to find a way to construct for a given
automaton an equivalent logical formula and vice versa. This may have
been simple in the above example because we did not really translate the
automaton directly to the logical formula. What we actually did, was, using
our common sense, comprehend and capture in mind the language that is
defined by the automaton, then intuitively express the properties of this
language in such colloquial English that it can be easily coded into a logical
formula, and finally do the respective translation.

Unfortunately, these transformations cannot (yet) be performed by a
machine. A machine needs explicitly defined instructions to translate one
structure to another. And in this case it is not an easy task. On the one
hand logical formulas can be build up by explicit parts; these parts are
basic logical formulas themselves, we can partially order them in increasing
complexity and we can combine them to result in a new logical formula
that somehow possesses the power of all its components. In other words,
logical formulas can be defined inductively. On the other hand, we cannot
decompose an automaton to any meaningful basic parts; at least not in
the general case. Neither are there operators in its definition that always
combine its components to construct the whole automaton. We can of course
disassemble an automaton to its states, but each one of these generally
does not have any meaning anymore. It is the complex way the states are
connected over labeled transitions what makes the automaton work in the
desired way.

We know a similar connection between two different structures from
Circuit Theory, namely the equivalence between Boolean Logic and Circuits.

Example 1.2 Consider the well known circuit (half-adder) of Figure 1.1:

Its behavior can be described by the following Boolean formulas:

s = x · z + x · z, u = x · z

1.1. MSO-LOGIC OVER WORDS 11

£

There is a translation from circuits to Boolean formulas and vice versa.
The main difference between circuits and automata is that the former are
acyclic graphs. In the above example we can notice how data flows “from
left to right”. In the case of automata we may have loops, consisting of one
or more states, and this is what makes them more complex to handle.

We also know some other roughly speaking “logical formulas” that de-
scribe the behavior of automata, namely regular expressions over Σ. These
are built up by the symbols of Σ, ∅, ε with + (for union), · (for concatena-
tion) and ∗ (for the iteration of concatenation).

Example 1.3 Consider the following automaton:

1

a,b,c

b
2

a

b
3

a,b,c

The language that it recognizes can be defined by the following regular
expression (the concatenation symbol · is usually omitted):

(a + b + c)∗ · b · a∗ · b · (a + b + c)∗ , short Σ∗ba∗bΣ∗ .

£

Theorem 1.4 (Kleene) A language L is definable by a regular expression
iff L is DFA or NFA recognizable.

But if we already have such an equivalence between automata and regular
expressions why do we need more? Why are regular expressions not enough
and what is it that makes us need the logical formulas?

To realize the advantages of logical formulas, we consider Example 1.1
as well as two variations of it, namely:

(Example 1.1) “There are two occurrences of b, between which only a’s
occur”

Example 1.5 “There are no two occurrences of b, between which only a’s
occur” £

Example 1.6 “Between any two occurrences of b only a’s occur” £

We notice that 1.5 is the complement of 1.1, whereas 1.6 turns the ex-
istential statement into a universal statement. These two relations between
these examples can be easily expressed using logical formulas (e.g. in the
case of 1.5):

¬∃x∃y(x < y ∧ Pb(x) ∧ Pb(y) ∧ ∀z((x < z ∧ z < y) → Pa(z)))

12 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

On the other hand, by using regular expressions one can conveniently
describe the occurrences of patterns but it takes a lot of effort to describe
the non-occurrence of patterns. This holds even when defining a language
by an automaton. The language of Example 1.5 is defined by the following
regular expression:

(a + c)∗(ε + b)(a∗c(a + c)∗b)∗(a + c)∗

So far we have used the following notation in our logical formulas:

• variables x, y, z, . . . representing positions of letters in a word (from 1
(= min) up the length n (= max) of a word)

• formulas Pa(x) (“at position x there is an a”),
x < y (“x is before y”)

Before extending the expressive power of our logical formulas, we look
at some further examples:

Example 1.7 Consider the language consisting of words with the property:

“right before the last position there is an a”

Regular expression: Σ∗ · a · Σ
Logical formula: ∃x (Pa(x) ∧ x + 1 = max)

Instead of the operation “+1” we use the successor relation

S(x, y) (“x has y as a successor”).

Now the formula looks like this:

∃x (Pa(x) ∧ S(x,max))

£

Example 1.8 The property of even length:
Even length, as a property of non-empty words, is regular:

(ΣΣ) · (ΣΣ)∗

A corresponding logical formula would be:

∃x (x + x = max)

But introducing addition of positions leads us outside the class of reg-
ular languages. In other words, the +-operator provides us with too much

1.1. MSO-LOGIC OVER WORDS 13

expressive power. By using it we can e.g. express the non-regular language
{aibi | i > 0} by the formula

∃x (x + x = max ∧ ∀y(y ≤ x → Pa(y)) ∧ ∀z(x < z → Pb(z)))

Is there a way to capture the property of even length without using the
+-operator? To this purpose we consider a set of positions of a word and
require that it:

• contains the first position,

• then always contains exactly every second position,

• does not contain the last position

We use X as a variable for sets of positions and we write X(y) to express
that “position y is in X”. Now we are ready to express the property of even
length in the following way:

∃X (X(min) ∧ ∀y∀z (S(y, z) → (X(y) ↔ ¬X(z))) ∧ ¬X(max))

£

Definition 1.9 (Monadic Second Order Logic (MSO-Logic)) MSO
formulas are built up from

• variables x, y, z, . . . denoting positions of letters,

• constants min and max

• variables X, Y, Z, . . . denoting sets of positions

• the atomic formulas (with explicit semantics)

– x = y (equality)

– S(x, y) “x has y as a successor”

– x < y “x is before y”

– Pa(x) “at position x there is an a”

– X(y) “y ∈ X”

– (instead of x, y min, or max can also be used)

• the usual connectors ¬,∧,∨,→, and ↔ and the quantifiers ∃, ∀
A non-empty word w = b1 . . . bm over the alphabet Σ = {a1, . . . , an}

defines the word model

w =
(
{1, . . . , m}
︸ ︷︷ ︸

=: dom(w)

, Sw, <w, minw, maxw, Pw
a1

, . . . , Pw
an

)

Where:

14 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

• dom(w) is the set of (all) positions 1, . . . , |w|

• Sw is the successor- and <w the smaller-than-relation on dom(w)

• minw = 1 and maxw = |w|

• Pw
ai

:= {j ∈ dom(w) | bj = ai} for i = 1, . . . , n

Remark 1.10 We decide to use only non-empty words for models for two
reasons. First, in mathematical logic it is generally convenient to use models
that have at least one element. Otherwise, we have to bother with some
additional considerations and special cases. Second, in case we accept the
empty word ε to define a model, we are no longer able to make use of the
constants min and max.

MSO stands for “monadic second-order”:
Second-order because it allows quantification not only over (first-order) po-
sition variables but also over (second-order) set variables.
Monadic because quantification is allowed at most over unary (monadic) re-
lations, namely sets. For an alphabet Σ we get the MSOΣ[S, <]-formulas. In
the special case that we use quantifiers only over first-order variables (rang-
ing over positions) we get the FOΣ[S, <]-formulas. Usually, the lowercase
Greek letters φ, χ, ψ, . . . are used for formulas. A variable xi or Xi is free in
a formula if it does not occur within the scope of a quantifier. The notation
φ(x1, . . . , xm, X1, . . . , Xn) for a formula indicates that at most the variables
x1, . . . , xm, X1, . . . , Xn occur free in φ.

Assume φ(x1, . . . , xm, X1, . . . , Xn) is given. To interpret the truth value
of φ we need:

• a word model w (with predicates Pw
a for the symbols a ∈ Σ)

• positions k1, . . . , km as interpretations of x1, . . . , xm

• sets K1, . . . , Kn of positions as interpretations of X1, . . . , Xn

Consequently our complete model is:

(w, k1, . . . , km, K1, . . . , Kn)

Now,

(w, k1, . . . , km, K1, . . . , Kn) |= φ(x1, . . . , xm, X1, . . . , Xn)

expresses the fact that φ holds in w, if xi is interpreted by ki and Xi by Ki.
In short notation we write:

w |= φ[k1, . . . , km, K1, . . . , Kn]

1.1. MSO-LOGIC OVER WORDS 15

Example 1.11 Let Σ = {a, b}, w = abbab and

1. φ1(x1, X1) := Pa(x1) ∧ ∀y (x1 < y ∧ X1(y) → Pb(y))

2. φ2(x1, x2) := ∃z (x1 < z ∧ z < x2 ∧ Pb(z))

3. φ3 := ∃x∃y (Pa(x) ∧ S(x, y) ∧ Pb(y))

Then:

1. (w, 1, {2, 3, 4}) 6|= φ1(x1, X1)

2. (w, 2, 4) |= φ2(x1, x2)

3. w |= φ3

£

The last example-formula does not have any free variables, and can there-
fore be interpreted given just a word as a model. Such formulas are called
sentences. If we collect all words that satisfy such a sentence, and put them
into a set, then this set is the language defined by the sentence. Formally,
for an MSOΣ[S, <]-sentence φ, let L(φ) := {w ∈ Σ+ | w |= φ} be the lan-
guage defined by φ. Such a language is called MSOΣ[S, <]-definable (short:
MSO-definable).

In case no set quantifiers are needed in φ, we call the language FOΣ[S, <
]-definable or just FO-definable. FO stands for first-order, because now
quantifiers range only over position variables.

Example 1.12 For Σ = {a, b, c}

• Σ∗ba∗bΣ∗ is FO-definable, namely by
∃x∃y (x < y ∧ Pb(x) ∧ Pb(y) ∧ ∀z ((x < z ∧ z < y) → Pa(z)))

• Σ∗aΣ is FO-definable, namely by
∃x (Pa(x) ∧ S(x,max))

• (ΣΣ) · (ΣΣ)∗ is MSO-definable, namely by
∃X (X(min) ∧ ∀y∀z (S(y, z) → (X(y) ↔ ¬X(z))) ∧ ¬X(max))

Furthermore, we shall see in some future section that this formula cannot
be expressed in FO-logic at all. £

Remark 1.13 In FO- and MSO-formulas we can eliminate min and max.

16 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

Example 1.14 Instead of

∃x (Pa(x) ∧ S(x,max))

we write
∃x (Pa(x) ∧ ∃y (S(x, y) ∧ ¬∃z S(y, z)))

£

In general, substitute ψ(max), by:

∃y(ψ(y) ∧ ¬∃z y < z) .

Analogously for min.

Remark 1.15 In MSO-formulas we can eliminate <.
Proof: Replace x < y by

∃X
[
¬X(x) ∧ ∀z∀z′ (X(z) ∧ S(z, z′) → X(z′)) ∧ X(y)

]

Example 1.16 Some more examples over Σ = {a, b, c}:

1. {w ∈ Σ+ | in w every a is followed only by a’s, until a b occurs} is
definable by:

∀x
(
Pa(x) → ∃y

(
x < y ∧ Pb(y) ∧ ∀z (x < z ∧ z < y → Pa(z))

))

2. a+ is definable by ∀x Pa(x).

3. a(ba)∗ is definable by

Pa(min)∧∀x∀y
(
S(x, y) → (Pa(x) → Pb(y))∧(Pb(x) → Pa(y))

)
∧Pa(max)

£

1.2 The Equivalence Theorem

Now that we have defined the logic we are going to use, we shall present a way
to translate any given automaton to a formula of this logic and vice versa.
To this purpose we do the following preparation: A formula φ(X1, . . . , Xn)
is interpreted on word models (w, K1, . . . , Kn) with Ki ⊆ dom(w). The set
Ki of positions serves as an interpretation of Xi. To code such models by
words that can be processed by an automaton we collect for every position
k ∈ dom(w) the information if k ∈ K1, k ∈ K2, . . . , k ∈ Kn in the form of
a bit vector. Formally, we represent a word b1 . . . bm with sets of positions
K1, . . . , Kn by a word over the alphabet Σ × {0, 1}n:

1.2. THE EQUIVALENCE THEOREM 17

b1

(c1)1
...

(c1)n

b2

(c2)1
...

(c2)n

. . .

bm

(cm)1
...

(cm)n

and we set (ck)j = 1 iff k ∈ Kj .

Example 1.17 Let Σ = {a, b}, w = abbab, K1 = ∅, K2 = {2, 4, 5} and
K3 = {1, 2}.

w
K1

K2

K3

a
0
0
1

b
0
1
1

b
0
0
0

a
0
1
0

b
0
1
0

£

Theorem 1.18 (Büchi, Elgot, Trakhtenbrot 1960) A language L ⊆ Σ+

is regular if and only if it is MSO-definable. The transformation in both di-
rections is effective.

For the proof we present regular languages by NFAs. Let us give an
example first.

Example 1.19 Given the following automaton A:

1

a,b

b
2

b
3

a,b

we have to construct a sentence φA with

w |= φA iff w ∈ L(A) .

In other words, φA has to express that there exists an accepting run of A
on w. To this purpose, along with φA we assume the existence of three sets
X1, X2, X3, such that:

Xi = set of positions, at which A is in state i.

Example 1.20 abbab. An accepting run for this word is 112333. We encode
X1, X2, X3 in the following way (without the last state):

w : a b b a b

X1 : 1 1 0 0 0
X2 : 0 0 1 0 0
X3 : 0 0 0 1 1

£

18 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

Naturally the automaton can only be in one state at each point of time.
Therefore there is just one 1 in every column of the run. How can we describe
a successful run? That is, how do we set constraints to X1, . . . , Xn? The
formula we are looking for is a conjunction over 4 basic properties:

φA := ∃X1∃X2∃X3

[
“X1, X2, X3 form a Partition”

∧ X1(min)

∧ ∀x∀y (S(x, y) → “at x, y one of the transitions is applied”

∧ “at max the last transition leads to a final state”
]

Now let us explain each one of these properties (except the second, which is
obvious) and give the respective MSO-formulas.

• “X1, X2, X3 form a Partition”: Partition is an expression for the above
mentioned unambiguity of the automaton state. Since there is just one
1 in every X-bitvector, X1, X2, X3 have to form a partition of dom(w).
In terms of MSO-logic, we write:

∀x (X1(x) ∨ X2(x) ∨ X3(x))

∧ ¬∃x (X1(x) ∧ X2(x))

∧ ¬∃x (X2(x) ∧ X3(x))

∧ ¬∃x (X1(x) ∧ X3(x))

• “at x, y one of the transitions is applied”: In other words, we need a
formula to represent the whole transition relation ∆:

(X1(x) ∧ Pa(x) ∧ X1(y)) ∨ (X1(x) ∧ Pb(x) ∧ X1(y)) ∨
(X1(x) ∧ Pb(x) ∧ X2(y)) ∨ (X2(x) ∧ Pb(x) ∧ X3(y)) ∨
(X3(x) ∧ Pa(x) ∧ X3(y)) ∨ (X3(x) ∧ Pb(x) ∧ X3(y))

• “at position max the last transition leads to a final state”: Since we
want the formula to be true if and only if the word is accepted by the
automaton, we have to force that the run on w ends in a final state of
A:

(X2(max)∧ Pb(max))∨ (X3(max)∧ Pa(max))∨ (X3(max)∧ Pb(max))

£

Proof of Theorem 1.18: Let A = ({1, . . . , m}
︸ ︷︷ ︸

Q

, Σ, 1, ∆, F) be an NFA. The

formula expressing that there exists a successful run of A on a word w ∈ Σ+

is then given by

φA = ∃X1 . . .∃Xm

[
∀x

(
X1(x) ∨ . . . ∨ Xm(x)

)
∧ ∧

i6=j ¬∃x
(
Xi(x) ∧ Xj(x)

)

1.2. THE EQUIVALENCE THEOREM 19

∧ X1(min)

∧ ∀x∀y (S(x, y) → ∨

(i,a,j)∈∆ (Xi(x) ∧ Pa(x) ∧ Xj(y)))

∧ ∨

(i,a,j)∈∆,j∈F (Xi(max) ∧ Pa(max))
]

Then A accepts w iff w |= φA.

Remark 1.21 φA does not contain any universal quantifiers over set vari-
ables but only existential ones. Such an MSO-formula, namely of the form

∃X1 . . .∃Xmψ(X1, . . . , Xm)

where ψ does not contain any set quantifiers at all, is called an existential
MSO-formula (EMSO-formula).

Remark 1.22 For m states, dlog2(m)e set quantifiers suffice.

Example 1.23 In the case of 4 states: Instead of the sets X1, . . . , X4 it
suffices to use X1, X2 along with the convention that the states 1, . . . , 4
correspond to the column vectors

(
0
0

)
,
(
0
1

)
,
(
1
0

)
,
(
1
1

)
, respectively. £

Suppose now that we are given an MSO-formula φ and want to construct
an NFA Aφ such that L(Aφ) = L(φ). The main idea is to proceed by
induction on the construction of φ(x1, . . . , xm, X1, . . . , Xn).

First we show how to eliminate the first-order variables xi and get equiv-
alent formulas containing only set variables. To this purpose we represent
the element x by the set {x} and then work with formulas of the form
φ(X1, . . . , Xn). We call such formulas MSO0-formulas. Atomic MSO0-
formulas are:

• X ⊆ Y and X ⊆ Pa

• Sing(X) (“X is a singleton set”)

• S(X, Y) (“X = {x}, Y = {y} and S(x, y)”)

• X < Y (“X = {x}, Y = {y} and x < y”)

As usual, formulas are built up using ¬, ∨, ∧, →, ↔, ∃, and ∀.

Lemma 1.24 (MSO0-Lemma) Every MSO-formula φ(X1, . . . , Xn) is (over
word models) equivalent to an MSO0-formula.

Proof: We proceed by induction over the structure of the given MSO-
formula. In some of the intermediate steps we have to handle formulas
with free first-order (element) variables. As described above we transform
these variables into singleton set variables. More formally, by induction over

20 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

the structure of an MSO-formula ψ(y1, . . . , ym, X1, . . . , Xn), we construct a
corresponding MSO0-formula ψ∗(Y1, . . . , Ym, X1, . . . , Xn) with

(w, k1, . . . , km, K1, . . . , Kn) |= ψ iff (w, {k1}, . . . , {km}, K1, . . . , Kn) |= ψ∗

We omit the details. The idea is illustrated in the example below. 2

Example 1.25 For

φ(X1) = ∀x
(
Pa(x) → ∃y (S(x, y) ∧ X1(y))

)

construct

φ∗ = ∀X
(
Sing(X) ∧ X ⊆ Pa → ∃Y (Sing(Y) ∧ S(X, Y) ∧ Y ⊆ X1)

)

£

Corollary 1.26 To translate formulas φ(X1, . . . , Xn) to automata it suf-
fices to consider MSO0-formulas.

A formula φ(X1, . . . , Xn) defines a language over the alphabet Σ×{0, 1}n.

Example 1.27 Let Σ = {a, b} and φ(X1) = ∀x
(
Pa(x) → ∃y (S(x, y) ∧

X1(y))
)

(
b
0

)(
a
0

)(
a
1

)(
b
1

)
satisfies φ

(
b
0

)(
a
0

)(
a
1

)(
b
0

)
does not satisfy φ.

L(φ) = the set of words over Σ × {0, 1}, such that after every a in the first
component there is a 1 in the second component. £

In the general case, for each φ(X1, . . . , Xn) we have to inductively con-
struct a finite automaton over Σ × {0, 1}n. For the base case we consider
the atomic MSO0-formulas.

• X1 ⊆ X2:
Given a word w ∈ (Σ × {1, 0}n)+, an automaton has to check that
whenever the first component is 1, the second component is 1 as well.
This is performed by the following NFA:

1

2

4

#
0
0
∗

3

5,

2

4

#
0
1
∗

3

5,

2

4

#
1
1
∗

3

5

that is, it accepts everything except

#
1
0
∗

, where # stands for arbitrary

letters in Σ and ∗ for arbitrary bit vectors in {0, 1}n−2.

1.2. THE EQUIVALENCE THEOREM 21

• X1 ⊆ Pa:

1
»

a

0
∗

–

,

»

a

1
∗

–

,

»

6= a

0
∗

–

• Sing(X1):

1

»

#
0
∗

–

»

#
1
∗

–

2

»

#
0
∗

–

• S(X1, X2):

1

2

4

#
0
0
∗

3

5

2

4

#
1
0
∗

3

5

2

2

4

#
0
1
∗

3

5

3

2

4

#
0
0
∗

3

5

• X1 < X2:

1

2

4

#
0
0
∗

3

5

2

4

#
1
0
∗

3

5

2

2

4

#
0
0
∗

3

5

2

4

#
0
1
∗

3

5

3

2

4

#
0
0
∗

3

5

For the induction step, we suppose that for the formulas φ1, φ2 the
corresponding NFAs A1, A2 are given and we only consider the connectors
∨, ¬ and the quantifier ∃. The other operators (∧, →, ↔ and ∀) can be
expressed as a combination of the previous ones. Regarding the negation,
¬φ1 is equivalent to the complement automaton of A1. As we know, we can
construct it using the subset construction on A1 and then, in the resulting
DFA, declare all states Q \ F as final ones. For the disjunction φ1 ∨ φ2 we
construct the automaton that recognizes L(A1) ∪ L(A2). As usually we do
this by constructing the union automaton out of A1 and A2. To handle the
existential quantifier we need some preparation.

Lemma 1.28 (Projection Lemma) Let f : Σ → Γ be a projection of
the alphabet Σ into the alphabet Γ extended to words by f(b1 . . . bm) :=
f(b1) . . . f(bm). If L ⊆ Σ∗ is regular, then f(L) is regular as well.

Proof: Given an NFA A = (Q,Σ, q0, ∆, F) that recognizes L, we construct
the NFA B = (Q,Γ, q0, ∆

′, F) with ∆′ := {(p, f(a), q) | (p, a, q) ∈ ∆}. 2

22 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

Remark 1.29 The NFA for the projection results by projecting the transi-
tion labels.

Example 1.30 Consider the (incomplete) DFA over {a, b} × {0, 1} that
recognizes

L =
((

a
0

)
+

(
b
0

))∗ (
b
1

) ((
a
1

)(
a
1

))∗
:

1

h

a

0

i

,
h

b

0

i

h

b

1

i

2

h

a

1

i

3
h

a

1

i

The projection f :
(
a
c

)
7→ a,

(
b
c

)
7→ b yields the NFA:

1

a,b

b
2

a
3

a

which recognizes f(L). £

Now that we have defined the necessary notions of the projection, we
can deal with the existential quantifier.

Lemma 1.31 (Quantifiers Lemma) Assume L ⊆ (Σ × {0, 1}n)+ is de-
fined by φ(X1, . . . , Xn). Let f : (Σ × {0, 1}n) → (Σ × {0, 1}n−1) be the
canonical projection (a, c1, . . . , cn) 7→ (a, c1, . . . , cn−1). Then the formula
∃Xnφ(X1, . . . , Xn) defines the language f(L).

Corollary 1.32 If φ(X1, . . . , Xn) defines the regular language L, then
∃Xnφ(X1, . . . , Xn) defines a regular language as well, namely f(L).

Remark 1.33 The NFA for ∃Xnϕ(X1, . . . , Xn) is constructed from the au-
tomaton for ϕ(X1, . . . , Xn) by “omitting the last component” in the transi-
tion labels.

Proof: (Quantifiers Lemma)
w = b0 . . . bm−1 ∈ (Σ × {0, 1}n−1)+ satisfies ∃Xnφ(X1, . . . , Xn)

iff there exists K ⊆ dom(w) such that (w, K) |= φ(X1, . . . , Xn)

iff there exist c0, . . . , cm−1 ∈ {0, 1}, such that
[
b0

c0

]

. . .

[
bm−1

cm−1

]

satisfies φ(X1, . . . , Xn)

1.2. THE EQUIVALENCE THEOREM 23

iff b0 . . . bm−1 = f(u) for some u with

u |= φ(X1, . . . , Xn) , i.e. for some u ∈ L

iff b0 . . . bm−1 ∈ f(L)

2

Example 1.34 For the following formula we construct an equivalent au-
tomaton.

ϕ = ∃X1

(
X1(min)
︸ ︷︷ ︸

ψ1(X1)

∧∀x∀y(S(x, y) → (X1(x) ↔ ¬X1(y)))
︸ ︷︷ ︸

ψ2(X1)

∧∀z Pa(z)
︸ ︷︷ ︸

ψ3(X1)

)

We suppose that we are directly given automata A1, A2, A3 for the
sub-formulas ψ1(X1), ψ2(X1), ψ3(X1) respectively:

A1: 1

[∗1]

2 [∗∗]

A2: 1
[∗1][∗0]

2
[∗1]

3

[∗0]

A3: 1 [a
∗]

We consider the conjunctions directly (without eliminating them by us-
ing negation and disjunction). A3 merely requires that only a’s occur in
the first component. Since A1 and A2 make no restrictions about the first
component, we can intersect A3 with both of them by always replacing the
∗ in the first component with an a:

A′
1 : 1

[a
1]

2 [a
∗]

A′
2 : 1

[a
1][a

0]

2
[a
1]

3

[a
0]

Since A′
1 only requires that in the first position in the word model a 1

occurs in the second component, we form the intersection of A′
1 and A′

2 by
removing the transition from 1 → 2. So for the formula ψ1(X1) ∧ ψ2(X1) ∧
ψ3(X1) we get the following equivalent automaton:

A′
1 ∩ A′

2 : 1
[a
1]

2
[a
1]

3

[a
0]

24 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

The projection on Σ leads to the final automaton A:

1
a

3
a

2
a

Obviously L(A) = a+, so a (better) equivalent automaton is:

1
a

2

a

£

The BET-Theorem allows the transformation of an MSO-formula into
an equivalent automaton and vice versa. How effective are these transforma-
tions? Let us focus on the computational effort (in terms of time complexity)
that is needed to perform the first one, assuming that we are given the au-
tomata for the atomic formulas. If each one of two NFAs A1, A2 has at
most n states, then the NFA recognizing the

• union language has at most 2n + 1 states (because we create a new
initial state and depending on the first letter that is read, the new
automaton branches to one of the two initial ones)

• intersection language has at most n2 states
(because we have to construct the product automaton)

• complement language has at most 2n states (because we have to use the
subset construction and turn the given NFAs to DFAs before switching
final and non-final states)

• projection language has at most n states (because we use the same
automata and omit one component)

Does this mean that the transformation requires exponential time with
respect to the number of states of the automata? Unfortunately not. The
fact that the projection may turn a DFA into an NFA and the fact that
constructing the complement automaton requires to make an automaton
first deterministic (subset construction) means that, whenever an alternation
between negation and projection occurs (e.g. when a universal quantifier
occurs), an additional exponential burden is added to our computational
effort. So, in the general case, if k is the number of logical operators in
the formula, then the number of states in the resulting automaton grows

like 22.
..2n }

k
. The following theorem shows that we cannot hope a better

bound.

1.2. THE EQUIVALENCE THEOREM 25

Theorem 1.35 (Meyer, Stockmeyer 1971) There is no translation of
MSO-formulas ϕ to automata in which the number of states of the resulting
automaton can be bounded by a function of the form

22.
..2n }

k

with a constant k.

Empirical observation (MONA system of Basin, Klarlund):
If each DFA that is produced by the translation as an intermediate result
is immediately minimized, then even in the case of long formulas the size
of the automaton mostly remains moderate. But doesn’t minimization add
another computational burden? Not really, because we will see in the next
chapter that for the case of a DFA, minimization can be done efficiently.
Consequently, the examples for an hyper-exponential growth are not typical.

Example 1.36 We give to the MONA system the following formula:

ϕ(X, Y, x) : “X \ Y = {0, 1, 2, 4}′′ ∧ ψ(x) ∧ ¬X(x)

with ψ(x) := ∃Z(Z(0) ∧ Z(x) ∧ ∀y(0 < y ≤ x →
((Z(y) → ¬Z(y − 1)) ∧ (¬Z(y) → Z(y − 1)))

MONA input:

var2 X,Y;

X\Y = {0,4} union {1,2};

pred even(var1 x) = ex2 Z: 0 in Z & x in Z &

(all1 y: (0 < y & y <= x) =>

(y in Z => y-1 notin Z) &

(y notin Z => y-1 in Z));

var1 x;

even(x) & x notin X;

The resulting automaton is (MONA output)

26 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

9

0 1
X 1
X,X

2

1
0
X

0 1

X
X
X

0 1 1
X 0 1
X,1,X

3

1
0
0

X
X
X

0 1 1
X 0 1
X,1,X

4

1
0
0

0 1 1
X 0 1
X,1,X

5

1
0
0

0 1 1
X 0 1
1,X,1

6

0 1
X 1
0,0

0 1 1
X 0 1
X,1,X

7

1
0
0

0 1 1
X 0 1
1,X,1

8

0 1
X 1
0,0

0
X
1

1 1
0 1
X,1

0 1
X 1
0,0

£

Now that we have connected automata to logic, we can make a compar-
ison between them, as well as consider the applications of this connection.

• Automata: operational, formulas: descriptive

• Automata: implementation, formulas: specification

• Automata have local transitions, formulas have global operators (in
particular quantifiers)

• The semantics of automata are defined over the arbitrary construc-
tion of state sequences, whereas the semantics of formulas are defined
inductively (compositional)

• algorithmic questions on automata are often efficiently solvable, whereas
the ones on formulas are hard to solve (non-emptiness vs. satisfiabil-
ity)

• For automata the minimization problem is approachable, for formulas
it remains still incomprehensible.

How does all this relate to the “logic” of regular expressions? These can
be enriched by further operators that make them more convenient to use
without increasing their expressive power. We add ∼ (for the complement)
and ∩ (for the intersection).

Definition 1.37 Generalized regular expressions over Σ are built up by
letters a ∈ Σ and ∅, ε by using +, ·,∩ (binary) and ∗,∼ (unary).

Example 1.38 The following property over words in Σ = {a, b, c}:

1.2. THE EQUIVALENCE THEOREM 27

“there are no two occurrences of b, between which only a’s occur, and at
most three c’s occur”

is defined by
∼ (Σ∗ba∗bΣ∗) ∩ ∼ (Σ∗cΣ∗cΣ∗cΣ∗cΣ∗)

£

Remark 1.39 A language is definable by a generalized regular expression
if, and only if, it is regular.

For the definition of word sets (languages) generalized regular expressions
are an alternative to MSO-logic; they may be not so flexible, but in many
cases they are much more convenient to use. Their translation into automata
is of the same computational complexity as the translation of the formulas.

Remark 1.40 The BET-Theorem has been extended to other types of mod-
els instead of finite words:

1. Automata on ω-words and their equivalence to MSO-logic (Büchi 1960)

2. Automata on finite trees and their equivalence to MSO-logic (Doner,
Thatcher/Wright 1968)

3. Automata on infinite trees and their equivalence to MSO-logic (Rabin
1969)

Application: Decidable theories. The initial motivation to reduce for-
mulas to automata was “First-order arithmetics”, i.e. the first-order theory
of the structure (N, +, ·, 0, 1), which was proven to be undecidable (Gödel
1931). Based on this result Tarski formulated the following problem: What
is the result if in its signature we keep only +1, but allow set quantifiers?

Corollary 1.41 (of the Büchi, Elgot, Trakhtenbrot Theorem) : The
second-order theory of the structure (N, +1) in which the second-order quan-
tifiers range only over finite sets is decidable.

This theory is usually referred to as the weak second-order theory of one
successor (WS1S).

Theorem 1.42 The weak second-order theory of one successor (WS1S) is
decidable.

The use of tree automata and automata on infinite trees lead to further
results:

• The theory S1S refers to the structure (N, +1) with arbitrary set quan-
tifiers.

28 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

• The theory WS2S concerns the structure of the infinite binary tree
(with two successor functions), in which the set quantifiers range only
over finite sets.

• The theory S2S refers to the infinite binary tree with arbitrary set
quantifiers.

All these theories are decidable using the corresponding automata and sim-
ilar techniques as in the proof of Theorem 1.18.

1.3 Consequences and Applications in Model Check-
ing

First of all, the Equivalence Theorem has a purely logical consequence:

Theorem 1.43 Every MSO-formula φ(X1, . . . , Xn) is over word models
equivalent to an EMSO-formula, i.e. to a formula of the form

∃Y1 . . .∃Ymψ(X1, . . . , Xn, Y1, . . . , Ym)

where ψ is an FO-formula.

Proof: Use the BET-Theorem in both directions: φ ; Aφ ; ∃Y1 . . .∃Ym ψ.
So, given an MSO-formula φ(X), we first construct the equivalent NFA

Aφ over the alphabet Σ × {0, 1}n and then transform it into an equivalent
EMSO-formula ∃Y1 . . .∃Ym ψ. 2

Theorem 1.44 Satisfiability and equivalence of MSO-formulas over word
models are decidable problems.

Proof: Apply the transformations into automata:

• ϕ is satisfiable iff L(ϕ) 6= ∅ iff L(Aϕ) 6= ∅

• ϕ ≡ ψ iff L(ϕ) = L(ψ) iff L(Aϕ) = L(Aψ)

The constraints on the right can be tested algorithmically. 2

We look at the terminating behavior of finite state systems. The model
checking problem is the following: Given a finite state system represented by
an NFA A and a specification formulated as an MSO-formula φ, does every
word accepted by A satisfy the specification φ? This can be succinctly
restated as “L(A) ⊆ L(φ)?”.

To solve the model checking problem we introduce error scenarios. A
word w is an error scenario if w ∈ L(A) but w 6|= φ, i.e. w ∈ L(A)∩L(A¬φ).

1.3. CONSEQUENCES AND APPLICATIONS IN MODEL CHECKING29

The solution of a model checking problem consists of two steps. First
we construct from a formula φ an automaton A¬φ using the BET-Theorem.
Then we construct the product automaton B of A and A¬φ. B accepts
precisely the error scenarios. Hence, we apply the emptiness test for B. If
L(B) turns out to be non-empty, then not every word accepted by A satisfies
the specification φ. In this case the emptiness test returns a counter-example
to φ, which can be used for debugging the system.

So, given an automaton A and an MSO-formula φ, to solve the model
checking problem we have to do the following:

1. Construct the automaton A¬φ

2. Proceed to the product automaton A × A¬φ that recognizes L(A) ∩
L(A¬φ).

3. Apply the non-emptiness test on the product automaton.

4. In case of non-emptiness, return a word that is accepted by the product
automaton (error scenario).

Example 1.45 MUX (Mutual exclusion) protocol modeled by a transition
system over the state-space B5.

Proc0: loop

(00) a0: Non_Critical_Section_0;

(01) b0: wait unless Turn = 0;

(10) c0: Critical_Section_0;

(11) d0: Turn := 1;

Proc1: loop

(00) a1: Non_Critical_Section_1;

(01) b1: wait unless Turn = 1;

(10) c1: Critical_Section_1;

(11) d1: Turn := 0;

A state is a bit-vector (b1, b2, b3, b4, b5) ∈ B5 (value of turn, line no. of
process 0, line no. of process 1). On this protocol we can define the system
automaton AMutEx over the state space {0, 1}5, with initial state (00000),
the alphabet B5 and the following transitions:

For process 0:

b1 0 0 b4 b5 → b1 0 1 b4 b5
1 0 1 b4 b5 → 1 0 1 b4 b5
0 0 1 b4 b5 → 0 1 0 b4 b5

b1 1 0 b4 b5 → b1 1 1 b4 b5
b1 1 1 b4 b5 → 1 0 0 b4 b5

For process 1: analogously

30 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

If we additionally label each transition with its target state, and declare all
reachable states as final ones, the words being accepted by this automaton
are exactly the system runs. Finally, for matters of system specification we
can represent the 5 bits by predicates X1, . . . , X5 and introduce abbreviated
compact state properties that can be described by MSO-formulas:

ata0(t) := ¬X2(t) ∧ ¬X3(t) (states of the form (X00XX)
Turn(t) = 0 := ¬X1(t) (states of the (0XXXX)

The first formula specifies all states where some part of the system is “at
a0”, which means that process 0 is in line 00. The second one specifies all
those states where the value of the synchronization variable happens to be
0. For the general case where state properties p1, . . . , pk are considered, a
framework is used that is called Kripke structure.

Definition 1.46 A Kripke structure over propositions p1, . . . , pk has the
form M = (S,→, s0, β) with

• a finite set S of states

• a transition relation →⊆ S × S (alternatively ⊆ S × Σ × S)

• an initial state s0

• a labeling function β : S → 2{p1,...,pn} assigning to each s ∈ S the set
of those pi that are true in s

Usually, we write a value β(s) as a bit vector (b1, . . . , bn) with bi = 1 iff
pi ∈ β(s).

Some very essential specifications of the MUX System would be the
safety condition and the liveliness condition. For the first we have to specify
that no state in which process 0 is in c0 and process 1 is in c1 will ever be
reached:

ϕ := ∀x¬
(
atc0(x) ∧ atc1(x)

)

According to our model, we have to forbid all states of the form (X1010):

ϕ(X1, . . . , X5) = ∀x¬
(
X2(x) ∧ ¬X3(x) ∧ X4(x) ∧ ¬X5(x)

)

In the framework of model checking, this is an inclusion test, namely whether
every (accepting) run of the finite system is also a (correct) model for the
MSO-specification: L(AMutEx) ⊆ L(ϕ(X1, . . . , X5)).

For an example specification of the second kind, we require that “when-
ever process 0 wants to enter the critical section (at b0), it will eventually
indeed enter c0”:

∀x
(
atb0(x) → ∃y(x < y ∧ atc0(y))

)

The MSO formulation of this condition actually makes sense when it comes
to infinite system runs, which goes beyond the scope of these course notes.

£

1.4. FIRST-ORDER DEFINABILITY 31

1.4 First-Order Definability

For the most cases of specification the expressive power of FO[S, <]-formulas
suffices. A natural question to ask is what are the exact limits of this power,
i.e. which regular languages can be expressed by FO-formulas. To this
purpose we are going to introduce two new formalisms, namely star-free
(regular) expressions and the temporal logic LTL (“linear time logic”), and
compare them with FO-logic. Without giving a complete proof, we shall
see that all three formalisms define exactly the same class of languages.
Finally, we will see that this class is a proper subset of the class of regular
languages, i.e. there is a special class of languages that is regular (which
means MSO-definable) but not FO-definable.

1.4.1 Star-free Expressions

Definition 1.47 A star-free regular expression is a (generalized) regular
expression built up from the atoms ε, ∅, a ∈ Σ using only the operations · for
concatenation, + for union, ∩ for intersection, and ∼ for complementation.
The language L(r) defined by such an expression r is also called star-free.

Example 1.48 Let Σ = {a, b, c}

1. Σ∗ is star-free, defined by ∼∅

2. a+ is star-free, defined by ∼ε ∩ ∼(Σ∗(b + c)Σ∗)

3. b(ab)∗ is star-free, defined by the constraint:
“never c, begin with b, never aa nor bb, end with b”, i.e.:

∼(Σ∗cΣ∗) ∩ bΣ∗ ∩ ∼(Σ∗(aa + bb)Σ∗) ∩ Σ∗b

£

Remark 1.49

a. The use of complementation ∼ is essential.
Indeed, complementation is the operation that enables us to represent
infinite languages because by complementing a finite language we get
an infinite one. With union, concatenation, and intersection we can
only produce finite languages starting from the finitely many symbols
of the alphabet.

b. The standard star-free expressions are produced out of a ∈ Σ, ε, ∅ by
using only + and ·; these expressions define exactly the finite lan-
guages.

Theorem 1.50 Every star-free language L ⊆ Σ+ is FO-definable.

32 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

This theorem follows from the more technical lemma below.

Lemma 1.51 For every star-free expression r there is an FO-formula ϕr(x, y)
that expresses that “the segment from x up to y is in L(r)”, that is w ∈ L(r)
iff w |= ϕr[min, max] for all w ∈ Σ+.

Proof: By induction on the construction of the star-free expression.
Base cases:

• r = a: Set ϕr(x, y) := Pa(x) ∧ x = y

• r = ∅: Set ϕr(x, y) := ∃z(x ≤ z ∧ z ≤ y ∧ ¬(z = z))

Induction hypothesis: Let s, t be equivalent to ϕs(x, y), ϕt(x, y).
Induction step: For r = s + t, r = s ∩ t and r = (∼s) ∩ ∼ε set:
ϕr(x, y) := ϕs(x, y)∨ϕt(x, y), ϕs(x, y)∧ϕt(x, y), and ¬ϕs(x, y), respectively.
For r = s · t we require the existence of two successive positions z, z′ that
are between x and y. From x up to z, ϕs holds, and from z′ up to y, ϕt

holds:

ϕr(x, y) := ∃z∃z′(x ≤ z ∧ z ≤ y ∧ x ≤ z′ ∧ z′ ≤ y ∧
ϕs(x, z) ∧ S(z, z′) ∧ ϕt(z

′, y))

2

1.4.2 Temporal Logic LTL

The (propositional) temporal logic LTL (linear time logic) was first pro-
posed in 1977 by A. Pnueli for purposes of system specification. Its main
advantages are:

• variable-free compact syntax

• transformation into automata more efficiently than in the case of FO-
formulas

• equivalence to FO[S, <]-logic

In this section we handle LTL only over finite words.

Definition 1.52 (LTL) Syntax: A temporal formula is built up from
propositional variables p1, p2, . . . using the connectives ¬,∨,∧,→,↔ and
the temporal operators X (next), F (eventually), G (always), and U (until).
We write φ(p1, . . . , pn) for a temporal formula φ to indicate that at most
the propositional variables p1, . . . , pn appear in φ.

1.4. FIRST-ORDER DEFINABILITY 33

Semantics: A temporal formula φ(p1, . . . , pn) is evaluated in a model (w, j)
where 1 ≤ j ≤ |w| is a position in the word w, and w is of the form

w =

(
b1(1)

...
bn(1)

. . .

b1(|w|)
...

bn(|w|)

)

The value bi(k) ∈ {0, 1} codes the truth value of proposition pi at position
k in w.

We define the semantics of temporal formulas as follows:

(w, j) |= pi iff bi(j) = 1
|= Fφ iff ∃k (j ≤ k ≤ |w| and (w, k) |= φ)
|= Gφ iff ∀k (j ≤ k ≤ |w| ⇒ (w, k) |= φ)
|= Xφ iff j < |w| and (w, j + 1) |= φ

|= φUψ iff

{

∃k1(j ≤ k1 ≤ |w| and (w, k1) |= ψ

and ∀k (j ≤ k < k1 ⇒ (w, k) |= φ))

The Boolean connectives have the standard semantics.

Intuitively, (w, j) |= φ means that φ is satisfied at position j in the word
w. We write w |= φ for (w, 1) |= φ and define the language L(φ) accepted
by a temporal formula containing the propositional variables p1, . . . , pn to
be L(φ) = {w ∈ ({0, 1}n)+ | w |= φ}.

Example 1.53 The LTL-formula

ϕ := G(p1 → X(p1Up2))

expresses the following property:

“Whenever p1 holds, then from the next moment on the following holds:
p1 holds until eventually p2 holds.”

Consider the model:

w =

[
1
0

] [
0
0

] [
1
0

] [
1
0

] [
1
0

] [
1
1

] [
0
1

]

The formula holds on position 2, but not on position 1. Consequently, we
write (w, 2) |= ϕ but w 6|= ϕ. £

Example 1.54

G(p1 → X(¬p2Up3))

expresses in (w, j) with w ∈ ({0, 1}3)+ the following property:

34 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

“From position j onwards, whenever the first component is 1, then from
the next position onwards the second component is 0, until at some

position the third component is 1”.

£

Example 1.55 Let n = 2 and w =

[
1
0

] [
0
0

] [
1
1

] [
0
1

] [
1
0

] [
0
1

]

• w |= G(p1 → Fp2), w 6|= G(p2 → Fp1)

• w |= X(¬p2Up1), w |= ¬p2Up1

• w 6|= p1U(p1 ∧ p2)

£

Theorem 1.56 Every LTL-definable language L ⊆ Σ+ is FO-definable.

Lemma 1.57 For every LTL-formula ϕ one can construct an equivalent
FO[S, <]-formula ϕ∗(x) with

(w, j) |= ϕ iff (w, j) |= ϕ∗(x)

Proof: Inductive definition of ϕ∗(x):

• (pi)
∗(x) := Xi(x)

• (¬ϕ)∗(x) := ¬(ϕ∗(x)), analogously for ∨,∧,→,↔

• (Gϕ)∗(x) := ∀y(x ≤ y → ϕ∗(y))

• (Fϕ)∗(x) := ∃y(x ≤ y ∧ ϕ∗(y))

• (Xϕ)∗(x) := ∃y(S(x, y) ∧ ϕ∗(y))

• (ϕUψ)∗(x) := ∃y
(
x ≤ y ∧ ψ∗(y) ∧ ∀z(x ≤ z ∧ z < y → ϕ∗(z))

)

2

Example 1.58

ϕ = G(p1 → X(¬p2Up3))
ϕ∗(x) = ∀y(x ≤ y ∧ X1(y) → ∃z(S(y, z) ∧ ∃s(z ≤ s ∧ X3(s) ∧

∀t(z ≤ t ∧ t < s → ¬X2(t)))))

£

So far we have shown that:

1.5. BETWEEN FO- AND MSO-DEFINABILITY 35

• If L is star-free, then L is FO-definable.

• If L is LTL-definable, then L is FO-definable.

The converses also hold but won’t be proven in these course notes since
this requires much bigger technical effort:

Theorem 1.59 (McNaughton 1969, Kamp 1968) The conditions “FO-
definable”, “star-free”, and “LTL-definable” for a language L are equivalent.

1.5 Between FO- and MSO-definability

The question that arises now is whether there is an MSO-definable language
that is not FO-definable. Using the above equivalences, this questions means
that we are looking for regular languages that are not star-free. To this
purpose we introduce the “counting”-property, by which regular languages
can be distinguished from star-free ones. In particular, we show that:

• There is at least one regular language that is “counting”.

• Every star-free language is “non-counting”.

Definition 1.60 Call L ⊆ Σ+ non-counting if

∃n0 ∀n ≥ n0 ∀u, v, w ∈ Σ∗ : uvnw ∈ L ⇔ uvn+1w ∈ L.

This means for n ≥ n0 either all uvnw are in L, or none is.

Remark 1.61 The above condition is a strong pumping-property; namely
if for a sufficiently large n the segment vn occurs in a word of L, then
we remain in L if we use higher powers of v. Furthermore, note that the
position of vn is arbitrary. The standard Pumping Lemma guarantees only
the existence of a position to pump.

Definition 1.62 L is not non-counting (short: L is counting) iff

∀n0 ∃n ≥ n0 ∃u, v, w ∈ Σ∗ : (uvnw ∈ L ⇔ uvn+1w 6∈ L).

Example 1.63 • L1 = (aa)+ is counting: Given n0 take some even
number n ≥ n0 and set u, w := ε, v := a. Then an ∈ L1, but an+1 /∈
L1.

• L2 = b(a∗bb)∗ is counting: Given n0 take some even number n ≥ n0

and set u := b, v := b, w := ε. Then bbn ∈ L2, but bbn+1 /∈ L2.

• L3 = b(a+bb)∗ is non-counting because it is FO-definable by:

36 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

Pb(min) ∧ Pb(max) ∧ ∀u(S(min, u) → Pa(u))
∧∀x∀y(S(x, y) ∧ Pa(x) ∧ Pb(y) →

∃z(S(y, z) ∧ Pb(z) ∧ ∀u(S(z, u) → Pa(u)))) .

Theorems 1.65 and 1.59 imply that FO-definable languages are non-
counting.

£

Remark 1.64 By “counting” we mean modulo-counting successive occur-
rences of a particular pattern (the word v in the definition). L = a(ba)∗ is
also sort of a counting language since it contains only words of odd length,
but it is not modulo-counting in the above sense.

Theorem 1.65 Every star-free language is non-counting.

Proof: By induction on the structure of star-free expressions.

Base cases: For a ∈ Σ, ∅, ε take n0 = 2 respectively. Then, for each
of these languages L, for each n ≥ n0, and for all u, v, w ∈ Σ∗ the
following holds:

uvnw ∈ L ⇔ uvn+1w ∈ L

Induction step “∼”: If for a suitable n0 and for every n ≥ n0

uvnw ∈ L ⇔ uvn+1w ∈ L

holds, then obviously this also holds for the complement of L.

Induction step “∩”: By induction hypothesis, for L1, L2 there are n1, n2,
such that for all n ≥ ni

uvnw ∈ Li ⇔ uvn+1w ∈ Li (i = 1, 2)

Set n0 = max(n1, n2). Then for n ≥ n0 the following holds:

uvnw ∈ L1 ∩ L2 ⇔ uvn+1w ∈ L1 ∩ L2

Induction step “·”: Take the induction hypothesis as before and set n0 =
2 · max(n1, n2) + 1. For n ≥ n0 consider uvnw ∈ L1 · L2. Consider
the decomposition of uvnw in two segments, uvnw = z1z2 with z1 ∈
L1, z2 ∈ L2 as illustrated in Figure 1.2. By the choice of n0 one of the
following cases applies.

Case 1: z1 contains at least n1 v-segments. Then by induction hy-
pothesis z′1 (with one v-segment more than z1) is in L1.
Case 2: z2 contains at least n2 v-segments. Then by induction hy-
pothesis z′2 (with one v-segment more than z2) is in L2.
In both cases we get uvn+1w ∈ L1L2. The converse (from uvn+1w ∈
L1L2 to uvnw ∈ L1L2) can be proven analogously. 2

1.5. BETWEEN FO- AND MSO-DEFINABILITY 37

n1 n2

vn

z1
� L1 z2

� L2

u w

Figure 1.2: Illustration

Now that we distinguished these classes of languages on the level of logic,
the natural thing to ask is whether there is a way to do the same on the level
of automata. That is, is there a property of automata that characterizes the
star-free expressions? This question is answered positively in Section 2.4.

In the following we introduce a finer complexity scale for (standard)
regular expressions that refers to the number of occurrences of the star
operator, and relate this measure to a property of automata.

Definition 1.66 The star-height of a regular expression is defined induc-
tively as follows:

• sh(a) = sh(∅) = sh(ε) = 0

• sh(r + s) = sh(r · s) = max(sh(r), sh(s))

• sh(r∗) = sh(r) + 1

For a regular Language L, the star-height of L is

sh(L) = min{n | there is a regular expression r with L = L(r) and sh(r) = n}

Remark 1.67 L is finite iff sh(L) = 0.

Theorem 1.68 (Eggan 1963) The star-height hierarchy is strict (over al-
phabets with at least two letters): For each n ≥ 0 there exists a language Ln

with sh(Ln) = n.

For Ln we can take the family of languages, recognized by the following NFA
(see exercises):

0 1 2 · · · 2n

a a a a

b b b b

The property of NFAs that corresponds to the star-height of expressions is
the “loop complexity” (also “feedback number”).

38 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

Definition 1.69 The loop complexity lc(A) of an NFA A is the minimum
number of steps of the following kind required to eliminate all loops of A:

“remove one state in each strongly connected component of the current
transition graph”

Example 1.70 Verify that the following automaton has loop complexity 2:

0 1

2 3

1st step: Remove 1
2nd step: Remove 0 and 3

£

Example 1.71 lc(A1) = 1, lc(A2) = 2, and lc(A3) = 3.

A1 : 1
a

a,b

2

a,b

1st step: Remove 1 and 2.

A2 : 1 2
1st step: Remove 1 (or 2)
2nd step: Remove 2 (or 1)

A3 : 0 1 2 3

8 7 6 5 4

1st step: Remove 4
2nd step: Remove 2 and 6
3rd step: Remove 0 and 7

£

Analogously, we can define the loop complexity of a regular language.

Definition 1.72 The loop complexity of a regular language is

lc(L) = min{n | there exists an NFA A with L = L(A) and lc(A) = n}

Theorem 1.73 (Eggan 1963) For every regular language L, sh(L) = lc(L).

The proof is a refinement of the one for Kleene’s theorem (Theorem 1.4). For
further details, please refer to J.R. Büchi: Finite Automata, Their Algebras
and Grammars, Sect. 4.6.

Theorem 1.74 (Hashiguchi 1988) Given a regular language L (say de-
fined by an NFA) the star-height can be calculated algorithmically.

For the case of generalized regular expressions the generalized star-height
gsh is defined analogously to the one of the standard star-height.

1.6. EXERCISES 39

Remark 1.75

• gsh(L) ≤ sh(L) (i.e. we may be able to reduce the star-height by
substituting some stars by the extended operators of the generalized
regular expressions) but in general we cannot reduce it to 0 because

• gsh(L) = 0 iff L is star-free (by definition).

• There exist regular languages L with gsh(L) ≥ 1 (compare Exam-
ple 1.63 on page 35).

Open problem (since 1971): Are there regular languages L with gsh(L) ≥
2?

We suspect that in case there is a solution, it goes to the direction of
nesting modulo-counting since this is the identifying property of non-star-
free expressions. We define the languages:

E = (00)∗1 (“even block”)
O = (00)∗01 (“odd block”)

The suggestion of using the language

specifying an even number of even blocks (((O∗E)(O∗E))∗O∗) failed after a
few years.

Theorem 1.76 (Thomas., Theor. Comput. Sci. 13 (1981))

gsh(((O∗E)(O∗E))∗E∗) = 1

Another proposed language L as candidate for a language with gsh(L) =
2 was (O+E+O+E+)∗. Also for this language it was later proven that
gsh(L) = 1. For details, please refer to M. Robson, More languages of
generalized star height 1, Theor. Comput. Sci. 106 (1992), 327-335.

1.6 Exercises

Exercise 1.1 Give FO- or MSO-formulas for the languages that are defined
by the following regular expressions or descriptions in colloquial language:

(a) a+b∗,

(b) aab∗aa,

(c) there are at least three occurrences of b, and before the first b there are
at most two occurrences of a.

Exercise 1.2 Consider the following NFA A:

1
b

2

a

4

b

3 a
b

40 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

In the lecture it was shown how to construct an equivalent formula ϕA with
four set variables X1, · · · , X4. According to the hint of the lecture, give a
formula with only two set variables. (The states 1, 2, 3, 4 should correspond

to the vectors

[
0
0

]

,

[
0
1

]

,

[
1
0

]

,

[
1
1

]

). Is L(A) FO-definable?

Exercise 1.3 (a) For the MSO-formula

∃x∀y(x < y → Pa(y))

give an equivalent MSO0-formula.

(b) Let Σ = {a, b}. The following MSO0-formula defines a language over
Σ × {0, 1}3. Give (by direct construction) an equivalent NFA.

(X1 ⊆ X2) ∧ (X1 < X3) ∧ (X3 ⊆ Pa) .

Exercise 1.4 ∗ Show that every regular language L ⊆ Σ+ is definable by an
EMSO-sentence with only one single set quantifier.

Exercise 1.5 Let Σ = {a, b} and

ϕ(X1, y) :=
(
¬Pa(y) → X1(y)

)
,

ψ(X1) := ∀y ϕ(X1, y) and

χ := ∃X1 ψ(X1).

(a) Write ϕ as an MSO0-formula ϕ(X1, Y).

(b) Construct an NFA over Σ × {0, 1}2 recognizing L(ϕ(X1, Y)).

(c) Using (b) construct an NFA over Σ × {0, 1} recognizing L(ψ(X1)).

(d) Using (c) construct an NFA over Σ recognizing L(χ).

Exercise 1.6 Consider the following two decidability problems:

(a) Given an MSO-sentence ϕ, does ϕ hold for all nonempty word models?

(b) Given an MSO-sentence ϕ, does ϕ hold for all nonempty word models
of even length?

Describe algorithms for solving these problems.

Exercise 1.7 Consider the word model

w :=

[
1 0 1 0 1 0
0 0 1 1 0 1

]

and the formulas

1.6. EXERCISES 41

1. ϕ = p2U(p1 ∧ ¬p2) and

2. ψ = G(p1 → Xp2)

(a) For each j = 1, · · · , 6 answer whether the formulas hold in (w, j) or not.

(b) Give equivalent FO-formulas and star-free expressions.

Exercise 1.8 ∗ For n ≥ 1 let An be the following NFA:

0
a

1
b

a

2
b

· · ·
a

n
b

(a) Show that L(An) is star-free.

(b) Show that for L(A2n) there exists a conventional regular expression (i.e.
only using +, ·,∗) of star-height n.
(The star-height of an expression is the maximal number of nested stars.
Example: (a(aa)∗ + (bb)∗)∗ has star-height 2)

(c) Give an LTL-formula for L(An).

Hint: For (a),(b) it is useful, to consider next to An also the automata
A+

n , A−
n ; A+

n has initial state 0, final state n, A−
n has initial state n, final

state 0.

Exercise 1.9 Give star-free expressions for the languages defined by the

following LTL-formulas. The alphabet is Σ =

{[
0
0

]

,

[
0
1

]

,

[
1
0

]

,

[
1
1

]}

. Write
[
1
∗

]

for

[
1
0

]

+

[
1
1

]

, etc.

(a) XX(p1 ∧ G¬p2)

(b) FG(p1 ∧ ¬Xp2)

(c) F (p1 ∧ X(¬p2Up1))

Exercise 1.10 Decide whether the following languages are “counting” and
verify your assumption.

(a) b(abb)∗

(b) a(bbb)∗aa

42 CHAPTER 1. AUTOMATA AND LOGICAL SPECIFICATIONS

Chapter 2

Congruences and
Minimization

In this chapter we are interested in reducing the size of automata while
keeping their functionality. For finite automata (on words or on trees) the
size usually refers to the number of states. The states of an automaton or a
system represent the distinctions that are made in order to fulfill a certain
task. The goal is to make this number of distinctions as small as possible.
For this purpose we now take the graph theoretic view (as opposed to the
logical view from the previous chapter) of automata. As we will see, there
are elegant techniques that allow us to compare and improve automata on
the system level, rather than on the specification level.

2.1 Homomorphisms, Quotients and Abstraction

There are cases in the analysis and design of a system, where we are inter-
ested only in a rough view of its structure and want to spare ourselves the
local details. In this case, we actually represent by a model only the topol-
ogy and interconnection between the subsystems and abstract away from
their own functionality.

Example 2.1 The NFA A2 on the right-hand side of Figure 2.1 is a rough
view on the NFA A2 on the left-hand side, where the subsystem of the states
1, 2, and 3 (counting a’s modulo 3) is represented by state B. This merging
of states corresponds to the following homomorphism:

0 7→ A, 1 7→ B, 2 7→ B, 3 7→ B

£

Definition 2.2 Let A = (A, RA, fA, cA),B = (B, RB, fB, cB) be two struc-
tures, with

43

44 CHAPTER 2. CONGRUENCES AND MINIMIZATION

0 1

2

3

A B
b

a

a

a

b

b

b

a

Figure 2.1: Merging states in an NFA

• universes A, B,

• binary relations RA ⊆ A × A, RB ⊆ B × B,

• binary functions fA : A × A → A, fB : B × B → B and

• distinguished elements (“constants”) cA ∈ A, cB ∈ B.

A homomorphism from A to B is a function h : A → B with

• for x1, x2 ∈ A: If (x1, x2) ∈ RA, then (h(x1), h(x2)) ∈ RB

• for x1, x2 ∈ A: h(fA(x1, x2)) = fB(h(x1), h(x2))

• h(cA) = cB

The definition is analogous for relations and functions of other arity.

Example 2.3 The “Parikh-mapping”:
A = ({a, b}∗, ·, ε), B = (N × N, +, (0, 0))
h(w) = (|w|a, |w|b) (Numbers of a’s and b’s in w)
E.g.: h(aabab) = (3, 2)
The function h is a homomorphism because:

• for w1, w2 ∈ {a, b}∗: h(w1 · w2) = (|w1 · w2|a, |w1 · w2|b) = (|w1|a +
|w2|a, |w1|b + |w2|b) = (|w1|a, |w1|b) + (|w2|a, |w2|b) = h(w1) + h(w2)

• h(ε) = (|ε|a, |ε|b) = (0, 0)

£

Example 2.4 Consider again the NFAs A1 and A2 from Figure 2.1:

({0, 1, 2, 3}, 0, R1
a, R

1
b , {1}) with

R1
a = {(1, 2), (2, 3), (3, 1)} and

R1
b = {(0, 0), (0, 1)}

({A, B}, A, R2
a, R

2
b , {B}) with

R2
a = {(B, B)} and

R2
b = {(A, A), (A, B)}

2.1. HOMOMORPHISMS, QUOTIENTS AND ABSTRACTION 45

The domain of this homomorphism h is the state set of A1 and has the
following discrete values: h(1) = h(2) = h(3) = B, h(0) = A. It is indeed a
homomorphism, because every transition from R1

a is mapped to a transition
in R2

a. Analogously for R1
b and R2

b . £

Definition 2.5 Let A1 = (Q1, Σ, q1
0, ∆

1, F 1) and A2 = (Q2, Σ, q2
0, ∆

2, F 2)
be NFAs. An NFA-homomorphism from A1 to A2 is a function h : Q1 → Q2

with

• h(q1
0) = q2

0

• (p, a, q) ∈ ∆1 ⇒ (h(p), a, h(q)) ∈ ∆2

• q ∈ F 1 ⇒ h(q) ∈ F 2

Remark 2.6 This is covered also by the general definition of homomor-
phism if ∆1 is decomposed into binary relations R1

a for each a ∈ Σ with:

(p, q) ∈ R1
a iff (p, a, q) ∈ ∆1

and analogously for ∆2.

Remark 2.7 Let h be an NFA-homomorphism from A1 to A2. Then the
following holds: If A1 accepts the word w, then so does A2. Hence, L(A1) ⊆
L(A2). In other words abstraction by homomorphism produces an NFA that
recognizes a super-language of the one defined by the initial NFA.

Example 2.8 Consider A1 and A2 from Example 2.4:

L(A1) = b+(aaa)∗

L(A2) = b+a∗

£

Remark 2.9 An NFA-homomorphism h of A yields a matching (or equiv-
alence) of the states of A: p, q are h-equivalent iff h(p) = h(q). In short
terms: A homomorphism yields a state equivalence.

The converse of Remark 2.9 also holds, namely: A state equivalence
yields a homomorphism. To this purpose we consider a partitioning of the
states of the NFA A = (Q,Σ, q0, ∆, F) and we write p ∼ q if p, q are in the
same class q/∼ = {p ∈ Q | p ∼ q} (i.e. they are “equivalent”).

Definition 2.10 The quotient automaton A/∼ of A is defined by A/∼ =
(Q/∼, Σ, q0/∼, ∆/∼, F/∼) with

• Q/∼ = set of ∼-classes q/∼ for q ∈ Q

46 CHAPTER 2. CONGRUENCES AND MINIMIZATION

• (P, a, R) ∈ ∆/∼ iff there is p ∈ P, r ∈ R with (p, a, r) ∈ ∆, for
∼-classes P, R

• P ∈ F/∼ iff there exists p ∈ P with p ∈ F

Then: h : q 7→ q/∼ is a homomorphism from A to A/∼.

Example 2.11 In the following automaton we merge the pairs of states
(0, 5), (1, 2) and (3, 4) and obtain the automaton on the right-hand side.

0 1 2

345

b

aa

a

a

a

a

b b

bb

A B

C

b

aa

a a, b

a, b

Note that we draw a b-transition from A to B, although there is such a tran-
sition only from 0 to 1 (but not from 5 to 1) in the initial automaton. This
is because the definition requires only the existence of a member in each
class that are linked with each other over such a transition. £

Example 2.12 On the same automaton as before we can merge the pairs
(1, 5) and (0, 4):

0, 4

1, 5 2

3

a, b a

a

a

a

b b

bb

£

In both previous examples we observed that if B results from A by
merging states, then L(A) ⊆ L(B). If we could find a way to merge the
correct states, so that the resulting automaton recognizes exactly the same
language as the initial one (L(A) = L(B)), then we would have improved
the initial automaton by reducing its number of states, without affecting its

2.1. HOMOMORPHISMS, QUOTIENTS AND ABSTRACTION 47

functionality. Furthermore, the best possible merging of states would lead
us to an equivalent automaton with the minimum number of states. This is
what we call the minimization problem of NFAs; namely given an NFA A,
to find an equivalent NFA B that has the minimum number of states. But
can we really achieve this by merging states? The following two examples
give an answer to this question.

Example 2.13 Let A be an NFA and call Aq the same NFA as A but with
a different initial state, namely q. To minimize A we suggest to merge two
states p, q, if L(Ap) = L(Aq). That is, if A accepts the same language both
starting from p and from q, then we shall merge p and q.

A

B

C

b

a

b

a, b

In the automaton above there is no pair that can be merged in way described
before:

• A vs. C: From A, b is accepted, from C not,

• A vs. B: From B, ε is accepted, from A not,

• B vs. C: From B, ε is accepted, from C not.

But still, it is obvious that the automaton can be minimized since states A
and B suffice to accept the same language, namely Σ∗b. £

Unfortunately, things are even worse since there are cases where even
if we try all possible mergings (without following a specific rule as in the
previous example), we will not find the minimal NFA.

Example 2.14 Consider the language L = Σ∗aΣ, over Σ = {a, b}. Obvi-
ously the minimal automaton A that recognizes L is the following:

a a, b

a, b

Another (not minimal) automaton B recognizing L is the following:

48 CHAPTER 2. CONGRUENCES AND MINIMIZATION

1 2

3

4

a

b

a

a

b

b

b

a

We observe that there is no proper quotient automaton of B that recognizes
L. This means that in the general case of the minimization of an NFA it
does not suffice to merely merge the existing states. £

2.2 Minimization and Equivalence of DFAs

We first look at the minimization problem for DFAs. In this case we can
successfully apply the techniques that we studied in the previous section
and furthermore we have an efficient algorithmic solution. Before starting,
we have to adopt a more abstract view on DFAs, namely consider them as
algebras.

Definition 2.15 Let Σ = {a1, . . . , an}. A DFA A = (Q,Σ, q0, δ, F) can
be represented as a structure A = (Q, q0, δa1 , . . . δan , F) with δai

: Q → Q,
defined by δai

(p) := δ(p, ai). This is an algebra with a distinguished subset
F .

Every word w = b1 . . . bm induces a function δw : Q → Q, which is
defined as a composition of δb1 , . . . , δbm

: δw(p) = δbm
(δbm−1(. . . δb1(p) . . .)).

A accepts w iff δw(q0) ∈ F .

We are going to apply the homomorphisms on the structures A.

Example 2.16

1 2

34

b

b

b

b

aa aa A B
b

b

a a

Looking at the automaton on the right-hand side we observe that with a we
remain at the same state, whereas with b we switch from A to B and vice
versa. So, δ2

a is the identity function and δ2
b is the permutation A 7→ B, B 7→

A.

To the automaton on the left-hand side we apply a homomorphism h
defined by h(1) = h(4) = A, h(2) = h(3) = B. To ensure that it is indeed a

2.2. MINIMIZATION AND EQUIVALENCE OF DFAS 49

homomorphism we have to check for each p ∈ {1, 2, 3, 4} the homomorphism
condition:

h(δ1
a(p)) = δ2

a(h(p)), h(δ1
b (p)) = δ2

b (h(p))

or in standard syntax:

h(δ1(p, x)) = δ2(h(p), x) for x ∈ Σ .

£

Next, we adapt the definition of NFA-homomorphism introduced in the
previous section to the case of DFAs.

Definition 2.17 Let A1 = (Q1, Σ, q1
0, δ

1, F 1) and A2 = (Q2, Σ, q2
0, δ

2, F 2)
be DFAs. A DFA-homomorphism from A1 to A2 is a homomorphism h :
Q1 → Q2 between the corresponding algebras. This means:

• h(q1
0) = q2

0

• h(δ1(p, a)) = δ2(h(p), a)

• h(F 1) ⊆ F 2

If h is a bijective function and h(F 1) = F 2, then h is called an isomorphism.

Example 2.18 From the left automaton we proceed to the right one by
merging 1 with 3 and 2 with 4.

0 1 2

34

b a

a

a

a

a b b

bb

A B C
b

a

a

a b b

This corresponds to a homomorphism h with: h(0) = A, h(1) = h(3) = B,
h(2) = h(4) = C. This homomorphism is also a DFA-homomorphism,
because both the initial and the resulting automata are DFAs. £

Example 2.19 On the same automaton as in the previous example we
make a different merging of states, namely 1 with 2 and 3 with 4.

50 CHAPTER 2. CONGRUENCES AND MINIMIZATION

0 1 2

34

b a

a

a

a

a b b

bb

A B

C

b

aa

a a, b

a, b

The mapping h(0) = A, h(1) = h(2) = B, h(3) = h(4) = C yields an
NFA-homomorphism, but not a DFA-homomorphism. We observe that if
we want to preserve determinism in the resulting automaton, we cannot
merge any pairs of states, even if this adheres to the conditions of the NFA-
homomorphism. There must be some additional relation between the two
states before they are merged. £

Remark 2.20 Every DFA-homomorphism induces an NFA-homomorphism;
the converse does not hold. This means that if a DFA-homomorphism from
A to B exists, then L(A) ⊆ L(B) holds (as a result of the induced NFA-
homomorphism).

Remark 2.21 A partitioning of states with a corresponding equivalence ∼
defines a DFA-homomorphism iff ∼ is a congruence with respect to the
transition functions δa for each a ∈ Σ and preserves the distinction between
final and non-final states. Formally:

p ∼ q ⇒ δa(p) ∼ δa(q)

and p ∼ q ⇒ (p ∈ F ⇔ q ∈ F)

Definition 2.22 A DFA-homomorphism from A = (Q,Σ, q0, δ, F) to B de-
fines a quotient-DFA of A in the following way: We set p ∼ q iff h(p) = h(q)
and define A/∼ = (Q/∼, Σ, q0/∼, δ/∼, F/∼) with

• Q/∼ = the set of ∼-classes q/∼ for q ∈ Q

• δ/∼(p/∼, a) = δ(p, a)/∼
• p/∼ ∈ F/∼ iff p ∈ F

Explanation: The definition of δ/∼(p/∼, a) is independent of the represen-
tative p. This goes also for F/∼.

Definition 2.23 For a DFA A = (Q,Σ, q0, δ, F), where w.l.o.g. we suppose
that all states are reachable from q0 we define p ∼A q, if L(Ap) = L(Aq).
Equivalently:

δw(p) ∈ F iff δw(q) ∈ F for all w ∈ Σ∗ .

2.2. MINIMIZATION AND EQUIVALENCE OF DFAS 51

Remark 2.24 a) ∼A is a right congruence, i.e. an equivalence relation
and
if p ∼A q and a ∈ Σ, then δa(p) ∼A δa(q).

b) The DFA A/∼A
is called the reduced DFA of A, short Ared and L(A) =

L(Ared).

Definition 2.25 (Nerode congruence) Let L ⊆ Σ∗.

u ∼L v iff for all w ∈ Σ∗ uw ∈ L ⇔ vw ∈ L.

This means that for any future w, u and v need not be distinguished with
respect to L. We often use the negation of this equivalence to prove that
two words belong in different equivalence classes, namely u 6∼L v iff there
exists some w with uw ∈ L and vw 6∈ L (or uw 6∈ L and vw ∈ L).

Example 2.26 Consider the language L = a(bb)∗. a and b are not equiva-
lent: Take w = ε, then aw = a ∈ L but bw = b 6∈ L. a, abb, abbbb, . . . are for
example equivalent. ε, a, b, ab are pairwise not equivalent. £

Remark 2.27 ∼L is a right congruence with respect to concatenation, which
means that if u ∼L v, then ua ∼L va and generally uw ∼L vw.

Proof: Show that ua ∼L va, i.e. uay ∈ L ⇔ vay ∈ L for all y ∈ Σ∗:

uay ∈ L ⇔ u(ay) ∈ L ⇔ by assumption v(ay) ∈ L ⇔ vay ∈ L

Notation: For the ∼L-class of u we write [u]L or just [u].
In a DFA A that recognizes L, we observe that if both u and v lead to

the same state, then u ∼L v. This holds because from δ(q0, u) = δ(q0, v)
we imply δ(q0, uw) = δ(q0, vw) and consequently uw ∈ L ⇔ vw ∈ L. This
means that there can be at most that many ∼L-classes as there are states:

Remark 2.28 If a DFA A recognizes the language L, then:

Number of ∼L-classes ≤ number of A-states.

It follows that if L is regular, then ∼L has a finite index, i.e. there are
finitely many equivalence classes.

Definition 2.29 (Canonical DFA) Let L be a language with finite
index(∼L). The canonical DFA AL = (QL, Σ, q0L, δL, FL) for L is defined
as follows:

• QL := { [u]L | u ∈ Σ∗} the (finite) set of ∼L-classes,

• q0L := [ε],

52 CHAPTER 2. CONGRUENCES AND MINIMIZATION

• δL([u], a) := [ua] and

• FL := {[u] | u ∈ L}.

Example 2.30 Let L = {a, b}∗abb{a, b}∗. There are four different ∼L-
classes: [ε]L, [a]L, [ab]L, [abb]L. Since

[ε]L = [b]L , [aba]L = [aa]L = [a]L , [abba]L = [abbb]L = [abb]L

we obtain the following canonical automaton for L:

[ε]L
a

b

[a]L

a

b

[ab]L
a

b
[abb]L a,b

£

Proposition 2.31 The canonical automaton AL accepts L.

Proof: AL accepts w ⇔ δ(q0L, w) ∈ FL ⇔ [w]L ∈ FL ⇔ w ∈ L 2

AL has index(∼L) many states. So AL is a DFA accepting L with the
minimum possible number of states. The following theorem shows that AL

is unique up to isomorphism.

Theorem 2.32 (Main DFA-Minimization Theorem) If the DFA A =
(Q,Σ, q0, δ, F) recognizes L, then the DFA Ared is isomorphic to AL.

Proof: We have to show that for Ared = (Q,Σ, q0, δ, F) there is a bijection
f : Q −→ QL with f(q0) = q0L, f(F) = FL and f(δ(q, a)) = δL(f(q), a).

Definition of f : Pick for any state q of Ared a word uq with δ(q0, uq) = q
and let f(q) := [uq]L. Obviously f is an isomorphism between Ared and AL.

2

Example 2.33 Consider the following automaton, which is obviously the
minimal one that can recognize the language L = a(bb)∗. To map this
automaton to a canonical one, we choose the following isomorphism:

1 7→ [ε] 2 7→ [bab] = [b] 3 7→ [ab] 4 7→ [abb] = [a]

2.2. MINIMIZATION AND EQUIVALENCE OF DFAS 53

1

4

2

3

b

a
b b

a

a

a, b

£

Our aim is to compute from any DFA A a DFA B as in Theorem 2.32,
and thus obtain a minimal deterministic automaton. Given a DFA A =
(Q,Σ, q0, δ, F) we have to determine the equivalence classes of ∼A. But to
fix two equivalent states, we have to examine all possible words that the
automaton may read from those states, and examine whether they lead the
automaton to a final state or not. That is why we prefer the converse: we
identify all pairs of states that are not ∼A-equivalent. In other words, we
identify those pairs p, q for which the following holds:

“there exists a w, such that one of the two states δ(p, w) and δ(q, w) is in
F and the other one not”

To fix an appropriate w we proceed stepwise on its length. In the first step
we take w = ε and separate all final states from the non-final ones: (F, Q\F).
In the next step (because p ∼A q ⇒ δ(p, a) ∼A δ(q, a)) we declare two
(not yet separated) states p and q as non-equivalent, if for some a ∈ Σ,
δ(p, a) and δ(q, a) are non-equivalent as well. According to this concept we
refine the classification (F, Q \ F) as long as this is possible. Formally, the
partition Q \ F has to be split in two with respect to F if:

“there exist p, q ∈ Q \ F and a letter a, with δ(p, a) ∈ F and δ(q, a) 6∈ F ;
then the partition Q \ F is split into {p ∈ Q \ F | δ(p, a) ∈ F} and

{p ∈ Q \ F | δ(p, a) 6∈ F}”.

For every following step and a currently available partition (B1, . . . , Bk) the
task is generally described as follows:

Bi is being split in two with respect to Bj and a, if there exist p, q in Bi,
such that δ(p, a) ∈ Bj , but δ(q, a) 6∈ Bj

This partitioning splits Bi into

(∗) {p ∈ Bi | δ(p, a) ∈ Bj} and {p ∈ Bi | δ(p, a) 6∈ Bj}

54 CHAPTER 2. CONGRUENCES AND MINIMIZATION

A CB

D E F G

a

b

b

a

a

b

a

a

b

b

b

a

b

a

AD CBG

E F

a

b

b

a

a

a

b

b

b

a

Figure 2.2: Partition refinement

Partition refinement algorithm:

1. Initialization: B1 = F, B2 = Q \ F

2. While there exist Bi, Bj , a with (∗), partition Bi with respect to Bj

and a.

Example 2.34 We want to find equivalence classes in the automaton from
the left-hand side of Figure 2.2. The initial partition is (ABDEFG, C) and
we now stepwise split these blocks according to (∗):

1st step: Splitting ABDEFG w.r.t. C and b yields BG and ADEF .

2nd step: Splitting ADEF w.r.t. BG and a yields AD and EF .

3rd step: Splitting EF w.r.t. C and a yields E and F .

Q

initialization ABDEFG C

1st step BG ADEF

2nd step AD EF

3rd step E F

The resulting minimized automaton is shown on the right-hand side of Fig-
ure 2.2. £

2.2. MINIMIZATION AND EQUIVALENCE OF DFAS 55

Complexity of the algorithm: There can be at most |Q|−1 splits. Every
loop requires at most to calculate δ(q, a) for q ∈ Q and a ∈ Σ (for checking
condition (∗)). Altogether this sums up to O(|Σ| · |Q|2). We conclude that
the minimization of a DFA can be done in second-order polynomial time with
respect to the number of states. This can be improved by the algorithm of
Hopcroft, which requires only O(|Q| log |Q|) time.

Now that we know an efficient algorithm to minimize DFAs, we can
use it to construct an efficient equivalence test, according to the following
corollary.

Corollary 2.35 (of the Main Minimization Theorem) Two DFAs over
Σ are equivalent, if and only if the corresponding reduced automata are iso-
morphic.

This means that we can use the following algorithm to check, whether
two DFAs are equivalent:

1. Given two DFAs A,B construct their reduced versions Ared,Bred.

2. Starting from the initial state perform breadth-first search in Ared,
Bred and name each reached state q with the smallest word that leads
to it, according to the canonical order.

3. Check whether the transition tables and the final states are identical.

Time complexity: O(n log n), like for the minimization.

Example 2.36 We consider the canonical automaton of Example 2.33 and
apply the equivalence test algorithm. With breadth-first search we first visit

[ε]

[a]

[b]

[ab]

b

a
b b

a

a

a, b

a b

[ε] [a] [b]
[a] [b] [ab]
[b] [b] [b]
[ab] [b] [a]

the initial state [ε] and write it into the transition table. In the next loop
we visit [a] and from there [b]. We enter both under [ε]. In the next loop
we reach again [b], but take no action, because we have already seen this
state. In the last loop we visit [ab] and write it down into the transition
table. We complete the transition table for every state that we reached

56 CHAPTER 2. CONGRUENCES AND MINIMIZATION

and every symbol of the alphabet. If we follow the same procedure on
the reduced version of any other automaton, we can find out whether it
recognizes the same language as the one above, by simply comparing the
resulting transition tables. £

To end up the minimization of DFAs we consider a special case of
languages, namely the ones with specific word length over the alphabet
Σ = {0, 1}. It is obviously about finite languages L ⊆ {0, 1}n, i.e. the sets
of all bit sequences of length n.

Remark 2.37 A language L ⊆ {0, 1}n specifies a boolean function f :
{0, 1}n → {0, 1} according to the following mapping:

f(b1, . . . , bn) = 1 iff b1 . . . bn ∈ L

and vice versa.

Such languages can be defined by a special kind of DFA, namely one that
has no cycles, but rather the form of a decision tree. The natural question to
ask now, is whether we can apply some similar kind of partition refinement
in this kind of a DFA to construct a “reduced diagram”. We illustrate this
idea by the following example.

Example 2.38 Consider the formula (x∧y)∨¬z. We write the correspond-
ing decision tree, where a continuous line denotes a transition with a 1 (as
an interpretation of the starting node) and a dotted one, a transition with
a 0. A double line means that the same transition is taken either with a 0
or with a 1.

x

y y

z z z z

0 1 0 1 0 1 1 1

Because the boolean function can take only two values, namely 0 or 1,
we only need two leaves. By merging similar leaves, we get the following
diagram, which is not a tree anymore:

x

y y

z z z z

0 1

We observe that the 3 leftmost z’s have the same view on the part of the
tree that is below them, i.e. they “see” a 1 through a transition with a 0,
and a 0 through a transition with a 1. That is why we can merge these
nodes and get the following diagram (left):

2.3. EQUIVALENCE AND REDUCTION OF NFAS 57

x

y y

z z

0 1

x

y

z

0 1

Finally, a node that leads to its (only) successor with both a 0 or a 1
can be eliminated, because it does not affect the final result. This leads us
to the final minimized diagram above (right). £

Formally the procedure can be described by the following reduction rules:

1. Merge two nodes p, q if they have isomorphic structures. (This corre-
sponds to the relation p ∼A q for a DFA A)

2. In case there exist transitions p →b q and q →0 r, q →1 r, strike out q
and introduce the transition p →b r.

Note that the second rule makes use of the fact that the nodes are labeled
by the names of the variables. This way, striking out a node does not lead
to processing the wrong bits. If we apply these reduction rules on a decision
tree, until no rules can be applied anymore, then the resulting diagram is
called a “Reduced Ordered Binary Decision Diagram” (ROBDD).

Theorem 2.39 (Main Theorem on ROBDDs) The ROBDD for a boolean
function does not depend on the order, in which the reduction rules are ap-
plied: it is unambiguously defined up to isomorphism.

Corollary 2.40 The equivalence test for definitions of boolean functions
can be reduced on the isomorphism test of ROBDDs.

2.3 Equivalence and Reduction of NFAs

In this section we examine whether the problems that we efficiently solved in
the last section on DFAs are likewise efficiently solvable in the case of NFAs.
The main motivation towards this goal is the fact that minimal NFAs can
be exponentially smaller than equivalent minimal DFAs with respect to the
number of states.

Example 2.41 Consider the language Ln = the set of words over {a, b}
having an a on the n-th position before the end. A minimal NFA can
recognize this language with n + 1 states by guessing when the n-th last
position is being read and initiate a run of n transitions to the final state.
On the contrary, a minimal DFA would always have to memorize the last
n letters that it has processed by having built in a path for each possible
combination. This needs obviously 2n states. £

58 CHAPTER 2. CONGRUENCES AND MINIMIZATION

By this example we realize that the minimization of NFAs can save up
a lot of space when modeling a system. Unfortunately, this does not come
without a cost. In particular, in this section we deal with the following
issues:

• The PSPACE-hardness of the equivalence problem and the minimiza-
tion problem for NFAs

• An efficient reduction of NFAs using the bisimulation equivalence be-
tween states

• The Universal NFA and the search for a minimal NFA

We address only the decision problems of minimization, equivalence and
non-universality and show that even these are PSPACE-hard.
NFA Minimization Problem

• Given: NFAs A,B over the same alphabet

• Question: Is B a minimal NFA equivalent to A?

NFA Equivalence Problem

• Given: NFAs A,B over the same alphabet

• Question: Are A and B equivalent?

NFA Non-Universality Problem

• Given: NFA A over the alphabet Σ.

• Question: Does L(A) 6= Σ∗ hold?

At the first glance this last problem looks very similar to our fairly known
(and by the way very efficiently solvable) non-emptiness problem. However,
we will see that there is a big difference between them.

Before we start, let us refresh our memory with some issues out of Com-
plexity Theory. We know that a decision problem is P, NP or PSPACE if it
can be solved by a

• Turing Machine (TM) in polynomial time

• non-deterministic TM in polynomial time

• TM using at most polynomial space

respectively.

Remark 2.42 We code a decision problem by a language L as follows:
L contains the word codings of those instances, for which the expected answer
is “yes”.

2.3. EQUIVALENCE AND REDUCTION OF NFAS 59

Furthermore, we also know that P ⊆ NP ⊆ PSPACE and we strongly
suspect that the inclusions are proper.

Definition 2.43 A language L0 is PSPACE-complete, if

1. L0 belongs to PSPACE

2. Every language L ∈ PSPACE, say over the alphabet Σ, is reducible
in polynomial time to L0 (short: L ≤p L0), i.e. there exists function
F on Σ∗, such that it is computable in polynomial time and for all
w ∈ Σ∗ w ∈ L iff F (w) ∈ L0 holds. In colloquial English, this means
that a problem that has this property is at least as hard as any other
problem in PSPACE.

L0 is PSPACE-hard, if the second condition holds.

Example 2.44 QBF, namely the evaluation problem for quantified boolean
formulas is PSPACE-complete. £

Our aim is now to prove that all three decision problems mentioned
above are PSPACE-hard, i.e. they are not efficiently solvable like in the
case of DFAs. (It can be also shown that they belong to PSPACE, but we
are not going to deal with that part of the proof.) For the case of the Non-
Universality Problem of NFAs we have to prove that for every L in PSPACE
“L ≤p NFA Non-Universality Problem” holds.

Lemma 2.45 For an arbitrary language L ⊆ Σ∗ that belongs to PSPACE,
there exists a transformation F that is computable in polynomial time, such
that F : Σ∗ → set of all NFAs over Σ′ with (∗) w ∈ L iff NFA F (w) does
not accept all words over Σ′.

Proof: Let M be a Turing Machine that decides L using polynomial space.
We define M by a tuple M = (Q,Σ, Γ, q0, δ, F) with

• state set Q, initial state q0 ∈ Q, final state set F ⊆ Q

• working alphabet Γ, input alphabet Σ ⊆ Γ (with a distinguished blank
symbol Ã in Γ \ Σ)

• transition function δ : (Q \ F) × Γ → Γ × {N, L, R} × Q

A transition δ(p, a) = (b, L/R/N, q) implies: “when being in state p and
reading an a on the working cell, write there a b, move the head to the left
/ move the head to the right / don’t move the head and go to state q”.
Now assume the TM M decides L and is space-bounded by some polyno-
mial p(n). The computational situation, in which M is, is described by its
configuration, which is defined by the word that is written on the left of the

60 CHAPTER 2. CONGRUENCES AND MINIMIZATION

working cell, the current state and the word that is written on the right of
the working cell. So, a configuration of M has the form uqv.

Let w = a1 . . . an. An accepting computation M, w is a word over Γ ∪
Q∪ {#} of the following form: u0q0v0 # u1q1v1 # . . . # usqsvs #, where

1. u0 = Ã . . . Ã and v0 = wÃ . . . Ã, and u0, v0 have been chosen in such a
way that throughout the whole computation M visits only the cells
occupied by u0, v0, so |ui| + |vi| = p(n)

2. ui+1qi+1vi+1 is a successor configuration of uiqivi

3. usqsvs is a configuration with qs ∈ F

The purpose of the reduction is to find a transformation F computable
in polynomial time with F : Σ∗ → set of all NFAs over the alphabet Σ′

having the property:

(∗) w ∈ L iff NFA F (w) does not accept all words in (Σ′)∗

We choose Σ′ = Γ∪Q∪{#} and we define the NFA F (w) in such a way that
it accepts exactly the words that are not an accepting M, w-computation.
Then (∗) holds! To achieve this, the NFA F (w) has to check whether on the
input u one of the constraints 1. to 3. is indeed violated. In other words,
the NFA has to verify that:

1. The input word does not begin with u0q0v0#,

2. OR there are two consecutive segments uiqivi#ui+1qi+1vi+1#, such
that ui+1qi+1vi+1 is not a successor configuration of uiqivi

3. OR that the last configuration does not contain a final state.

The first condition can be tested with p(n)+2 states (because |u0v0| = p(n)).
The second condition can be tested by guessing 3 consecutive cells, whose
update (after p(n) + 2 positions) is not correct. O(p(n) + 2) states suffice
for this test.

Explanation: Assume that the transition function of the Turing Machine
implies δ(p, b) = (a, L, q) and consider the following two consecutive config-
urations (without the square brackets):

. . . [aab][apb] . . .# . . .
︸ ︷︷ ︸

p(n)+2

[aab][qaa]

The automaton may compare the three consecutive cells in the first square
brackets with the ones that are p(n) + 2 positions away. In the case that
none of these cells is currently (or in the previous step) occupied by the

2.3. EQUIVALENCE AND REDUCTION OF NFAS 61

head of the Turing Machine, one cell would suffice for the comparison. But
in case one of the cells contains the state of the Turing Machine (like in the
second square brackets) three cells are required. In the example above the
NFA verifies that the Turing Machine changed from state p to q, moving
the head to the left (that is why the q is now written on the left of the a
that was previously on the left of the p) and printing an a on the b. In
this example the cells adhere to the transition function. In the general case
the Turing Machine has to guess such a pair of triples where this does not
hold. It is now obvious that O(p(n) + 2) states suffice for this test, where
the constant represents the space that is required to save a triple of cells like
it was mentioned above.

The last condition can be trivially tested by using a memory state to
remember the information “no final state has been seen between the last
two #”. Consequently, from M and w we can construct the appropriate
NFA F (w) as a union-NFA from the three automata mentioned above with
p(n)+2, const·(p(n)+2) and 5 states respectively. Altogether, this NFA has
polynomially many states with respect to n = |w|, which also means that
the transformation w 7→ F (w) is computable in polynomial time. Thus, we
have proven the following theorem:

Theorem 2.46 The NFA-Non-Universality Problem is PSPACE hard.

Now that we have extensively dealt with the non-universality problem
on NFAs, let us compare it with a much more easily solvable problem that
looks (at least at the first glance) similar to it, namely the non-emptiness
problem for NFAs. So, given an NFA A we compare the following questions:

1. L(A) = ∅? or the negation L(A) 6= ∅?

2. L(A) = Σ∗? or the negation L(A) 6= Σ∗?

The first question is about the existence of an appropriate w and the ex-
istence of some corresponding accepting run on it, which, as we know, is
solvable in linear time (by performing breadth-first or depth-first search).
On the contrary, the second problem is about the existence of an accepting
run for each possible w, or for the existence of such a w that all possi-
ble runs on it are rejecting. Now we can see that there is a big difference
in terms of logic between the two problems. The first one contains two
consecutive existential quantification whereas the second is expressed by a
universal quantification followed by an existential one (or vice versa in the
case of the negation). The PSPACE hardness of the second problem relies
exactly on this alternation of the existential and the universal quantifier. It
is easy to see that the universality problem of an NFA A over Σ is a special
case of the equivalence problem between A and the standard NFA A0 with
just one state that is also a final one (obviously accepting Σ∗). Likewise,

62 CHAPTER 2. CONGRUENCES AND MINIMIZATION

it is a special case of the minimization problem “is A0 a minimal NFA for
A?”. Hence, both the NFA-equivalence problem and the NFA-minimization
problem have to be at least as hard as the NFA-universality problem.

Theorem 2.47 NFA-equivalence problem and the NFA-minimization prob-
lem are PSPACE hard.

Since we have proven that we cannot minimize NFAs in an efficient way,
we try to find a way at least to reduce them, e.g. by merging two states that
have been found to be equivalent. For this reason we consider the reduction
of NFAs, by using the state equivalence: p ∼A q (“whether starting from
p or from q the same language is recognized”). For NFAs there are still two
problems:

1. As it was shown before: The quotient NFA does not have to be the
minimal NFA.

2. Fixing pairs of equivalent states is hard, because it requires an NFA
equivalence test.

The question now is, whether there exists a state equivalence that is both
efficiently computable and language preserving (i.e. such that the quotient
NFA is equivalent to the original one). To define this equivalence we need
to introduce a special kind of NFAs with the convention that the final states
are exactly those states without outgoing transitions.

Definition 2.48 (Labeled Transition System) A Labeled Transition
System (LTS) is a tuple A = (Q,Σ, ∆), where Q is a set of states, Σ is an
alphabet and ∆ is a transition relation. By adding an initial state q ∈ Q,
we get (A, q), a pointed LTS.

We consider a pointed LTS (A, q0) as a usual NFA, where the set of final
states FA is implicitly defined as {q ∈ Q | there is no (q, a, q′) ∈ ∆}.

Definition 2.49 (Bisimulation game) A bisimulation game
BG(A, p0,B, q0) is played between players I (proposer) and II (responder)
on labeled transition systems A = (QA, Σ, ∆A) and B = (QB, Σ, ∆B).

A configuration is a pair (p, q) ∈ QA × QB. The initial configuration is
(p0, q0). A round of a game has two steps. From configuration (p, q)

• player I picks a transition (p, a, p′) ∈ ∆A or (q, a, q′) ∈ ∆B and

• player II responds with a transition (q, a, q′) ∈ ∆B or (p, a, p′) ∈ ∆A
respectively.

The new configuration is now (p′, q′). If player I cannot choose a transition
he loses. If player II cannot respond correctly he loses. If a play goes on
forever, player II wins.

2.3. EQUIVALENCE AND REDUCTION OF NFAS 63

A strategy is a mapping σ : (QA × QB)+ → (QA ∪ QB) for player I
and similarly σ : (QA × QB)+(QA ∪ QB) → (QA ∪ QB) for player II. A
winning strategy for player II ensures that for every configuration (p, q) that
is reached while II plays according to this strategy, player I will not win the
BG(A, p,B, q).

(A, p0) and (B, q0) are called bisimilar, (A, p0) ∼ (B, q0), if player II has a
winning strategy in BG(A, p0,B, q0). In the special case that (A, p) ∼ (A, q)
we call p and q ∼-equivalent (p ∼ q).

Proposition 2.50 (A, p0) ∼ (B, q0) ⇒ L(Ap0) = L(Bq0)

Proof: By assumption player II has a winning strategy in BG(A, p0,B, q0).
We show L(Ap0) ⊆ L(Bq0). (The other direction is similar to this one.)

Assume w ∈ L(Ap0). We apply the winning strategy of player II to a
play where player I moves in A from p0 to FA by a path labeled w. Player II
realizes a path in B starting from q0 and labeled with w. We have to check
that the last state of this path is in FB. But this is clear, because otherwise
player II would lose in the next step. 2

The following example shows that the converse direction of proposition
2.50 fails.

Example 2.51 Consider the following two NFAs:

•
b

•

a

a

•

•
c

• a •
b

c

•

They accept the same language, but they are not bisimilar (both started on
their leftmost state). £

Remark 2.52 Bisimulation equivalence is finer than language equivalence.
This means that it results to a correct but not optimal reduction of an NFA.

To compute the bisimulation equivalence between two LTS we have to
check for all states p, q whether (A, p) ∼ (B, q). Again, similar to the mini-
mization algorithm for DFAs, we determine the pairs p, q where player I has
a winning strategy (showing non-equivalence).

Remark 2.53 1. If p ∈ FA and q 6∈ FB, or vice versa, player I wins
after his first move.

64 CHAPTER 2. CONGRUENCES AND MINIMIZATION

Input: LTS A = (QA,Σ,∆A), B = (QB,Σ,∆B)

1. Mark p, q ∈ QA × QB if p ∈ FA 6⇔ q ∈ FB

2. while some states have been marked in the last iteration do

3. Mark each pair p, q previously unmarked for which
there is a (p, a, p′) ∈ ∆A such that for all (q, a, q′) ∈ ∆B

(p′, q′) is marked

4. Mark each pair p, q previously unmarked for which
there is a (q, a, q′) ∈ ∆B such that for all (p, a, p′) ∈ ∆A

(p′, q′) is marked.

5. od

Output: All marked pairs.

Figure 2.3: Bisimulation Marking Algorithm

2. If player I can pick (p, a, p′) ∈ ∆A such that for all (q, a, q′) ∈ ∆B that
player II can choose, player I wins from (p′, q′), then from (p, q) player
I wins. Similarly, if player I can pick (q, a, q′) ∈ ∆B such that for all
(p, a, p′) ∈ ∆A that player II can choose, player I wins from (p′, q′),
then from (p, q) player I wins.

The Remark 2.53 motivates the marking algorithm for marking pairs
(p, q) with (A, p) 6∼ (B, q) shown in Figure 2.3.

Example 2.54 We apply the marking algorithm to reduce the NFA shown
below. According to our convention, the final states are 4 and 6. That is

1 2 3

4 5 6

a

a b

b

b

b

b

a

why before entering the loop, we mark all pairs, where exactly one of those
two states occurs. In the first loop we mark the pair (2, 1) because we can
choose to move from 2 with b, but we cannot move with the same letter
from state 1. We also mark the pair (5, 2) because there exists a transition
with b from 5 that leads to state 6 that is already marked with every state
that is reachable from 2 with the same transition (namely 3, since it is the
only state reachable with a b and (6, 3) is marked). Continuing like this, the
algorithm terminates leaving the pairs (5, 3) and (6, 4) unmarked.

2.3. EQUIVALENCE AND REDUCTION OF NFAS 65

1 2 3 4 5
2 1 X X X X
3 1 1 X X X
4 0 0 0 X X
5 1 1 0 X
6 0 0 0 0

X : It is not necessary to look at this
field.

0 : This field was marked before
entering the loop (final and
non-final states).

i : This field was marked in the
i-th loop (i = 1, 2, . . .).

This means that we can merge these states in the reduced automaton.
The resulting NFA is shown below and it happens to be also a minimal one.

1 2 3, 5

4, 6

a

a
b

b

b

a

£

The algorithm terminates after ≤ |QA| · |QB| loops (all possible pairs of
states). Every loop requires the consideration of each previously unmarked
pair (p, q) by checking the corresponding outgoing transitions, i.e. a compu-
tational effort that is proportional to |QA| · |∆A| + |QB| · |∆B|. Altogether,
if A,B have |QA| + |QB| = n states and |∆A| + |∆B| = m transitions, then
the marking algorithm terminates in time O(n3m). Better algorithms are
known working in time O(n · log2(n)) (Page and Tarjan, 1987).

NFA A

NP-hard

PTIME

A− bisimulation quotient of A

gap in size
smallest NFAs A0,A1, . . . ,Ak

There is a variant of BG(A, p,B, q) that results to wider equivalence
classes, and is therefore often considered as more appropriate. It is called
the alternating simulation and the main difference to bisimulation is that
this time player I has to stay in the NFA that he chose in his first move,
i.e. he cannot arbitrarily switch between the two NFAs. In this case the
quotient NFA is again language equivalent and efficiently computable.

Example 2.55 For the following NFAs the alternating simulation holds,
but not the bisimulation.

66 CHAPTER 2. CONGRUENCES AND MINIMIZATION

a
a

b
a

a

b

a

a

£

Finally, there is an alternative technique that leads not only to the reduced,
but even to the minimal NFA. The idea relies on the fact that given an NFA
with n states, there are only finitely (of course exponentially) many NFAs
with less than n states. The following procedure illustrates, how we can
construct a (in most cases huge) NFA that contains all equivalent smaller
NFAs and in which we can restrict our attention only to those NFAs who
really have the possibility to be minimal ones. Given a regular language L,
there is indeed a canonical NFA, in which we can search for the minimal
one; it is constructed as follows:

1. Determine the minimal DFA AL (powerset construction and
DFA-minimization)

2. In AL invert all transitions and switch all final states to initial ones
and vice versa and thus obtain the NFA AL.

3. Once again apply the powerset construction to obtain D(AL) (deter-
ministic).

4. Invert this DFA too and obtain D(AL).

5. The Universal-NFA C is constructed out of the state sets of the last
NFA.

The NFA D(AL) has states A1, . . . , Ak, each of them consisting of AL-
states. The states of the Universal-NFA C are sets of the form {Ai1 , . . . , Aim},
where Ai1 ∩ . . . ∩ Aim 6= ∅ must hold. For further details, please refer to
O. Matz, A. Potthoff, “Computing Small Nondeterministic Automata”.

Theorem 2.56 The Universal-NFA of L contains each minimal NFA rec-
ognizing L as an induced NFA for an appropriate subset of its states.

This confirms our initial claim, namely that the minimal NFA can be found
within the Universal-NFA.

2.4. THE SYNTACTIC MONOID 67

2.4 The Syntactic Monoid

In this section we introduce a structure that characterizes a regular language
but also contains a neutral element and enables us to perform binary opera-
tions just like in the case of natural numbers. The reason why we find such
a structure very useful to describe a language, is that the set of all words
follows the same concept (neutral element, binary operations) but automata
don’t. In other words we shall see that using this structure we can directly
identify characteristics of a language that cannot be directly handled by au-
tomata, like for example whether a language is star-free (i.e. FO-definable
or LTL-definable)

Exactly as the minimal DFA is a canonical acceptor for a regular lan-
guage L, we define a further canonical acceptor M(L), the “syntactic monoid”
for L, with the same signature as for all words over Σ, namely (Σ∗, ·, ε).

There is a close relation between the monoid structure and the transition
structure of the minimal DFA AL. This relation is presented in the following.
First, we refine the Nerode congruence by making it symmetric:

Definition 2.57 For a language L ⊆ Σ∗ we define: u ≈L v if ∀x, y ∈ Σ∗ :
xuy ∈ L ⇔ xvy ∈ L.

Remark 2.58 ≈L is a right congruence with respect to concatenation, i.e.
≈L is an equivalence relation and u ≈L v, u′ ≈L v′ ⇒ uu′ ≈L vv′. If u ≈L v
and u′ ≈L v′, then xuu′y ∈ L iff xvv′y ∈ L for all words x and y.

Remark 2.59 u ≈L v implies u ∼L v (take x = ε). The converse does not
hold in general.

Example 2.60 Consider the language L = bba∗. a ∼L ba, because for all
w ∈ Σ∗: aw /∈ L and baw /∈ L. But a 6≈L ba, because b · a · ε /∈ L, and
b · ba · ε ∈ L. £

Notation:

• The ≈L-class of u ∈ Σ∗ is denoted by 〈u〉L.

• Let Σ∗/≈L
be the set of all ≈L-classes.

A multiplication (concatenation) between ≈L-classes is defined by rep-
resentatives: 〈u〉L · 〈v〉L := 〈uv〉L. The product is well-defined because ≈L

is a right congruence.

Remark 2.61 (Σ∗, ·, ε) is a monoid (i.e. · is associative, and ε is the neu-
tral element).

68 CHAPTER 2. CONGRUENCES AND MINIMIZATION

The structure M(L) := (Σ∗/≈L
, ·, 〈ε〉) is also a monoid, namely the syn-

tactic monoid of L. But how can we construct the correct monoid for a
language? We do this by applying specific transformations on the automaton
(we take the canonical one) that recognizes this language.

Let A = (Q,Σ, q0, δ, F) be a DFA. Every word w ∈ Σ∗ induces a state
transformation wA : Q → Q that is defined by wA(q) := δ(q, w). Note that
εA = idQ (identity function). The composition goes as follows: uA ◦ vA is
the function (uv)A: uA ◦ vA(q) = vA(uA(q)).

Remark 2.62 The structure T (A) = ({uA | u ∈ Σ∗}, ◦, idQ) is a monoid,
namely the transition monoid of A.

Note that over Q, there are at most |Q||Q| many functions. This means
that the transition monoid of a DFA is finite. If Q = {0, . . . , n}, then we
represent the state transformation uA by the sequence uA(0), . . . , uA(n) of
values on the states of the DFA.

Example 2.63 Consider the following automaton and the transformations
beside.

0 1

2

a

aa

b

b

b

εA: (0 1 2)
aA: (1 2 0)
aaA: (2 0 1)

£

One can easily see that there are no other (different) transformations on this
DFA, e.g. bA = εA or aabaaA = aA. But of course this is no proof that we
have indeed found all possible transformations. There is a formal method
to determine all functions uA and it goes as follows:

1. Go through all words u in canonical order, until no new functions
occur.

2. Draw an a-labeled arrow from uA to (ua)A

Example 2.64 Let L1 := {w ∈ Σ∗ | |w|a ≡ 0 (mod 3) }. The DFA AL1 is
shown below:

2.4. THE SYNTACTIC MONOID 69

0 1

2

a

aa

b

b

b

012
ε

a
b

120
a

a

b

201
aa

a

b

Having determined the functions from the previous example, we draw the
transition monoid (on the right). £

Example 2.65 Consider the language L2 := { aw ∈ Σ∗ | |w| ≡ 0 (mod 2) }
recognized by the following automaton AL2 :

0 1

23

a

b a, ba, b

a, b

0123
ε

a

b

1213
a

a,b
2123
aa

a,b

3213
b

a,b
3123
ba

a,b

The corresponding transition monoid T (AL2) is drawn on the right. £

Example 2.66 L3 := (ab)∗ is recognized by the following automaton AL3 :

0 1

2

a
b

a

b

a, b

122
a

b

a

022
ab

a
b

012
ε

a

b

222
aa

a,b

202
b

a

b

212
ba

a

b

The corresponding transition monoid T (AL3) is drawn on the right. £

Now we can proceed to constructing the syntactic monoid. For this
purpose we prove the following theorem.

Theorem 2.67 Let L be regular and AL the minimal automaton recognizing
L. The syntactic monoid M(L) is isomorphic to the transition monoid of
AL, short: M(L) ∼= T (AL).

70 CHAPTER 2. CONGRUENCES AND MINIMIZATION

Hence, by constructing the transition monoid (by using the previously il-
lustrated method) and by applying the last theorem, we obtain the syntactic
monoid.

Proof: Define f : M(L) → T (AL) by f(〈u〉) := uAL . f is the appropriate
isomorphism. f is well-defined and injective because

〈u〉 = 〈v〉 iff uAL = vAL .

Verification: 〈u〉 = 〈v〉

iff ∀x, y : xuy ∈ L ⇐⇒ xvy ∈ L

iff ∀x : [xu] = [xv] (by definition)

iff ∀x : uAL([x]) = vAL([x])
(Note that [x] is a state of AL and uAL([x]) = [xu])

iff uAL = vAL

f is surjective, because

uAL = f(〈u〉) for all uAL ∈ T (AL)

Finally, f is a homomorphism, because

f(〈u〉 · 〈v〉) = f(〈uv〉) = (uv)AL = uAL ◦ vAL = f(〈u〉) ◦ f(〈v〉)

2

Now we can use these results to identify the class, in which a language
belongs. For example, in the previous chapter we have shown that the star-
free languages are non-counting. In the following we show that it can be
identified, whether a language is non-counting, by the property “group-free”
of the syntactic monoid. Furthermore, we show that for regular languages,
the properties non-counting and star-free coincide.

Definition 2.68 An element m of a monoid M is called idempotent, if
m · m = m.

Every subset of M that forms a group through multiplication ·, has
exactly one idempotent element. This is the neutral element of the group.
We call a monoid M group-free if the only occurring subsets that form groups
are the trivial ones {m} with an idempotent m.

Example 2.69 We look at the monoid of a previous example.

2.4. THE SYNTACTIC MONOID 71

012
ε

a
b

120
a

a

b

201
aa

a

b

ε a aa

ε ε a aa
a a aa ε
aa aa ε a

0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Obviously the whole monoid represents a non-trivial group, since it is count-
ing modulo-3. The two multiplication and addition tables show the corre-
spondence between this monoid and the group (Z3, +) respectively. £

Example 2.70 Consider the following two monoids.

0123
ε

a

b

1213
a

a,b
2123
aa

a,b

3213
b

a,b
3123
ba

a,b

122
a

a

b
022
ab

a

b

012
ε

a

b

222
aa

a,b

122
b

b

a
022
ba

b

a

The left one has two groups, each one of the type Z2, while the right one
does not have any non-trivial groups, i.e. it is group-free. £

Theorem 2.71 (Schützenberger 1965) Let L be regular. L is star-free
if and only if M(L) is group-free.

According to this theorem, one can algorithmically decide, whether a given
regular language is star-free.

Example 2.72 According to the previous examples:

1. L1 := {w ∈ Σ∗ | |w|a ≡ 0 (mod 3) } is not star-free.

2. L2 := { aw ∈ Σ∗ | |w| ≡ 0 (mod 2) } is not star-free.

3. L3 := (ab)∗ is star-free.

£

Theorem 2.71 allows even the generation of a star-free expression out of
a given group-free monoid. This is implemented in the AMoRE system.

We can also determine whether a monoid M(L) is group-free by directly
analyzing the corresponding minimal DFA AL. The required property is
given in the following definition.

72 CHAPTER 2. CONGRUENCES AND MINIMIZATION

Definition 2.73 A DFA A = (Q,Σ, q0, δ, F) allows permutations, in case
there exist a subset Q0 ⊆ Q and a word w ∈ Σ+, such that wA|Q0 rep-
resents a non-trivial permutation on Q0. In the opposite case A is called
permutation-free.

Example 2.74 We examine the minimal deterministic automata recogniz-
ing the three languages of the previous examples.

AL1 :

0 1

2

a

a
a

b

b

b

This DFA allows permutations. Take Q0 = {0, 1, 2} and w = a. Then
aAL1 |{0,1,2} represents a non-trivial permutation on {0, 1, 2} (0 1 2 7→ 1 2 0).

AL2 :

0 1

23

a

b a, ba, b

a, b

This DFA allows permutations. Take Q0 = {1, 2} and w = a. Then
aAL2 |{1,2} represents a non-trivial permutation on {1, 2} (1 2 7→ 2 1).

AL3 :

0 1

2

a
b

a

b

a, b

This DFA is permutation-free. £

Finally, we gather all the previous properties of a regular language in
the following theorem.

Theorem 2.75 For a regular language L the following conditions are equiv-
alent:

(a) L is non-counting.

2.4. THE SYNTACTIC MONOID 73

(b) The minimal DFA AL is permutation-free.

(c) The syntactic monoid M(L) is group-free.

(d) L is star-free.

According to the theorem of Schützenberger (c) ⇔ (d). In the following we
show

• not (c) ⇒ not (b),

• not (b) ⇒ not (a),

• not (a) ⇒ not (c).

Proof (from group to permutation): Assume M(L) is not group-free,
say having a group G. Choose a g ∈ G other than the neutral element
of G and consider the cyclic group {g, g2, . . . , gk} with gk as a neutral el-
ement. g = 〈u〉 corresponds via the isomorphism M(L) ∼= T (AL) to the
transformation uAL . Then gi = 〈ui〉, and the following holds:

1. (uk)AL = (u2k)AL

2. (uk)AL 6= (uk+1)AL

Now choose a q, such that δ(q, uk) 6= δ(q, uk+1). Set Q0 = {δ(q, uk),
δ(q, uk+1), . . . , δ(q, u2k−1)}. Then uAL is a permutation on Q0. 2

Proof (from permutation to modulo-counting): Let the transforma-
tion vAL be a permutation π on Q0. Choose a q ∈ Q0 and obtain the ele-
ments q, π(q), π2(q), . . . , πm(q) = q. Then δ(q, vkm) = q, δ(q, vkm+1) = q′ 6=
q. Choose u, w such that δ(q0, u) = q, and not δ(q, w) ∈ F ⇔ δ(q′, w) ∈ F .
Now we have to show that for any arbitrarily large n:

∃u, v, w: not uvnw ∈ L ⇔ uvn+1w ∈ L

Take n = km where k is arbitrary. Then it does not hold that

δ(q0, uvkmw) ∈ F ⇔ δ(q0, uvkm+1w) ∈ F

2

Proof (from modulo-counting to group): Note that in every finite
monoid each element m has a power mk that is idempotent. Now set K =
the smallest common multiple of these k-values. For every element m of a
monoid mK = m2K (∗). By hypothesis there are arbitrarily large n’s (also
> K), such that for appropriate u, v, w:

uvnw ∈ L but uvn+1w 6∈ L

For such an n then 〈vn〉 6= 〈vn+1〉. Because of (∗), 〈vK〉 = 〈v2K〉. Then
〈vK〉 6= 〈vK+1〉 must hold. Now 〈vK+1〉 forms a group in M(L). 2

74 CHAPTER 2. CONGRUENCES AND MINIMIZATION

2.5 Exercises

Exercise 2.1 Find a family (Ln)n>0 of languages over {a, b}, such that

• Ln is recognized by a DFA with O(n) states, and

• every DFA that recognizes LR
n has at least 2n many states.

Hint: The first automaton of Example 2.14 points to the right direction.
(LR

n = {bn · · · b1 | b1 · · · bn ∈ L} is the language of the flipped words.)

Exercise 2.2 ∗ Consider the following algorithm that is applied on a DFA
A (over Σ = {a, b}):

1. Invert A, i.e. turn the A-transitions to the opposite direction and
switch the initial states with the final ones. Obtain AR. (Note that
the automaton may have several initial states.)

2. Apply the powerset construction (construct only the reachable states).
Obtain D(AR). (The initial state of this automaton is the set of initial
states of the NFA.)

3. Invert D(AR), obtain (D(AR))R.

4. Apply the powerset construction as in (2), obtain D((D(AR))R).

Show that the resulting automaton is the minimal automaton for A.

Exercise 2.3 Consider the language L = b(a + b)∗aa over the alphabet
{a, b}.
(a) Give representatives for the five ∼L-classes.

(b) Verify that the representatives are pairwise not language equivalent, i.e.
for any pair u, v, u 6∼L v holds (construct a table, where for each pair a
separating word w is entered).

(c) Using (a) give the minimal automaton AL for L.

Exercise 2.4 (a) Apply the minimization algorithm (page 54) in order to
minimize the following DFA (describe the steps as in Example 2.34):

1
a

b

2

a

b

3
b

a

4
b

a

5
a

b

6
a,b

7
a

b

8

a

b

2.5. EXERCISES 75

(b) Construct the bisimulation quotient Ã of the following NFA A:

8

b

a,b

a

5

b

a

a,b
4

a
1

7

a

b

a

6

b

a

a,b

3

a
a,b

b
2

a

a,b

b

Exercise 2.5 Consider the DFA A without final states as given by the
following transition graph:

1

a

b
2

a

b

3

a

b

Choose final states such that A is minimal, or show that this is impossible.

Exercise 2.6 ∗ Show that there exists a family of regular languages lan-
guages (Ln)n>0 such that Ln is recognized by n different (not isomorphic)
minimal NFAs.
Hint: The editors do not know the solution yet.

Exercise 2.7 (a) determine the transition monoid of the following automa-
ton according to the method presented in the lecture:

0

b

a
1

b

a

2

a,b

Mark with a circle the idempotent elements.

(b) Determine the transition monoid (with 13 elements) of the following
automaton:

0

b

a
1

b

a

2

b

a

3

a
b

Give a non-trivial group.

76 CHAPTER 2. CONGRUENCES AND MINIMIZATION

Exercise 2.8 ∗ Give a family of DFAs An = (Qn, Σ, qn
0 , δn, Fn), n > 0, with

|Qn| = n over the alphabet Σ = {a, b, c}, such that the transition monoid of
An has exactly nn elements. Hence, every mapping f : Qn → Qn has to be
implemented by a word in Σ∗.

Chapter 3

Tree Automata

In the last two chapters we dealt with two fundamental issues in the world of
finite automata, namely establishing a connection to logical (or “logic-like”)
expressions and discovering algebraic ideas and methods to solve typical
problems on finite automata. In this chapter we are going to generalize the
model of a finite automaton itself, and use it for processing generalized inputs
(i.e. not only finite words). This can be done in two different dimensions.
One is to lift the constraint of finiteness and consider infinite inputs such
as the run of a non-terminating procedure. In this case we are not anymore
interested in reaching some final state but rather in ensuring stability, e.g.
by passing again and again through a certain state. The other is to consider
(finite) inputs that are branching rather than being linearly ordered (i.e.
letters follow one another).

The first dimension goes beyond the scope of this course and is the core
of the next semester’s course about automata over infinite objects. The
second dimension leads to the tree automata and tree languages, which are
our main subject in this chapter.

Our primary motivation relies on the fact that trees model structured
objects, which happen to be very frequent in computer science. Even the
finite words we were dealing with in the previous chapters are a special case
in this category; they represent linear trees (only one successor). The fun-
damental questions we are going to answer are accordingly a generalization
of the ones we considered in the last two chapters, i.e.:

• Which techniques can we borrow from the area of finite words?

• How can we construct automata that describe the properties of trees?

• How can we define equivalent formalisms like regular expressions and
logical formulas?

• Are there efficient algorithms for the fundamental problems (non-
emptiness, equivalence and minimization of automata)?

77

78 CHAPTER 3. TREE AUTOMATA

Finally, we examine some applications in the area of describing struc-
tured objects such as context-free languages and XML-Documents.

3.1 Trees and Tree Languages

Trees arise naturally as structured data, as terms, or as processes with
branching behavior.

Example 3.1 The term
√

x · (π + z) corresponds to a tree:

√

·
x +

π z

A Boolean term ¬(x ∨ y) ∧ 1 corresponds to a tree:

∧
¬ 1

∨
x y

A context-free grammar (CF): S → AA, A → a | c | AB, B → b induces a
derivation tree:

S

A A

c A B

a b

£

In the case of a context-free syntax of a programming language, a deriva-
tion tree captures the structure of a program.

Example 3.2 Consider the mini-language of WHILE-programs. An ex-
ample program in this language would be the Euclidean algorithm for the
greatest common divider:

{Input in x1, x2}
x3 := x1; x4 := x2;

WHILE x3 <> x4 DO

3.1. TREES AND TREE LANGUAGES 79

IF x3 < x4 THEN x4 := x4 - x3 ELSE x3:= x3 - x4 END

END

{the value of x3 is gcd(x1, x2)}

A formal definition of the WHILE-programs includes:

• a terminal alphabet: Σkeyboard

• non-terminal symbols:
S for 〈program〉
W for 〈assignmentofvalue〉
V for 〈variable〉
D for 〈decimal number〉
Z for 〈positive digit〉
F for 〈sequence of decimal digits〉
B for 〈condition〉
O for 〈comparison operator〉
E for 〈arithmetic expression〉

• a grammar
S → W | S; S | IF B THEN S ELSE S END |

WHILE B DO S END

W → V := E
V → XD
D → 0 | Z | ZF
F → 0 | Z | 0F | ZF
Z → 1 | 2 | 3 |4 | 5 | 6 | 7 | 8 | 9
E → D | V | (E + E) | (E − E) | (E · E)
B → EOE
O → = | < | > | <> | =< | =>

According to this definition a possible syntax tree of the gcd-program looks
as follows:

S

S ; S

W S ; S

W WHILE B DO S END

. . . IF B THEN S ELSE S END

.

£

We know that it is very important to point out the hierarchical structure
of a program even in its normal text representation. That is why program-
mers use indents to show how expressions are nested in each other. A similar

80 CHAPTER 3. TREE AUTOMATA

way to represent the structure of a derivation tree in normal text form is the
use of special bracketing. For every non-terminal symbol X the brackets (X

and)X are introduced. Then, the derivation tree t for w is coded by the
word wt that is produced by inserting bracketing symbols into w.

Example 3.3 The derivation tree on the left can be coded by the word on
the right.

S

A A

A B a

c b

(S (A (A c)A (B b)B)A (A a)A)S

£

XML-documents are also coding trees in normal text form. Here, the
bracketing notation is slightly modified: 〈X〉 is used for (X and 〈/X〉 is
used for)X .

Example 3.4 Consider the following XML-document:

<ProfileOfStudies>

<faculty> Computer Science </faculty>

<semester> 3 </semester>

<courses>

<title> PROGRAMMING </title>

<title> COMPUTER STRUCTURES </title>

<title> DATA STRUCTURES </title>

</courses>

</ProfileOfStudies>

The main difference between the previous examples and XML-documents is
that in the latter the branching degree is generally unlimited. For example
there is no restriction on the number of titles that the “courses”-bag may
contain. This case is considered in further detail later. £

Definition 3.5 A ranked alphabet is a non-empty finite set Σ of symbols,
where every symbol a is assigned a finite set rk(a) ⊆ N (the set of all ranks
or arities of a).

Σi := { a ∈ Σ | i ∈ rk(a) }

Σ = Σ0 ∪ · · · ∪ Σm (where m = max{rk(a) | a ∈ Σ})
Note that the Σi need not be disjoint.

3.1. TREES AND TREE LANGUAGES 81

Example 3.6 The ranked alphabet for the term
√

x · (π + z) from Example
3.1 is Σ = {√ , +, ·, x, π, z} with Σ2 = {+, ·}, Σ1 = {√ } and Σ0 = {x, π, z}.

£

Example 3.7 The ranked alphabet for the term ¬(x∨y)∧1 from Example
3.1 is Σ = {0, 1,¬,∧,∨} with Σ0 = {0, 1}, Σ1 = {¬}, Σ2 = {∧,∨}. £

Example 3.8 The ranked alphabet for the context-free grammar from Ex-
ample 3.1 is Σ = {a, b, c, A, B, S} with Σ0 = {a, b, c}, Σ1 = {A, B}, Σ2 =
{S, A}. £

We first define trees in a term-like fashion.

Definition 3.9 Let Σ = Σ0 ∪ . . .∪Σn be a ranked alphabet. The set TΣ of
trees (or terms) over Σ is defined inductively by:

• Each symbol a ∈ Σ0 is a tree a ∈ TΣ.

• For f ∈ Σk and t1 . . . tk ∈ TΣ, f(t1 . . . tk) is a tree in TΣ depicted by

f

t1 t2 . . . tk−1 tk

A set T ⊆ TΣ is called a tree-language.

Remark 3.10 This definition of trees allows

• inductive definitions of functions on the set of Σ-trees

• proofs by induction over the construction of Σ-trees.

Example 3.11 Inductive definitions:

1. The frontier word yield(t) of a tree t (the labelling of the leaves of t
read from left to right) is inductively defined by
yield(a) = a for a ∈ Σ0,
yield(a(t1, . . . , ti)) = yield(t1) · · · yield(ti) for a ∈ Σi (i > 0).

2. Semantics of WHILE-programs
Let WHILEn be the set of WHILE-programs with the variables x1, . . . , xn.
Each such program computes a partial function f : Nn− → Nn. Let
Fn be the set of these functions. Then, the semantics of a program
is a function σ : WHILEn → Fn that is defined inductively over the
structure of the program.

£

Example 3.12 An inductive proof for the arithmetical terms over {0, 1, +, ·}:

82 CHAPTER 3. TREE AUTOMATA

Hypothesis: The modulo-3 value of a term t with at most one 1, is either
0 or 1.

Inductive proof:

1. Induction start:
Verify the hypothesis for the terms 0 and 1.

2. Induction step:
Assume the hypothesis is fulfilled for t1, t2. Show that the hypothesis
holds for (t1 + t2) and (t1 · t2) (by simply distinguishing the possible
cases).

£

An alternative, but equivalent, definition of trees distinguishes the tree-
domain, which is the set of underlying nodes, from their values under an
evaluation function.

Example 3.13 Below the tree associated to the term ¬(x ∨ y) ∧ 1 and its
underlying domain is shown. The evaluation function val satisfies val(ε) =
∧; val(1) = ¬, . . .

∧
¬ 1

∨
x y

ε

1 2

11

111 112

£

Definition 3.14 Let Σ = Σ0 ∪ . . . ∪ Σn be a ranked alphabet. A Σ-
valued tree is a tuple t = (domt, valt) where domt is a prefix closed subset
of {1, . . . n}∗ satisfying ui ∈ domt ⇒ uj ∈ domt for every j < i, and
valt : domt → Σ maps a node u with k successors to a symbol in Σk.

3.2 Tree Automata

3.2.1 Deterministic Tree Automata

Definition 3.15 A deterministic tree automaton (DTA) is a tuple A =
(Q,Σ, δ, F) where

• Q is a finite set of states,

• Σ is a ranked alphabet,

3.2. TREE AUTOMATA 83

• F ⊆ Q is a set of final states, and

• δ :
⋃

i≥0(Q
i × Σi) → Q is a transition function.

By convention Q0 × Σ0 := Σ0. The evaluation function δ∗ : TΣ → Q
is defined inductively by δ∗(a) = δ(a) for a ∈ Σ0, and δ∗(f(t1 . . . ti)) :=
δ(δ∗(t1), . . . , δ∗(ti), f) for f ∈ Σi and t1, . . . , ti ∈ TΣ.

A DTA A accepts a tree t ∈ TΣ if δ∗(t) ∈ F . The tree-language recognized
by A is T (A) = {t ∈ TΣ | A accepts t}.

Example 3.16 We define a tree automaton accepting all true Boolean ex-
pressions over Σ = {∧,∨,¬, 0, 1}. Let Q = {q0, q1} be the state set, F = {q1}
be the set of final states, and δ be defined by

δ(0) = q0

δ(1) = q1

δ(qi,¬) = q|i−1|
δ(qi, qj ,∧) = qmin(i,j)

δ(qi, qj ,∨) = qmax(i,j)

£

Definition 3.17 T is called DTA-recognizable or regular, if there exists a
DTA A with T = T (A).

Example 3.18 The set of the true logical expressions (the ones that can
be evaluated to 1) is regular. £

Example 3.19 (on arithmetic expressions) Let Σ = Σ0 ∪ Σ2 with Σ0 =
{0, 1}, Σ2 = {+, ·}. We construct a tree automaton that recognizes the tree
language T = {t ∈ TΣ | value of t = 0 (mod 3)} . A tree that belongs to
this language is shown in the picture below. On the same picture, the run
of the automaton, which we intend to construct, is shown; namely we use 3
states to distinguish the 3 different cases in modulo-3 counting.

+q0

·q2 +q1

1q1 +q2 0q0 1q1

1q1 1q1

Formally: We use a state set Q = {q0, q1, q2}, where qi means that “the
modulo-3 remainder of the evaluated term is i”. Obviously, q0 is the only fi-
nal state. The transition function is defined explicitly for each possible value

84 CHAPTER 3. TREE AUTOMATA

of its arguments, using a parametric formulation for matters of compactness:

δ(0) = q0, δ(1) = q1

δ(qi, qj , +) = qi+j mod 3, δ(qi, qj , ·) = qij mod 3

£

In the following we consider 3 further examples of languages, in order to
get more familiar with constructing DTAs.

Example 3.20 Let Σ = Σ0 ∪ Σ1 ∪ Σ2 with Σ0 = {0, 1}, Σ1 = {g} ,and
Σ2 = {f}. We define tree automata for the languages

T1 = {t ∈ TΣ | there is an odd number of f ’s in t}
T2 = {t ∈ TΣ | there are at least two f ’s in t}
T3 = {t ∈ TΣ | on the frontier of t there is no 1 before a 0}

For T1 let Q = {q0, q1} and F = {q1}. q0 signals an even number of f ’s
and q1 an odd number of f ’s in the subtree below the current node. This
induces the following transition function:

δ(0) = δ(1) = q0

δ(qi, g) = qi

δ(qi, qj , f) = q(i+j+1) mod 2

For T2 let Q = {q0, q1, q2} (signaling respectively no, one and at least two
occurrences of an f in the subtree below the current node) and F = {q2}.
This induces the following transition function:

δ(0) = δ(1) = q0

δ(qi, g) = qi

δ(qi, qj , f) = qmin(i+j+1,2)

For T3 let Q = {q0, q1, q01, q10} and F = {q0, q1, q01}. A node of the tree
is labeled with state q01 if all 0’s are before the first 1 in the frontier word
of the subtree below this node. q10 signals that there is a 1 somewhere left
of a 0 on the frontier, and q0, q1 signal that only 0’s, respectively 1’s, appear
on the frontier of the corresponding subtrees. The meaning of the states
is implemented in the following transition function: δ(0) = q0, δ(1) = q1,
δ(q, g) = q for all q ∈ Q,

δ(q0, q0, f) = q0 δ(q01, q0, f) = q10

δ(q1, q1, f) = q1 δ(q01, q1, f) = q01

δ(q0, q1, f) = q01 δ(q0, q01, f) = q01

δ(q1, q0, f) = q10 δ(q1, q01, f) = q10,

and δ(p, q, f) = q10 for all other combinations of states p, q ∈ Q. £

3.2. TREE AUTOMATA 85

Tree languages can also be defined by the rules of context-free grammars.
How do these languages relate to the regular languages we illustrated so far?

Definition 3.21 If G = (N, T, P, S) is a context-free grammar, then let
T (G) be the set of all derivation trees generated by G (with frontier words
consisting of T -symbols).

For this definition we assume that ε is not used in the grammar.

Example 3.22 The derivation tree on the right belongs to the language de-
fined by the grammar on the left.

S → AA
A → c | a | AB
B → b

S

A A

c A B

a b

£

The following theorem shows that this kind of tree languages forms a
proper subset of the regular ones.

Theorem 3.23 a) If G is a context-free grammar, then T (G) is regular.

b) Not every regular tree language can be represented as a language T (G)
for a context-free grammar G.

Proof: (part a) Given a grammar G = (N, T, P, S) we construct a DTA
with state set N ∪ T ∪ {∗} and final state S. The tree automaton should
be able to copy the tree symbols into its states, as long as the tree is built
up (in a bottom-up fashion) according to the rules of G. Hence, the input
alphabet consists of Σ0 = T and Σi = {X ∈ N | there exists a rule X →
α with |α| = i} (for i > 0). The transition function is defined as follows:

δ(a) = a for a ∈ Σ0

δ(σ1, . . . , σi, X) = X for X → σ1 . . . σi ∈ P for i > 0, X ∈ Σi

δ(σ1, . . . , σi, X) = ∗ otherwise (“error′′ − state)

δ(σ1, . . . , σi, ∗) = ∗

2

Proof: [part b] It suffices to show that there exists a tree language that
cannot be represented as a language of derivation trees. For this reason we
consider the set T containing all trees with the following property:

(∗) On every path there are at most two A’s and there exists at least one
path with two A’s.

86 CHAPTER 3. TREE AUTOMATA

Looking at this property, on the one hand we observe that T is a regular
language because (∗) is a conjunction of two properties that can be easily
recognized by a DTA. On the other hand we also observe that in case a
symbol A occurs twice in a path of a derivation tree t (as a result of a
sequence of grammar rules), then it is possible to produce trees with an
arbitrary number of A’s on the same path (using the same sequence of rules
again and again). Consequently, T is recognizable by a DTA but cannot be
of the form T (G) for a grammar G. 2

Finally, we illustrate an example of a language that belongs to a higher
class in the sense that it is not recognizable by a DTA.

Example 3.24 Let Σ = Σ0 ∪ Σ2 with Σ0 = {b}, Σ2 = {a}. We show that
the language T := { a(t, t) | t ∈ TΣ } is not recognizable. By a(t, t) we mean
what is shown in the picture below, where t is a (sub)tree.

a

t t

When reading the root of a tree, the only information a DTA can get from
the two subtrees below, is the states it reaches at the top of each subtree.
Hence, the idea to prove this assumption (as well as other similar ones) is
to show that the finitely many states of the DTA do not suffice to compare
the infinitely many different subtrees.

Proof: Towards a contradiction, we assume that the DTA A = (Q,Σ, δ, F)
recognizes T . Since we do not have a restriction on the length of the
tree, there are obviously infinitely many trees over Σ. But because Q is
finite, there exist two different trees t, t′ with δ∗(t) = δ∗(t′) and hence also
δ∗(a(t, t)) = δ∗(a(t, t′)) (at this point the automaton cannot distinguish be-
tween t and t′ anymore, since both lead it to the same state). Now, since
δ∗(a(t, t)) ∈ F also δ∗(a(t, t′)) ∈ F , which means that a(t, t′) ∈ T . Contra-
diction. £

In case we want to generate a similar repetition of states, this time only
on the same path, we use another method that relies on the pumping lemma.
To achieve this we first have to formally describe how we can concatenate
trees to get longer and longer paths. In the case of finite words no special
definition was required, because it is obvious that we append a word at the
(only) end of another one. In the case of finite trees we do not have one
specific end, but instead a number of leaves; hence we have to always declare
at which one of them we append a new tree when concatenating.

Definition 3.25 Let Σ be a ranked alphabet and c a new symbol of rank
0. A special tree over Σ is a tree over Σ ∪ {c}, where c occurs exactly once
(as a leaf). We call SΣ the set of all special trees over Σ. For t ∈ TΣ or

3.2. TREE AUTOMATA 87

t ∈ SΣ and s ∈ SΣ let t ◦ s be the tree, that results from s by replacing c by
t.

Theorem 3.26 (Pumping Lemma) Let T be a regular tree language. Then,
for an appropriate n (namely the number of states of a tree automaton rec-
ognizing T) the following holds: If the height of t ∈ T is ≥ n, then there are
two nodes on a path of t that can split t in three pieces t0, s1, s2, such that
an iteration (arbitrarily often) of s1 6= c results in trees that also belong to
T . In short notation:

t = t0 ◦ s1 ◦ s2 with t0 ◦ (s1)
i ◦ s2 ∈ T for every i ≥ 0 .

Proof: Assume T is recognized by some tree automaton with n states. If
the height of t is ≥ n, then on some path of the run tree of t there have to be
two positions, where a state repetition occurs. Define the split t = t0 ◦s1 ◦s2

on these two positions. 2

Now we can apply this theorem to show the non-recognizability for fur-
ther examples of tree languages, where an equality not between subtrees,
but between the lengths of all paths in the whole tree (complete trees) is
required.

Example 3.27 Let Σ = Σ0∪Σ2 with Σ0 = {e}, Σ2 = {a, b}. The language
T = {t ∈ TΣ | t is complete } is not regular. (A tree t is complete iff all its
paths have the same length).

Proof: Towards a contradiction, assume that T is regular (i.e. recognized
by some DTA). Then, consider a split according to the Pumping Lemma.
By repeating the middle part twice, we get a tree that is accepted, although
it is not complete. Contradiction. £

By the previous two examples we realized that DTAs are not powerful
enough to solve some fundamental questions over trees. There are still some
other interesting problems reducible to recognizing tree properties that can
be characterized by finitely many states. The problem of type checking
that is embedded in every modern programming language represents such
an issue.

Example 3.28 Consider the type information of functions below on the
left. A compiler has to check whether a term like the one represented by the
tree on the right, is adhering to these rules.

0 → nat
1 → nat
+ : nat × nat → nat
+ : int × int → int
abs : int → nat
nat ≤ int

+

abs 0

+

0 1

88 CHAPTER 3. TREE AUTOMATA

To answer this purpose, a DTA is used that has a state for each one of
the types (finitely many). The DTA evaluates the term using the type rules
as transitions and assumes an error state in case of a type mismatch. The
run tree of the automaton is shown below:

nat

nat nat

int ← nat

nat nat

Because the abs-function is not defined on nat, the last rule (namely that nat
is a subtype of int) has to be applied first. This corresponds to the implicit
type casting in programming languages and is implemented by ε-transitions
in the tree automaton. £

3.2.2 Nondeterministic Tree Automata

Definition 3.29 A nondeterministic tree automaton (NTA) is a tuple A =
(Q,Σ, ∆, F) where

• Q is a finite state set,

• Σ = Σ0 ∪ . . . ∪ Σm is a ranked alphabet,

• F ⊆ Q is a set of final states, and

• ∆ ⊆ ⋃m
i=0(Q

i × Σi × Q) is a transition relation.

By convention Q0 × Σ0 × Q = Σ0 × Q. A run of A on a tree t ∈ TΣ is a
mapping ρ : domt → Q such that

• for leaf nodes u ∈ domt we have (valt(u), ρ(u)) ∈ ∆, and

• for nodes u with successors u1, . . . , ui we have

(ρ(u1), . . . , ρ(ui), valt(u), ρ(u)) ∈ ∆.

An NTA A accepts a tree t ∈ TΣ if for some run ρ of A on t ρ(ε) ∈ F . The
tree-language recognized by A is T (A) = {t ∈ TΣ | A accepts t}.

Example 3.30 Let Σ = Σ0 ∪ Σ1 ∪ Σ2 with Σ0 = {0, 1}, Σ1 = {g}, and
Σ2 = {f}. Let

T = {t ∈ TΣ | some path through t has even length }.

3.2. TREE AUTOMATA 89

We construct an NTA that guesses a path through t, counts modulo-2 the
length of this path, and labels all other nodes with a dummy symbol.

Let Q = {q0, q1, ∗} and F = {q0}. The transition relation implements
the idea above.

∆ := { (0, ∗), (1, ∗), (0, q0), (1, q0), (q0, g, q1), (q1, g, q0),
(∗, g, ∗), (q0, ∗, f, q1), (q1, ∗, f, q0), (∗, q0, f, q1), (∗, q1, f, q0)
(q0, q0, f, ∗), (q1, q1, f, ∗), (∗, ∗, f, ∗) }

£

In the case of automata over finite words, nondeterminism does not offer
any additional expressive power. The following theorem shows that the same
happens in the case of tree automata.

Theorem 3.31 For each NTA one can construct an equivalent DTA.

Proof: For a given NTA A = (Q,Σ, ∆, F) we construct a DTA A′ =
(Q′, Σ, δ, F ′) where

• Q′ = 2Q,

• F ′ = {P ⊆ Q | F ∩ P 6= ∅},

• δ(a) = {q ∈ Q | (a, q) ∈ ∆} for a ∈ Σ0, and

• δ(P1, . . . , Pi, f) = {q ∈ Q | ∃q1 ∈ P1 . . .∃qi ∈ Pi : (q1, . . . , qi, f, q) ∈
∆} for f ∈ Σi.

It remains to show that for every t ∈ TΣ, δ∗(t) is the set of those states
q ∈ Q, for which a run of A on t exists reaching q at the root of t. By
induction on the construction of t, one can easily see that:

q reachable by A on the root of t iff q ∈ δ∗(t) .

Then:

A′ accepts t

iff δ∗(t) ∈ F ′

iff ∃q ∈ δ∗(t) ∩ F

iff ∃q∃ run ρ of A on t with ρ(ε) = q and q ∈ F

iff A accepts t.

2

The closure properties also hold, as they do for NFAs.

90 CHAPTER 3. TREE AUTOMATA

Theorem 3.32 The class of regular tree languages is closed under the Boolean
operations (∪, ∩, complement) and under projection.

This can be easily shown by copying the following well-known proofs:

• intersection and union by product automaton,

• complement as with normal NFAs,

• for the projection f : Σ → Γ (assumed as rank preserving) change
from a transition (q1, q2, a, q) to (q1, q2, f(a), q) .

A natural thing to ask is whether there are any results that cannot be
directly transferred from word automata to tree automata. Unfortunately,
the answer to this question is positive. Until now, we were using tree au-
tomata that process trees from the leaves to the root (bottom-up). We can
also introduce automata that evaluate their input in the opposite direction
(top-down) and show that in this case a reduction from nondeterminism to
determinism is not possible.

Definition 3.33 A nondeterministic top-down tree automaton (↓NTA) over
Σ = Σ0 ∪ · · · ∪ Σm is of the form A = (Q,Σ, Q0, ∆) with

• finite state set Q,

• Q0 ⊆ Q as a set of initial states,

• ∆ ⊆ ⋃m
i=0(Q × Σi × Qi)

(The pairs in ∆ ∩ (Q × Σ0) are also called “final combinations”).

An accepting run of A on t is a mapping ρ : domt → Q with

• ρ(ε) ∈ Q0,

• for each node u of t with i > 0 successors, we have
(
ρ(u), valt(u), ρ(u1), . . . , ρ(ui)

)
∈ ∆,

• for each leaf u of t,
(
ρ(u), valt(u)

)
is a final combination.

A accepts t if and only if there exists a run on t.

Remark 3.34 Normal NTAs can be directly transformed to ↓NTAs and vice
versa.

A ↓DTA is a special ↓NTA that has a singleton set {q0} as an initial
state set Q0, transition functions δ1, . . . , δm with δi : Q×Σi → Qi instead of
∆ and final combinations exactly like a ↓NTA. A tree t is accepted by the
unambiguous run on t. This also means that a state assumed on a position
of the run tree can only depend on the nodes of the path back to the root.
The example language considered below shows that ↓DTA can recognize
less than ↓NTA (in contrast to what happens in the case of bottom-up tree
automata).

3.2. TREE AUTOMATA 91

Remark 3.35 The doubleton set

T :=

{

a
Á

f
Â

b
,
b
Á

f
Â

a

}

is recognizable by a ↓NTA (and an NTA as well), but not by a ↓DTA.

Proof (↓NTA recognizability): The following ↓NTA recognizes T :

Q := {q0, qa, qb}
Q0 := {q0}
∆ := {(q0, f, qa, qb), (q0, f, qb, qa), (qa, a), (qb, b)}

2

Proof (↓DTA non-recognizability): Towards a contradiction we assume
that the ↓DTA A recognizes T . Then, A accepts

a
Á

f
Â

b
, with the unambiguous run

aq1
Á

fq0

Â
bq2

This means that δ(q0, f) = (q1, q2) and (q1, a) and (q2, b) are final combina-
tions. A likewise accepts

b
Á

f
Â

a
with the run

bq1
Á

fq0

Â
aq2

Consequently, (q1, b) and (q2, a) are also final combinations. Hence A also
accepts f(a, a). Contradiction. 2

3.2.3 Emptiness, Congruences and Minimization

Theorem 3.36 The emptiness problem for nondeterministic tree automata
is decidable in polynomial time.

Proof: Given an NTA A, the main idea for the proof is to consider the
set EA of all states that are reachable on the roots of input trees and note
that T (A) 6= ∅ iff EA contains a final state. Then, EA is computed in the
following way:

• For h = 0, 1, 2, . . . determine the states that are reachable on trees of
height h, until no new states arise.

• Now verify whether the computed set contains a final state.

92 CHAPTER 3. TREE AUTOMATA

Emptiness algorithm:

Input: A = (Q,Σ, ∆, F)

E0 := {q ∈ Q | (a, q) ∈ ∆ for some a ∈ Σ0}
n := 0
Repeat

n := n + 1

En := En−1 ∪ {q ∈ Q | there exists q1, . . . , qi ∈ En−1,
a ∈ Σi with (q1, . . . , qi, a, q) ∈ ∆}

Until En = En−1

If En ∩ F = ∅ output(“empty”) else output(“non-empty”)

Note that since Q is finite, the algorithm terminates. The effort in terms of
time complexity is O(|Q| · (|Q| · |∆|)).

Correctness: It has to be shown that En = EA for the smallest n with
En = En−1.

The inclusion En ⊆ EA can be easily shown by induction over n. To
prove the opposite inclusion EA ⊆ En, we have to show that if q is reachable
on a tree of height i, then q ∈ Ei (induction). Now

⋃

i∈N
Ei = En holds and

hence, if q ∈ EA, then also q ∈ En. 2

The Nerode congruence for trees is defined using the notion of special
trees introduced previously. Hereby, when appending a tree t ∈ TΣ to a
special tree s ∈ SΣ, to construct t ◦ s, s is called the “context” of t in t ◦ s.

Definition 3.37 (Nerode congruence) Define ∼T ⊆ TΣ×TΣ for T ⊆ TΣ

by:

t1 ∼T t2 ⇔ for each special tree s ∈ SΣ:
t1 ◦ s ∈ T ⇔ t2 ◦ s ∈ T

Example 3.38 Let Σ = Σ0 ∪ Σ2 with Σ0 = Σ2 = {a, b} and the language
T with

T = { t ∈ TΣ | on every branch of t
there are two consecutive occurrences of an a}.

Consider the trees t = a(b, a), t′ = b(a, a) and t′′ = a(b, b). Then, t 6∼T t′

and t ∼T t′′. The first can be shown by choosing the special tree s = a(c, a).
Then t ◦ s ∈ T but t′ ◦ s /∈ T as it can be seen below (the letter in brackets
is the one that was substituted for the sake of the concatenation).

3.2. TREE AUTOMATA 93

a

a(c) a

b a

a

b(c) a

a a

£

Definition 3.39 For a given DTA A = (Q,Σ, δ, F) (w.l.o.g. assume all
states are reachable) define p1∼Ap2 by: If δ∗(t1) = p1 and δ∗(t2) = p2 then
for every special tree s

δ∗(t1 ◦ s) ∈ F ⇔ δ∗(t2 ◦ s) ∈ F

Remark 3.40 In the special case that Σ = {c}∪Σ1 the relations ∼T and ∼A
are identical to the corresponding congruences for the case of finite words.

Remark 3.41 a) ∼T and ∼A are right congruences.

b) If p ∼A p′ with δ∗(t) = p and δ∗(t′) = p′, then t ∼T t′.

c) index of ∼T ≤ index of ∼A.

d) If T is recognizable, then ∼T has a finite index.

e) If ∼T has a finite index, then T is recognizable; moreover, the ∼T -classes
form the state space of the (up to isomorphism unambiguous) minimal
DTA AT that recognizes T .

The proofs are analogous to the ones in the word case and are therefore
skipped. Only for the last remark we give the formal definition of the mini-
mal DTA as well as the method for computing it.

Definition 3.42 For a given ∼T with finite index we define the DTA AT =
(QT , Σ, δT , FT) with

• QT = TΣ/∼T
(the set of equivalence classes [t])

• δT (a) = [a] for a ∈ Σ0,

• δT ([t1], . . . , [ti], a) = [a(t1, . . . , ti)] for a ∈ Σi, i > 0,

• FT = { [t] | t ∈ T }

Note that δT is well-defined, since t1 ∼T t′1, . . . , ti ∼T t′i implies that
a(t1, . . . , ti) ∼T a(t′1, . . . , t

′
i).

To compute this minimal DTA, as in the case of finite words, starting
from an arbitrary DTA we first eliminate any non-reachable states and then
we merge the equivalent states (i.e. two states q, q′ with q ∼A q′) into one.

94 CHAPTER 3. TREE AUTOMATA

Only the way we identify two equivalent states (given two other states that
have been already found to be equivalent) is a little more complicated than
in the case of finite words. This is because, as stated before, in trees we
have to explicitly state at which leaf we concatenate a tree with another.
Formally: q ∼A q′, a ∈ Σi ⇒
δ(q1, . . . , qj−1, q, qj+1, . . . , qi, a) ∼A δ(q1, . . . , qj−1, q

′, qj+1, . . . , qi, a)
for all j ∈ {1, . . . , i} and all q1, . . . , qj−1, qj+1, . . . , qi ∈ Q.

Translated into an algorithm, the procedure takes the following steps:

1. Mark all pairs (q, q′), such that exactly one state belongs to F .

2. While a new pair was marked in the last step: mark all yet non-
marked pairs (q, q′), for which there exists an a ∈ Σi and states
q1, . . . , qj−1, qj+1, . . . , qi, such that the pair

(δ(q1, . . . , qj−1, q, qj+1, . . . , qi, a), δ(q1, . . . , qj−1, q
′, qj+1, . . . , qi, a))

is already marked.

As in the case of conventional DFAs, this algorithm can also be applied to
test the equivalence between two given tree automata by minimizing them
and comparing them with respect to isomorphism.

3.3 Logic-Oriented Formalisms over Trees

In this section we look at the two kinds of logic-oriented formalisms that
we studied in the first chapter about words, namely regular expressions and
MSO-logic. We only focus on issues that have to be extended or refined
to meet the special characteristics of trees, skipping what can be directly
transferred from the area of finite words.

3.3.1 Regular Expressions

Regular expressions are built up using three main operations, namely union,
concatenation and star-operation. For the first one, no special explanation
needs to be given. For the other two some further consideration is necessary.
The way we defined concatenation in the previous section (specifying exactly
one leaf where a special tree is appended to the root of another tree) makes it
rather weak to express all languages that are recognizable by tree automata.

Definition 3.43 T1 ·c T2 is the set of all trees that are formed from some
t ∈ T1, by replacing each c-labeled leaf by some tree from T2.

Note that from now on we are concatenating trees in a top-down manner, in
contrast to what we did in Section 3.2. This is a natural thing to do at this
point, since we now append more than one tree to an existing one. Also note

3.3. LOGIC-ORIENTED FORMALISMS OVER TREES 95

that these trees (∈ T2) can be different. If we represent a tree by a triangle
and mark the c-labeled leaves by a dot, a concatenated tree belonging to
T1 ·c T2 may look like

• •

where the upper tree belongs to T1 and the lower ones to T2.

Since the star-operator induces a special kind of concatenation it has to
be defined in a similar way.

Definition 3.44 T ∗c := T0 ∪ T1 ∪ T2 ∪ · · · with T0 := {c}, Ti+1 :=
Ti ·c (T ∪ {c})

Example 3.45 Consider the singleton tree language T :=

{ f

c c a

}

. Some

of the trees belonging to T ∗c are schematically shown below: £

•
• • • •

• •
• •
• •

• •
•• ••

• •
• •

•• ••

Definition 3.46 (Regular Expressions) T ⊆ TΣ is definable by a regular
expression, if there exist an n ≥ 0 and 0-ary symbols c1, . . . , cn, such that T
is constructed from finitely many trees over Σ∪{c1, . . . , cn} by finitely often
applying the operators ∪, ·ci and ∗ci (i ∈ {1, . . . , n}).

Example 3.47 Let Σ = Σ0∪Σ2 with Σ2 := {a1, . . . , am}, Σ0 := {b1, . . . , bk}.
TΣ is definable by a regular expression:

TΣ :=

(a1

c c
+ · · · +

am

c c

)∗c

·c (b1 + · · · + bk)

Take for example the following tree that obviously belongs to TΣ:

a1

a1 a3

b2 b2 a1 b2

b2 b1

96 CHAPTER 3. TREE AUTOMATA

This tree can be generated according to the above mentioned regular expres-
sion by twice applying the star-operator (∗c) and once the concatenation (·c):

a1

c c

∗c−−→ a1

a1 a3

c c c c

∗c−−→ a1

a1 a3

c c a1 c

c c

·c−−→ a1

a1 a3

b2 b2 a1 b2

b2 b1

£

Example 3.48 Let Σ2 = {a}, Σ0 = {b}.
1. If T is the set of all trees with height bigger than 1, then

T =

(a

a c

c c

+

a

c a

c c

)

·c TΣ

2. If T is the set of all “left-combs”, then
a

a b

b
a

b b

T =

(a

c b

)∗c

·c b

3. If T is the set of all trees whose paths are all of even length, then

T =

(a

a a

c c c c

)∗c

·c b

4. If T is the set of all “left-combs” of even length, then

T =

(a

c1 b
·c1

a

c2 b

)∗c2

·c2 b

3.3. LOGIC-ORIENTED FORMALISMS OVER TREES 97

£

Remark 3.49 Note that c is considered as a non-terminal symbol that can
appear in the construction but not in the trees of the language.

Theorem 3.50 (Kleene-Theorem for Tree Languages) A tree language
T ⊆ TΣ is recognizable by a tree automaton if and only if it is definable by
a regular expression.

Proof (⇐): We suppose that a we are given a language, defined by a regular
expression. By definition the expression contains finitely many trees. Hence,
we can proceed by induction on the construction of regular expressions.

Induction start: By the definition of regular expressions, we start with
languages containing finitely many trees. These can be built up from sin-
gleton languages by finitely often applying the union operator. And since
we are going to handle this operator in the induction step anyway, it suf-
fices now to construct an automaton recognizing a singleton language, i.e.
exactly one tree.

Example 3.51 Given the following tree

t =

a

b

b

c

a

c c

domt =

ε

1

11

111

2

21 22

we construct an NTA over the state set domt, such that in a suc-
cessful run state i is assumed on reading node i. The transitions are:
(c, 111), (c, 21), (c, 22),
(111, b, 11), (21, 22, a, 2), (11, b, 1), (1, 2, a, ε). £

Generally given a tree t, the automaton recognizing it is A = (domt, Σ, ∆, {ε})
with ∆ := { (u1, . . . , ui, valt(u), u) | u ∈ domt }.

Induction step: Given automata Ai = (Qi, Σ, ∆i, Fi) for i = 1, 2 with
Q1 ∩ Q2 = ∅,

• T (A1) ∪ T (A2) is recognized by the NTA A := (Q1 ∪ Q2, Σ, ∆1 ∪
∆2, F1 ∪ F2)

• T (A1) ·cT (A2) is recognized by the NTA A := (Q1∪Q2, Σ, ∆, F1) with

∆ = (∆1 \ { (c, q) | q ∈ Q1 }) ∪ ∆2

∪
{

(q
(2)
1 , . . . , q

(2)
i , a, q(1)) | ∃q′ ∈ F2 :

(q
(2)
1 , . . . , q

(2)
i , a, q′) ∈ ∆2 and (c, q(1)) ∈ ∆1

}

98 CHAPTER 3. TREE AUTOMATA

• T (A1)
+c is recognized by the NTA A := (Q1, Σ, ∆, F1) with

∆ := ∆1 ∪
{

(q1, . . . , qi, a, q) | ∃q′ ∈ F1 :
(q1, . . . , qi, a, q′) ∈ ∆1 and (c, q) ∈ ∆1

}

2

Proof ((⇒)): We suppose that T is recognized by the NTA A = (Q,Σ, ∆, F).
First of all we have to choose some distinguished 0-ary symbols to enable
concatenation (“c-symbols”). For this purpose we misuse the state set of
the automaton and extend Σ to Σ∪Q, where the symbols from Q have arity
0.

Example 3.52 Let Σ = Σ0∪Σ2 with Σ0 = {b}, Σ2 = {a} and Q = {∗, 0, 1}.
An example tree over this extended alphabet would be

a

a a

a 0 ∗ b

b b

£

After having extended the alphabet we construct A′ from A by adding
the transitions (p, p) for every p ∈ Q, to allow the automaton to read the new
0-ary symbols on the leaves and synchronously assume the corresponding
state (having the same name).

Next we define a set T (R, S, q) for R, S ⊆ Q that contains all trees over
Σ ∪ Q, on which there exists a run of A′,

• whose leaves that are labeled by Q-symbols in the input tree, are
labeled with states from R

• whose root is labeled by the state q and

• whose remaining nodes are occupied by states from S

We call the elements of R the “source states”, q the “target state” and
the elements of S the “intermediate states”.

Example 3.53

a0

a1 a∗

a∗ 00 ∗∗ b∗

b∗ b∗

∈ T ({0, ∗}, {1, ∗}, 0)

£

3.3. LOGIC-ORIENTED FORMALISMS OVER TREES 99

By the definition of T (R, S, q) the following holds:

T (A) =
⋃

q∈F

T (∅, Q, q) .

Hence, it suffices to show that all sets T (R, S, q) are regular, which we prove
by induction over the size of S.

Induction start: S = ∅. In this case T (R, S, q) contains only trees of
length 0 or 1. These are finitely many, so T (R, S, q) is regular.

Induction step: |S| > 0: Let S = S0 ∪ {s} (with s /∈ S0), where for S0

the induction hypothesis holds. A tree t ∈ T (R, S, q) iff there exists a run
on t with source states in R, q as target state and intermediate states in
S0 ∪ {s}. If we decompose t by splitting it on the nodes where s occurs

•q

•s •s

•s

•s •s

then by induction hypothesis we can build a regular expression for the de-
composed parts, since all their intermediate nodes are in S0. Using the
following equation we can then construct a regular expression for T (R, S, q).

T (R, S0 ∪ {s}, q) =
T (R, S0, q) ∪ T (R ∪ {s}, S0, q) ·s

(
T (R ∪ {s}, S0, s)

)∗s ·s T (R, S0, s). 2

3.3.2 MSO-Logic

In this subsection we introduce a way to describe the properties of trees
using the Monadic Second-Order Logic. Furthermore, as we did in the case
of finite words, we compare the expressive power of this logic to the tree
automata, this time without giving a proof.

Definition 3.54 (MSO-Logic over trees) Let Σ = Σ0 ∪ · · · ∪ Σm be a
ranked alphabet. A tree t corresponds to a structure

t =
(
domt, S

t
1, . . . , S

t
m,vt, (P t

a)a∈Σ

)

with

• St
i the i-th successor relation on domt (between two positions, where

the second is on the i-th branch starting from the first, when counted
“from left to right”)

100 CHAPTER 3. TREE AUTOMATA

• vt the prefix relation on domt (between two positions in t that are on
the same path)

• P t
a := {u ∈ domt | valt(u) = a} (i.e. the set of all positions of t labeled

with an a)

The syntax of MSO-Logic over trees follows the one over words, though
with the atomic formulas

x = y, S1(x, y), . . . , Sm(x, y), x v y, Pa(x), Xi(x)

Given a formula ϕ(X1, . . . , Xn) the expression

(
domt, S

t
1, . . . , S

t
m,vt, (P t

a)a∈Σ
︸ ︷︷ ︸

t

, K1, . . . , Kn

)
|= ϕ(X1, . . . , Xn)

states that “as an interpretation for Xi, t with Ki ⊆ domt satisfies ϕ”.
A sentence ϕ defines the tree language T (ϕ) := {t ∈ TΣ | t |= ϕ}. Such
languages are called MSO-definable.

Example 3.55 For the tree t over Σ = Σ0∪Σ1∪Σ2, with Σ0 = Σ1 = Σ2 =
{a, b} depicted below, Pa = {ε, 11, 2}, Pb = {1, 12, 21, 211} and obviously
2 v 211.

a

b a

a b b

b

£

Example 3.56 We express three main properties of trees by means of MSO-
formulas and use these in following examples. Consider an alphabet with
maximal rank m = 2. Then:

1. We can express that a node x is the root of a tree (i.e. it does not
have any predecessors) by

Root(x) = ¬∃y(S1(y, x) ∨ S2(y, x))

2. We can express that a node x is on the frontier of a tree (i.e. it does
not have any successors) by

Fr(x) = ¬∃y(S1(x, y) ∨ S2(x, y))

3.3. LOGIC-ORIENTED FORMALISMS OVER TREES 101

3. We can express that a set X of nodes of a tree is “closed under prede-
cessors” (i.e. if some node belongs to X, then so does its predecessor)
by

∀y∀z(X(y) ∧ (S1(z, y) ∨ S2(z, y)) → X(z))

£

Example 3.57 Now consider some more complicated issues:

1. The prefix operator v can be eliminated. That is, we can express
x v y by:

∀X(X(y) ∧ “X is closed under predecessors” → X(x))

2. “a occurs twice on the same path”:

∃x∃y(¬x = y ∧ x v y ∧ Pa(x) ∧ Pa(y))

3. “a occurs twice not on the same path”:

∃x∃y(¬y v x ∧ ¬x v y ∧ Pa(x) ∧ Pa(y))

4. “there exists a subtree labeled only with a’s”:

∃x∀y(x v y → Pa(y))

5. “the frontier word contains an infix ab”: To express this property we
first express the ≺ relation, which is a partial order meaning that a
node is “on the left” of another, for the case of a maximal rank m = 2:

x ≺ y = ∃x0∃y0∃z(S1(z, x0) ∧ S2(z, y0) ∧ x0 v x ∧ y0 v y)

Then, the quoted property can be expressed by:

∃x∃y(Fr(x)∧Fr(y)∧Pa(x)∧Pb(y)∧x ≺ y∧¬∃z(Fr(z)∧x ≺ z∧z ≺ y))

£

The following theorem asserts the equivalence between tree automata
and MSO-logic.

Theorem 3.58 (Doner, Thatcher-Wright 1968) T ⊆ TΣ is regular if
and only if T is MSO-definable.

The proof is completely analogous to the one of the theorem of Büchi,
Elgot, Trakhtenbrot, namely:

• for the direction from formulas to tree automata we consider an in-
duction over the construction of MSO-formulas and make use of the
closure properties of tree automata

• for the direction from tree automata to formulas we describe the exis-
tence of a run by an existential MSO-formula.

102 CHAPTER 3. TREE AUTOMATA

3.4 XML-Documents and Tree Automata

In this section we consider XML-Documents, which are special kinds of
trees as we experienced in the very beginning of this chapter. Compared
to the conventional trees we were dealing with by now, these ones may be
slightly more complicated, but are therefore nowadays extremely significant
for applications. The additional complication relies on the fact that arbitrary
branching is allowed. But let us recall Example 3.4.

Example 3.59 We know that an XML-Document, like the one shown be-
low, is a word that codes a tree using a bracketing 〈X〉 and 〈/X〉 to signal
the beginning and the end of a branch.

<ProfileOfStudies>

<faculty> Computer Science </faculty>

<semester> 3 </semester>

<courses>

<title> PROGRAMMING </title>

<title> COMPUTER STRUCTURES </title>

<title> DATA STRUCTURES </title>

</courses>

</ProfileOfStudies>

This XML-Document codes the following tree:

PS

F S C

TXT TXT T T T

TXT TXT TXT

Note that the branching under “Courses” is arbitrary, i.e. we could as well
list more than three courses. £

This unlimited branching is already known from other areas. In arith-
metics for example, although we formally define “+” as a binary operation,
we are used to writing a sum of arbitrarily many numbers (n1+ . . .+nm) be-
cause we know that the order is not important. In this sense we could as well
say that the “+”-operation has arbitrary arity (at least 2). The following
example illustrates a similar case in the area of boolean expressions.

Example 3.60 In generalized boolean expressions arbitrarily long conjunc-
tions and disjunctions can be formed (β1 ∧ . . . ∧ βn and β1 ∨ . . . ∨ βn with
n > 0). In this sense the expression

((1 ∨ 0) ∨ (1 ∧ 0 ∧ 0) ∨ (0 ∨ 1 ∨ 0))

3.4. XML-DOCUMENTS AND TREE AUTOMATA 103

represents the arbitrarily (but finitely) branching tree:

∨
∨ ∧ ∨

1 0 1 0 0 0 1 0

£

Considering the previous examples it becomes obvious that the ranked
alphabets we introduced in the beginning of this chapter are not appropriate
anymore. Instead, we introduce a labeling alphabet Σ that does not restrict
the branching of a node.

Definition 3.61 A Σ-valued tree over the alphabet Σ is of the form t =
(domt, valt), where

• domt ⊆ N∗
+ is a tree domain

• valt : domt → Σ is the labeling function.

A tree domain D satisfies the following conditions:

1. D is closed under prefixes (wj ∈ D ⇒ w ∈ D)

2. D is closed under “left brother” (wj ∈ D, 1 ≤ i < j ⇒ wi ∈ D)

A node with rank i must have exactly i successors.

The model of a Σ-valued tree is defined similarly to the one over a ranked al-
phabet. The main difference is that in this case it is rather inappropriate to
use an indexed successor relation, because the index could be arbitrary. In-
stead, we only use a simple (not indexed) relation of the immediate successor
and additionally we introduce an ordering relation between the immediate
successors of a node.

Definition 3.62 (Model of a Σ-valued tree) Let t be a Σ-valued tree.
Then

t = (domt, S
t,vt, <t, (P t

a)a∈Σ)

with

• St = a successor relation (edge relation) without indexing

• vt= a prefix relation on domt

• <t= an ordering relation between all immediate successors of the same
node, i.e., u <t v iff u is an “elder brother” of v in t

104 CHAPTER 3. TREE AUTOMATA

• P t
a = {u ∈ domt | valt(u) = a}

MSO-definability is defined as in the previous case.

XML-documents are such Σ-valued trees and their models can be used to
interpret MSO-formulas. However, it is quite inconvenient to use MSO-logic
to describe (groups of) XML-documents. Instead, another special kind of
document description is used.

Definition 3.63 (Document-Type Definition (DTD)) A Document-
Type Definition (DTD) is a system S of rules for the creation of a set of
XML-documents. Each rule in this system has the form of a rule of a
generalized context-free grammar, namely X → r, where r is a regular
expression. The resulting derivation trees (if coded into words using the
special XML-bracketing) are the XML-documents created by S.

Recall that such systems have exactly the same expressive power as conven-
tional context-free grammars.

Theorem 3.64 By using generalized context-free grammars, exactly the context-
free languages can be constructed.

Example 3.65 A context-free grammar to create the XML-document (tree)
of Example 3.59 is defined by the following rules

ProfileOfStudies → faculty · semester · courses
faculty → terminal word

semester → terminal word

courses → title∗

title → terminal word

The corresponding (equivalent) DTD would be:

<!DOCTYPE ProfileOfStudies

[<!ELEMENT ProfileOfStudies (faculty, semester, courses)>

<!ELEMENT faculty (\# PCDATA)>

<!ELEMENT semester (\# PCDATA)>

<!ELEMENT courses (title*)>

<!ELEMENT title (\# PCDATA)>

]>

where the keyword \# PCDATA stands for “parsed character data” to allow
words over the the terminal alphabet. We use the keyword “TEXT” instead.

£

An alternative way to describe sets of XML-documents is to use a special
tree automaton that is able to process them. Of course, such a kind of
automaton should be defined in a way that it has exactly the same expressive
power as DTDs.

3.4. XML-DOCUMENTS AND TREE AUTOMATA 105

Definition 3.66 (XML Tree Automaton) For an alphabet Γ let Reg(Γ)
be the set of regular languages over Γ. An XML-Automaton is a nondeter-
ministic tree automaton of the form A = (Q,Σ, ∆, F) with

• a finite state set Q,

• a labeling alphabet Σ,

• a transition relation ∆ ⊆ Reg(Q) × Σ × Q,

• a final state set F ⊆ Q.

Note that because of the arbitrary branching of the trees, there may be
infinitely many different combinations of son-nodes allowed, in order to pro-
ceed to a certain parent node. Nevertheless, the transition relation is still
presented as a finite set by each time specifying a regular expression or an
NFA over Q for the first component of a transition tuple.

Definition 3.67 (Run and acceptance of an XML-automaton) A run
of A on t is a function ρ : domt → Q with the following conditions:

• for every node u ∈ domt of rank n there exists (L, valt(u), ρ(u)) ∈ ∆
with ρ(u1) . . . ρ(un) ∈ L

• ρ(ε) ∈ F (i.e. the state assumed on the root has to be a final one)

A accepts t if there a exists such a run of A on t (i.e. a run fulfilling both
conditions). By T (A) we denote the set of all trees accepted by A. We call
such a tree language regular.

Note that, according to the first condition of the run function, for an a-
valued leaf node the transition relation of an XML-automaton must contain
a transition (L, a, q) with ε ∈ L.

Example 3.68 We construct an XML-automaton that accepts the general-
ized Boolean expressions (as they were illustrated in Example 3.60) that eval-
uate to true. Not surprisingly we have to use a set of two states Q = {q0, q1}
denoting that the subtree evaluates to false or true, respectively. The au-
tomaton accepts if the true state is assumed at the root (F = {q1}). The
transition relation ∆ contains the following transitions:

• (ε, 0, q0), (ε, 1, q1)

• (Q∗q0Q
∗,∧, q0), (q+

1 ,∧, q1)

• (Q∗q1Q
∗,∨, q1), (q+

0 ,∨, q0)

£

106 CHAPTER 3. TREE AUTOMATA

To show that the definition of XML-automata is a correct one, we have to
show our primary requirement, which was to create an alternative formalism
that has the same expressive power as DTDs.

Theorem 3.69 Every DTD is equivalent to an XML-automaton.

Proof: Simply use the non-terminal symbols of the rule system S as states
in the XML-automaton (cf. Theorem 3.23). 2

One should note that for the other direction (the translation from XML-
automata to DTDs) the situation is as in Theorem 3.23. This can be avoided
by allowing several “instances” A1, A2, . . . , Ak of each non-terminal symbol
A and considering the derivation trees with the indices of these instances
removed (the details are omitted).

Note that the automaton defined in Example 3.68 happens to have at
most one run on a given tree. This holds because the transitions are defined
in a “mutually exclusive” way, i.e. all languages defined by the ∧-transitions
do not have common elements (and the same goes for the ∨-transitions).
This kind of determinism results from the specific transitions of the automa-
ton, but is still not integrated into its structure. In the following we define a
variation of the conventional XML-automaton with a built-in determinism.

Definition 3.70 (Deterministic XML-Automaton) A deterministic
XML-automaton has the form A = (Q,Σ, δ, (Sa)a∈Σ, F), where:

• Q,Σ, F are as in the conventional case,

• δ : Σ → Q (to initialize the run),

• for each a ∈ Σ, Sa is a DFA over Q with an output in Q.

The unambiguous run ρ of A on t is specified as follows:

• for a leaf node u: ρ(u) = δ(valt(u)),

• for a node u of rank n > 0 and valt(u) = a: ρ(u) is the (unambiguous)
output of Sa on the input ρ(u1) . . . ρ(un) (i.e. upon reading the ordered
sequence of the states of the immediate successors of an a-valued node,
Sa returns the state that has to be assigned to the node)

Now that we have defined both the deterministic and the non-deterministic
version of XML-automata it is natural to question ourselves about their ex-
pressive power. The following theorem asserts that, as with automata on
ranked trees, nondeterminism does not offer the ability to describe more
languages.

Theorem 3.71 A nondeterministic XML-automaton is equivalent to a de-
terministic XML-automaton.

3.4. XML-DOCUMENTS AND TREE AUTOMATA 107

Furthermore, all main issues that were considered for the case of au-
tomata on ranked trees (and also on finite words) hold in exactly the same
way for XML-automata. These issues mainly include the following points:

1. The regular sets of valued trees are closed under the Boolean opera-
tions and under projection.

2. A set of valued trees is regular if and only if it is MSO-definable.

3. The emptiness problem, the inclusion problem and the equivalence
problem for XML-automata are all decidable.

All these statements can be proved by simply copying and adapting the
results that we know from the previous cases. Alternatively, we can code the
Σ-valued trees by binary trees and use the results of the previous sections
directly.

The mentioned properties of XML-automata can be used for various
applications concerning XML-documents. Among these are:

1. Testing DTDs for compatibility: For the XML-automata A,B corre-
sponding to the given DTDs, check whether T (A) ⊆ T (B).

2. Query evaluation: Given a query expressed in logic (e.g. XPath-
expression, MSO-formula), extract all documents satisfying the fol-
lowing condition: For the XML-automaton A construct a query rep-
resentation B and check whether T (A) ∩ T (B) 6= ∅.

Remark 3.72 a) Another very essential application in XML technologies
is the transformation of an XML-document into another tree structure.
This problem cannot be handled by the XML-automata that we introduced
in this section; it requires the definition of XML-automata with output,
the so-called tree transducers, which construct a new tree while processing
an XML-document as input.

b) It is very common in current applications to use identifiers to establish
links between XML-documents. This leads to structures that cannot be
considered (and processed) as trees anymore. The resulting graphs are
much more difficult to handle than the initial XML-documents and require
more complex methods.

As stated before, the model that we used for processing XML-documents,
actually, was intentionally defined in such a way that it provides exactly the
same expressive power as DTDs. In fact, when trying to figure out a way to
read and validate a tree with arbitrary (but still finite) branching, another
idea comes first into mind; that is, to navigate through the tree in a vertical
and horizontal manner by visiting exactly one position of the tree at a time.

108 CHAPTER 3. TREE AUTOMATA

(This is similar to the way NFAs read the input of finite words letter by
letter, although in this case we cannot really speak of a navigation since the
movement takes place only in one direction). In the following we construct
and briefly study such a “path-oriented” automaton that is always at one
node of a tree at a time, and from there it can move to the parent node
(↑), to the first immediate successor (↓), to the next immediate successor
of the immediate predecessor node (i.e. to the next brother node) (→)
and analogously to the previous one (←), or remain at the same position
(stationary move: s). To avoid the case that this automaton gets out of
bounds we extend the input tree t to t+, by adding border nodes labeled by
.,5, /,4.

Example 3.73 The simple tree on the left must be extended to the one on
the right before it is given as an input to the new automaton.

a

b c d

→ 5

. a /

. b c d /

4 4 4

£

Now, let us describe this new automaton formally.

Definition 3.74 (Tree Walking Automaton) A Tree Walking Automa-
ton (TWA) has the form A = (Q,Σ, q0, ∆, qf) with

• a finite state set Q, an initial state q0, an accepting state qf ,

• a transition set ∆ ⊆ Q× (Σ∪ {.,5, /,4})×D×Q where D = {←, ↑
,→, ↓, s}.

A tuple (p, a, d, q) ∈ ∆ says that, “when being in state p and currently
reading the symbol a, perform movement d and proceed to state q, in case
this is possible.” A configuration of A on the input tree t is a pair (u, q),
where u ∈ domt is the current position and q the current state of the TWA.
The initial configuration is (ε, q0) and the accepting one is (ε, qf). A accepts
the input t, if A can reach the accepting configuration (ε, qf) from the initial
configuration (ε, q0) by processing t. The language T (A) recognized by A is
defined as T (A) = {t | t is a Σ-valued tree and A accepts t+}.

Example 3.75 Let Σ = {a, b, c} and consider the language T of all Σ-
valued trees having at least one a-labeled node with both a b-labeled and
a c-labeled descendant. A nondeterministic TWA that recognizes T has a

3.5. AUTOMATA OVER TWO-DIMENSIONAL WORDS (PICTURES)109

state set Q = {qa, qb, qc, qr, qf}, where qa, qb, qc mean that the automaton
is currently searching for an a, b or c respectively, qr that the pattern was
found and the automaton is on the way back to the root, and qf is the
accepting state. We choose q0 = qb, i.e. we first navigate down the tree to
find a node with label b, from there a node with label a on the path back
to the root, and from there a node with label c somewhere in the subtree.
Translated into transitions this procedure is coded as follows:

• search for an appropriate b (i.e. the automaton has to guess that this
b has an a-labeled predecessor) with transitions (qb, σ, ↓ / →, qb)

• on visiting a b switch to state qa and search for an a by using transitions
(qb, b, s, qa) and (qa, σ, ↑, qa)

• on visiting an a proceed to qc and search for a c-labeled node in the
subtree with the transitions (qa, a, ↓, qc) and (qc, σ,→ / ↓, qc)

• having visited a c proceed to qr and return to the root by applying the
transitions (qc, c, s, qr) and (qr, σ, ↑, qr)

• accept with the transition (qr,5, s, qf)

£

Regarding the relationship between XML-automata and TWAs and be-
tween deterministic and nondeterministic TWAs, the following results have
been shown up to now.

Theorem 3.76 a) Any TWA can be translated into an equivalent (nonde-
terministic) XML-automaton.

b) There exists a language that is recognizable by an XML-automaton but
not by any (nondeterministic) TWA.

c) There exists a language that is recognizable by a nondeterministic TWA
but not by any deterministic TWA.

There are, still, some fundamental questions concerning TWAs that re-
main open to computer science; one of those is concerned with complemen-
tation: “Is the complement of the tree language recognized by a nondeter-
ministic TWA also recognizable by a nondeterministic TWA?” We suspect
that the answer is negative, though.

3.5 Automata over Two-Dimensional Words (Pic-
tures)

In this last section of the chapter we are going to take one more further
step in generalizing our models by considering two-dimensional words as el-
ements of languages and inputs for automata. Strictly speaking, this slightly

110 CHAPTER 3. TREE AUTOMATA

generalized model does not really belong to the area of trees. The essen-
tial distinction between them is the fact that trees are the kind of directed
graphs where two pieces of information flow from the root to the leaves in
a “spreading” manner, i.e. without being able to converge again into some
node. In other words, in trees a node has always at most one predecessor
whereas in two-dimensional words it has at most two. Still, we are going
to study pictures as a generalized model in this chapter because this very
step of generalization is the one that leads us out of the convenient world of
decidability and efficient computability as far as it concerns the most funda-
mental problems on describing and processing input models. In particular,
after introducing automata and MSO-formulas over labeled grids, we are
going to verify that

a) the class of recognizable picture languages is not closed under comple-
ment and

b) the emptiness problem is undecidable.

Definition 3.77 (Picture) A picture over Σ is a pair p = (domp, valp)
with

• domp = {1, . . . , m} × {1, . . . , n} for m, n > 1 and

• valp : domp → Σ.

In this case we are speaking of a picture of size (m, n).

Example 3.78 Below we can see a picture of size (2, 3).

a b b

b a b

£

Definition 3.79 (Picture Language) Let Σ++ be the set of all pictures
over Σ. Any B ⊆ Σ++ is called a picture language over Σ. If Σ is a singleton
set, then we speak of grids [m, n] and grid languages.

Example 3.80 Below we list three basic picture languages that we are
going to consider in further detail later.

1. for Σ = {a, b}:
B1 = {p ∈ Σ++ | p(3, 3) = a, otherwise p(i, j) = b}

2. for Σ = {·}:
B2 = {[n, n] | n > 0} (square grids)

3.5. AUTOMATA OVER TWO-DIMENSIONAL WORDS (PICTURES)111

3. for Σ = {a, b}:
B3 = {pp | p ∈ Σ++, p is a square}

£

As usual we are going to introduce a model over these pictures that
allows us afterwards to define MSO-formulas, describing languages like the
ones mentioned above. Models of pictures belonging to a language should
then serve as an interpretation for the corresponding MSO-formula.

Definition 3.81 (Pictures as Models) For a picture p of size (m, n) over
Σ let

p :=
(
domp, S

p
1 , Sp

2 ,
(
P p

a

)

a∈Σ

)

with

• Sp
1

(
(i, j), (i + 1, j)

)
(lower successor), Sp

2

(
(i, j), (i, j + 1)

)
(right suc-

cessor) for all suitable i, j and

• P p
a = {u ∈ domp | valp(u) = a}.

Definition 3.82 (MSO-Logic over Pictures) The MSO-Logic over pic-
tures (over Σ) is as previously defined with the atomic formulas:

x = y S1(x, y) S2(x, y) Pa(x) X(y)

The semantics (p, K1, . . . , Kr) |= ϕ(X1, . . . , Xr) where Ki ⊆ domp is defined
as usually. For a sentence ϕ we call B(ϕ) = {p ∈ Σ++ | p |= ϕ} the picture
language defined by ϕ.

Example 3.83 Consider the language B1 of Example 3.80. First we con-
struct an auxiliary formula to specify the symbol at position (0, 0) of the
picture:

topleft(x) = ¬∃yS1(y, x) ∧ ¬∃yS2(y, x)

Now B1 can be defined by the following formula:

∃x1, y1, x2, y2, x3(topleft(x1) ∧ S1(x1, y1) ∧ S2(y1, x2)∧
S1(x2, y2) ∧ S2(y2, x3) ∧ Pa(x3) ∧ ∀y(¬y = x3 → Pb(y)))

i.e. by expressing the fact that in the picture there must be a top left
position from which, after “moving” twice right and twice down, we reach
an a-labeled position whereas all other positions are labeled by letter b. £

Example 3.84 Consider the language B2 of Example 3.80. In a square
grid, departing from the top left position we can reach the bottom right
position by continuously moving once to the right and once down in an

112 CHAPTER 3. TREE AUTOMATA

alternating fashion. In this sense we can say that a square grid is actually
a picture in which “every set X that contains the top left position and is
closed under diagonal successors also contains the bottom right position”.
This is exactly what we express by the following MSO-formula:

∀X
[
∀x(topleft(x) → X(x))∧
∀x∀y∀z(X(x) ∧ S1(x, y) ∧ S2(y, z) → X(z))

→ ∀x(bottomright(x) → X(x))
]

where bottomright(x) := ¬∃yS1(x, y) ∧ ¬∃yS2(x, y) £

Now that we have defined a logical formalism to describe picture lan-
guages it is time to construct a corresponding automaton-oriented model.
To this purpose we first recall the construction we adopted in the case of
conventional trees. The run of a tree automaton is a mapping of states to
the nodes of the input tree. This mapping, along with the labels of the
nodes, has to comply with the transitions that the automaton is allowed to
perform.

(q2, b) (q1, a) (q0, a)

(q0, a)

(q1, a) (q2, b)

(q0, a)

tree transition

Figure 3.1: Run tree of a tree automaton.

This way, a run is composed by matching the prescribed triangles (al-
lowed transitions) to a triangle of nodes (labeled tree node along with both
its immediate successors). Picture acceptors (Tiling-Systems) are nondeter-
ministic systems that function in a similar fashion. They guess the assign-
ment of states to the input picture and then verify the local correctness of
the assignment by matching it with the allowed transitions. But this time
transitions are represented by (2 × 2)-squares instead of triangles, as illus-
trated by Figure 3.2. Each such possible square of the “filled-out” picture
has to correspond to a transition of Tiling-System. To be able to distinguish
those squares that include some boundary nodes (i.e. belonging to the first
or the last row or column) of the picture, we extend the input by marginal
symbols #, as illustrated by the following example:

3.5. AUTOMATA OVER TWO-DIMENSIONAL WORDS (PICTURES)113

a p

b r

b q

a q

b p

b p

transitions

Figure 3.2: Verification of matching transitions on an assignment of states

#

a b b

b a b

#

Definition 3.85 (Tiling-Systems (T-Systems)) A Tiling-System (T-
System) for pictures over Σ has the form A = (Q,Σ, ∆) with a finite set

of states Q and ∆ ⊆
[
(Σ ∪ {#}) × Q

]4
. In other words, a transition is

a tuple of four pairs of the type (input symbol, assigned state). To have
a better overview we represent a transition (a1, q1, a2, q2, a3, q3, a4, q4) by a

matrix

(
a1q1 a2q2

a3q3 a4q4

)

. A run of A on p =

a1,1 . . . a1,n

...
. . .

...
am,1 . . . am,n

 is a ma-

trix ρ =

q0,0 . . . q0,n+1
...

. . .
...

qm+1,0 . . . qm+1,n+1

 such that, with a0,j = ai,0 = am+1,j =

ai,n+1 := #, the following holds, for all suitable i, j:

(
ai,jqi,j ai,j+1qi,j+1

ai+1,jqi+1,j ai+1,j+1qi+1,j+1

)

∈ ∆.

A accepts p if and only if there exists such a run of A on p. As usual we
call the set B(A) := {p ∈ Σ++ | A accepts p} the language recognized by
the t-system A.

Now we are going to consider once again the languages presented in
Example 3.80 and this time describe them by t-systems.

Example 3.86 To recognize B1 (the set of all pictures with an a at (3,3)
and a b everywhere else) we construct a t-system with states Q = {0, 1, 2}
(1 to be assigned to the first and 2 to the second diagonal element) and

114 CHAPTER 3. TREE AUTOMATA

the transitions

(
#0 #0
#0 b1

)

,

(
b1 b0
b0 b2

)

,

(
b2 b0
b0 a0

)

, along with all other

ones that are required to “fill-out” the rest of the picture with state 0.
An example run could be (states are denoted as exponents, and state 0 is
assumed whenever no state is mentioned):

#0 # # # #

b1 b b

b b2 b

b b a0

b b b

#

£

Example 3.87 To recognize the square grids required by language B2 =
{[m, m] | m > 0} from Example 3.80 we use almost the same trick as when
we were looking for an appropriate MSO-formula. The idea is to “emit a
signal-state” from the top left corner and transmit it through the grid in
the diagonal direction. To this purpose we choose a state set Q = {0, 1}
and require the transitions to fit to the picture below (state 0 is assumed
whenever no state is mentioned):

#1 # # # #
·1 · ·
· ·1 ·
· · ·1
#1

The t-system accepts the grid only if it can match its special verification

transition

(
·1 #0
#0 #1

)

with some part of the input, i.e. if the 1 that was

emitted from the top-left corner is received by the bottom-right corner. £

Remark 3.88 If two languages B1, B2 are both recognizable by t-systems,
then the same holds for the languages B1 ∪ B2 and B1 ∩ B2.

The idea for the proof of B1 ∪ B2 is to construct a union of the two t-
systems that should have disjoint state sets. For B1 ∩B2 the usual product
construction has to be applied in order to build a t-system with state set
Q1 × Q2.

The last example that we study right away is a more complicated one
and is based on the language B3 of Example 3.80.

3.5. AUTOMATA OVER TWO-DIMENSIONAL WORDS (PICTURES)115

Example 3.89 Let Σ = {a, b} and consider the language B3, namely the
set of all pictures over Σ that do not have the form pp for some square p. A
picture p′ belongs to this language if either

1. p′ is not of size (n, 2n), or

2. p′ is indeed of size (n, 2n), but there exist some 1 ≤ i, j ≤ n such that
valp′(i, j) 6= valp′(i, j + n).

It suffices to construct one t-system for each case because afterwards, by
Remark 3.88, we can construct a t-system for the union of these two, which
obviously recognizes B3.

Case 1: Let us first find out how we can accept pictures of size (n, 2n).
This can be done by extending the idea of Example 3.87, namely as soon as
the signal state 1 is received by some bottom position it has to be reflected
to the up-right diagonal direction (renamed as signal state 2 to avoid any
confusion). Now we shall expect to receive the signal state 2 in the top-right
corner of the grid. Below we can see an accepting run that also shows the
other transitions that are required in order to fill out the grid correctly:

#1 #0 #0 #0 #0 #0 #0 #0 #0 #0 #0 #2
#0 ·1 ·0 ·0 ·0 ·0 ·0 ·0 ·0 ·0 ·2 #0
#0 ·0 ·1 ·0 ·0 ·0 ·0 ·0 ·0 ·2 ·0 #0
#0 ·0 ·0 ·1 ·0 ·0 ·0 ·0 ·2 ·0 ·0 #0
#0 ·0 ·0 ·0 ·1 ·0 ·0 ·2 ·0 ·0 ·0 #0
#0 ·0 ·0 ·0 ·0 ·1 ·2 ·0 ·0 ·0 ·0 #0
#0 #0 #0 #0 #0 #0 #0 #0 #0 #0 #0 #0

However, in this example we actually want to accept everything but this
kind of grids. For this purpose, we keep the same t-system and refuse to
receive the signal state 2 at the top-right corner by striking out the transition
(

#0 #2
·2 #0

)

. Instead, we may receive the signal state 2 everywhere else on

the right or top border by adding the transitions

(
#0 #0
·2 ·0

)

,

(
·0 #0
·2 #0

)

(in

case the number of columns is greater or less than 2n, respectively), or we
may receive only the signal state 1 somewhere on the right border by adding

the transitions

(
·1 #0
·0 #0

)

,

(
·1 #0
#0 #0

)

,

(
·0 #0
·1 #0

)

(in case the number of

columns is ≤ n). Of course we expect state 0 in the critical top-right corner

by adding the transition

(
#0 #0
·0 #0

)

. Finally, some extra consideration has

to be done for the sizes (1, 1) and (1, n), which we skip at this point.

116 CHAPTER 3. TREE AUTOMATA

Case 2: The second t-system has to accept pictures p of size (n, 2n) (we
already know from the previous case how this can be done) that have at
least one pair of positions (i, j), (i, j +n) such that valp(i, j) 6= valp(i, j +n).
First of all the t-system has to guess such a position (i, j), which can be
done easily by using nondeterminism. Then, it has to count n positions
to the right to verify that the symbol at (i, j + n) is different. Of course
counting cannot be done by using n different states because n is not fixed.
The idea is depicted below (we assume that (i, j) is a-labeled and (i, j + n)
is b-labeled):

a b1
1

2
2

2

3a 3a 3a 4a

5 6

7

The position (i, j) is guessed by using the transition

(
a1 ∗3a
∗1 ∗0

)

. From

there the signal state 1 is emitted vertically towards the bottom border
and the signal state 3a (the a stands for the letter that has been read; it
is perfectly in order to do this because the alphabet is finite and given)
is emitted horizontally towards position (i, j + n). How do we know that
state 3a just reached this position to perform the comparison with (i, j)?
As soon as state 1 hits the bottom border, it is renamed to 2 and further
transmitted to the upper right diagonal direction, mainly with the tran-

sitions

(
∗1 ∗2
#0 #0

)

and

(
∗0 ∗2
∗2 ∗0

)

. When state 2 crosses the horizontal

transmission of state 3a, they are renamed to 5 and 4a, respectively. The

corresponding transitions are

(
∗3a ∗4a
∗2 ∗0

)

and

(
∗0 ∗5
∗4a ∗4a

)

. When state 5

hits the top border, it is renamed to 6 and further transmitted vertically

towards the bottom border, using transitions

(
#0 #0
∗5 ∗6

)

,

(
∗5 ∗6
∗0 ∗6

)

and
(
∗0 ∗6
∗0 ∗6

)

. Note that this happens at column j + n because the picture has

n rows and state 2 (later state 5 and 6) took as many steps to the right as
to the top. When state 6 crosses the horizontal transmission of state 4a,

the letter comparison is done by transitions

(
∗0 ∗6
∗4a b7

)

,

(
∗4a b7
∗0 ∗7

)

. In

3.5. AUTOMATA OVER TWO-DIMENSIONAL WORDS (PICTURES)117

case the letters are different an “OK” signal is transmitted (by using state
7) to the bottom and finally to the bottom-right corner with transitions
(
∗0 ∗7
∗0 ∗7

)

,

(
∗0 ∗7
#0 #7

)

,

(
∗7 ∗7
#7 #7

)

,

(
∗7 #7
#7 #7

)

. £

But what about the language B3 of Example 3.80? Is it also recognizable
by a t-system as it is the case with its complement? If not, then we would
have proven that the closure property under complement does not hold for
picture languages recognizable by t-systems.

Theorem 3.90 The picture language B3 = {pp | p ∈ Σ++, p is a square}
is not recognizable by a t-system.

Proof: Towards a contradiction we assume that A = (Q, {a, b}, ∆) recog-
nizes B3. Set k := |Q| and consider the runs of A on pictures of size (n, 2n).
The number of all possible central stripes (the part of the run consisting of
columns n and n+1) in such runs is at most |(Σ∪{#})×Q|2(n+2) = (3k)2n+4.
The number of all possible pictures of size (n, n) over Σ is 2n2

. Because the
second term grows faster than the first one (with respect to n), we can find a
suitable n such that 2n2

> (3k)2n+4. For such an n, there exist two pictures
pp and qq with p 6= q that are both accepted by A with two runs that have
the same central stripes:

%p %′p %q %′q

Combining the left part of the left picture with the right part of the right
one, we can compose a run that accepts pq:

%p %′q

Contradiction. 2

The following theorem summarizes the closure properties that we studied
above.

Theorem 3.91 The class of picture languages recognizable by t-systems is
closed under union and intersection, but not under complement.

As far as it concerns the relation of t-systems to MSO-logic the following
holds:

118 CHAPTER 3. TREE AUTOMATA

Theorem 3.92 (Giammarresi, Restivo, Seibert, Ths. 1994) A picture
language is t-system recognizable if and only if it is EMSO-definable.

Theorem 3.93 (Matz, Schweikardt, Ths. 1997) As the number of al-
ternations between second-order quantifiers grows we obtain an infinite hi-
erarchy of bigger and bigger classes of picture languages.

Compare the latter result with the case of finite words, where EMSO-logic
can provide the same expressive power as MSO-logic.

We conclude this section (and the whole chapter about trees) by prov-
ing that even the most fundamental decision problem on automata is not
solvable within the area of pictures.

Theorem 3.94 The emptiness problem for t-systems is undecidable.

Proof: To prove undecidability, as usual, we consider a reduction of the
halting problem for Turing machines. In other words, we transform a Turing
machine (TM) M to a t-system AM , such that

M halts on the empty tape ⇐⇒ B(AM) 6= ∅ .

This should suffice to prove that it is not possible to have a method to decide
the emptiness problem for t-systems because, if we had one, then we would
be able to decide the halting problem for TMs as well (through the above
mentioned transformation), which has been proven to be impossible.

We construct AM in such a way that B(AM) codes (in its elements)
exactly the terminating computations of M when started on the empty
tape. Let M = (Q,Σ, q0, ∆, qf) with Ã ∈ Σ. ∆ contains transitions of
the form (q, a, a′, l/r, q′). We suppose that the tape is left bounded. The
configuration words are of the form b1 . . . bi−1 (qbi) bi+1 . . . bn (denoting
that M is currently in state q, reading letter b and the rest of the symbols are
written on the tape to the left and the right of the head). For transitions
(q, bi, b

′, l, q′) ∈ ∆ and (q, bi, b
′, r, q′) ∈ ∆ the successor configurations are

b1 . . . (q′bi−1) b′ bi+1 . . . bn and b1 . . . bi−1 b′ (q′bi+1) . . . bn, respectively.
If we write the sequence of configurations one after the other into the rows
of a table, we obtain a picture of size (m, n), for sufficiently large m, n. This
way, a terminating computation of M started on the empty tape can be
represented by a picture over Σ ∪ (Q × Σ):

a1,1 . . . a1,n

...
...

am,1 . . . am,n

with

• a1,1 . . . a1,n = (q0Ã)Ã. . . Ã,

3.5. AUTOMATA OVER TWO-DIMENSIONAL WORDS (PICTURES)119

• ai+1,1 . . . ai+1,n is the word coding a successor configuration of ai,1 . . . ai,n

for 1 ≤ i < m, and

• in am,1 . . . am,n a letter (qfb) occurs.

In the transitions of AM no states are needed because the t-system only
needs to verify the correctness of the picture by comparing two consecutive
rows and two consecutive positions on the tape (because the Turing machine
can move the head only by one position). For this comparison the 2×2 tiles
of the t-system suffice. Hence, the t-system needs the following transitions
(we have to assume that the TM is deterministic and complete; otherwise,
we have to check that on each row the control state appears only once, which
is possible using 2 states in the system):

For the initial configuration:

(
#
(q0Ã)

)

,

(
#

(q0Ã) Ã

)

,

(
#
Ã Ã

)

,

(
#
Ã #

)

For the intermediate configurations:

(
b (qa)
b a′

)

,

(
(qa)
a′

)

,

(
(qa) b
a′ (q′b)

)

, for (q, a, a′, r, q′) ∈ ∆

(
(qa) b
a′ b

)

,

(
(qa) #
a′ #

)

,

(
b (qa)

(q′b) a′

)

, for (q, a, a′, l, q′) ∈ ∆

(
a
(qa)

)

,

(
a #

(qa) #

)

,

(
a
a

)

,

(
a #
a #

)

, for a ∈ Σ, q ∈ Q

(
a a′

a a′

)

,

(
a a′

a (qa′)

)

,

(
a a′

(qa) a′

)

, for a, a′ ∈ Σ, q ∈ Q.

For the final configuration:

(
a
#

)

,

(
a a′

#

)

,

(
a #
#

)

,

(
(qfa)
#

)

,

(
(qfa) a′

#

)

,

(
a (qfa′)
#

)

,

(
(qfa) #

#

)

for a, a′ ∈ Σ. 2

120 CHAPTER 3. TREE AUTOMATA

3.6 Exercises

Exercise 3.1 Let Σ = Σ0∪Σ2 with Σ0 = Σ2 = {f, g} be a ranked alphabet.
Give tree automata for the following languages:

(a) { t ∈ TΣ | on some path in t there are two consecutive occurrences of f }

(b) { t ∈ TΣ | on every path in t there are two consecutive occurrences of f }
Remark: a path is always starts at the root and ends at a leaf.

Exercise 3.2 Let the tree languages T1, T2 ⊆ TΣ be recognized by the tree
automata A1,A2, where Ai = (Qi, Σ, δi, Fi) for i = 1, 2. Give tree automata
recognizing the following languages:

(a) TΣ\T1 ,

(b) T1 ∩ T2 .

Exercise 3.3 Let Σ = Σ0 ∪ Σ2 be a ranked alphabet with Σ0 = {c}, Σ2 =
{a, b}. Show that

(a) T1 := { t ∈ TΣ | in t there are more a’s than b’s } is not regular,

(b) T2 := { t ∈ TΣ | in t there are more c’s than a’s } is regular.

Exercise 3.4 Let Σ2 = {f}, Σ0 = {a, b}, and

T := { t ∈ TΣ | the frontier word of t is in (ab)+ } .

Give a DTA that recognizes T . Provide also an explanation.
Alternatively: Solve the exercise for any regular language L ⊆ {a, b}+ in-
stead of (ab)+.

Exercise 3.5 (a) Which language is generated by the following regular ex-
pression over Σ0 = Σ2 = {0, 1}?

(0

c0 c0

)∗c0

·c0
[1

c1 c1

·c1
(0

c0 c0

)∗c0

·c0 {0}
]

(b) Give a regular expression over Σ = Σ0 ∪ Σ2 with Σ0 = {0, 1} and
Σ2 = {f} that generates the language

T := { t ∈ TΣ | the frontier word of t contains an infix 01 } .

Exercise 3.6 ∗ Let an almost-deterministic top-down tree automaton be de-
fined like a deterministic top-down tree automaton, but with a set Q0 of
initial states. A run is successful if one of these states is assumed at the
root. Show that there exists a recognizable tree language that cannot be
recognized by an almost-deterministic top-down tree automaton.

3.6. EXERCISES 121

Exercise 3.7 Consider the generalized arithmetic expressions with con-
stants 0, 1 and the functions + and · with arbitrary arities n ≥ 2. Give
an XML-automaton that recognizes the set T0 of all generalized expressions
that have the value 0 (modulo 3).

Exercise 3.8 (a) Give a deterministic (!) TWA that accepts those input
trees over Σ = {a, b, c} where an a occurs.
Hint: Program a run through the whole input tree.

(b) Give a deterministic TWA for the language T presented in the lecture,
namely the set of all Σ-valued trees having at least one a-labeled node
with both a b-labeled and a c-labeled successor.

Provide an explanation for each part.

Exercise 3.9 Give a t-system that accepts exactly those pictures p over
the singleton alphabet {·} whose domain domp contains an even number of
elements. Provide an explanation.

Exercise 3.10 ∗ Show that the set of square grids [m, m] where m is a prime
number is recognizable by a t-system.

122 CHAPTER 3. TREE AUTOMATA

Chapter 4

Pushdown and Counter
Systems

In this chapter we are entering the area of systems whose sets of configu-
rations are infinite. This makes it harder to find algorithmic solutions to
certain problems, because we cannot anymore hope to gather all required
information by taking finitely many steps throughout the transition graph
of such a system. Nevertheless, we present some methods that successfully
solve the most fundamental problems. We then apply our results to systems
that are based on recursive structures and gain some significant results.
Finally, we identify and prove decidability limits towards more complex sys-
tems.

4.1 Pushdown and Counter Automata

It is well known that pushdown automata accept precisely the context-free
languages. Words are accepted using a finite set of control states and a
stack as an auxiliary memory. A global state or configuration of such an
automaton is a pair consisting of a control state and a stack content. Hence,
different from the finite state systems treated so far, the set of configurations
of a pushdown automaton can be infinite, and therefore new questions arise.

Definition 4.1 A pushdown automaton (PDA) is a tuple A = (Q,Σ, Γ, q0, Z0, ∆)
where

• Q is a finite set of control states,

• Σ is a finite input alphabet,

• Γ is a finite stack alphabet,

• q0 ∈ Q is the initial state,

123

124 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

• Z0 ∈ Γ is the initial stack symbol, and

• ∆ ⊆ Q × (Σ ∪ {ε}) × Γ × Γ∗ × Q is the transition relation.

A transition (p, a/ε, Z, β, q) ∈ ∆ is interpreted in the following way: If A is
in state p, reading letter a or no input letter respectively, with Z on top of
the stack, it replaces Z by β and enters control state q.

A configuration is a pair (state q, stack content u) and is often rep-
resented by a single word qu, where the first letter of u represents the
top stack symbol. An extended configuration is a triple (state, stack con-
tent, remaining input). With a transition (p, a/ε, Z, β, q) ∈ ∆ we reach a
successor of the current extended configuration (p, Zu, aw) ` (q, βu, w) or
(p, Zu, w) ` (q, βu, w) in case the empty word is read. In terms of conven-
tional configurations this is written as pZu ` qβu. Hence, we observe that
the configurations of a PDA induce a prefix rewriting system.

An input word w is accepted by a PDA A if there is a computation of
A on w that starts in q0 with Z0 on the stack, reads all letters of w, and
reaches the empty stack at the end of w. In other words, a PDA accepts w if
from (q0, Z0, w) an extended configuration (q, ε, ε) can be reached in finitely
many steps:

(q0, Z0, w) `∗ (q, ε, ε) for some q ∈ Q .

We call L(A) = {w ∈ Σ∗ | A accepts w} the language recognized by A.

Theorem 4.2 (Main Theorem) A language L is context-free (i. e. can be
constructed by a context-free grammar) iff L is recognizable by a PDA.

We recall three fundamental results from the area of context-free gram-
mars. Given a context-free grammar (or two for the third result) G:

1. The word problem “does w belong to L(G)?” is decidable (CYK-
algorithm).

2. The emptiness problem “Is L(G) = ∅?” is decidable (marking of the
variables from which a terminal word can be derived).

3. The inclusion and the equivalence problem are both undecidable.

Since PDAs describe the same class of languages as context-free gram-
mars, there must be a way to gain analogous results for the former by some
reduction to the latter. However, because in computer science PDAs often
occur independently (i. e. not related to some grammar), we solve the first
two problems directly for PDAs.

Pushdown automata play a central role in various topics in computer
science. In compilers the stack serves as the central data structure. In par-
ticular, it is used as an auxiliary memory in the implementation of recursive

4.1. PUSHDOWN AND COUNTER AUTOMATA 125

procedures. In the special case that the stack alphabet consists of a single
symbol, apart from the initial stack symbol, a stack actually implements a
counter. If the stack contains only the initial stack symbol, the number 0 is
represented. Any other number is represented by the number of occurrences
of the (only) stack symbol on top of the initial one. This again shows that
the set of all possible stack contents is infinite, as natural numbers are too.

Example 4.3 The depth-first search in a graph G = (V, E), starting from
a node v0, can conveniently be implemented by the following recursive pro-
cedure DFS(v):

Mark v
For all non-marked successors w of v: DFS(w)

We illustrate this process on the graph below, where v0 = 1, and denote
the nested calls of the algorithm on the left.

DFS(1)
DFS(2)

DFS(4)
DFS(6)

DFS(5)

1 2 3

6 5 4

To implement this by an iterative program we have to store the procedure
calls in “reverse” direction. This can be done by the following algorithm that
uses a stack as an auxiliary memory:

Initialize stack with v0

Mark v0

As long as the stack is not empty, assume the top symbol is v:
if there exists a non-marked neighbor of v:

mark the first non-marked neighbor w of v
and push w onto the stack

otherwise, delete v from the stack

If we apply this algorithm to the example graph from above, the stack
content evolves as follows:

1 → 21 → 421 → 6421 → 421 → 21 → 521 → 21 → 1 → ε .

£

Example 4.4 According to Theorem 4.2, if a language L can be generated
by a context-free grammar, then L is recognizable by a PDA. Suppose L is
generated by a grammar G. Then w ∈ L iff there exists a derivation tree t
for w in G. While reading w, this can be verified by guessing a left derivation
that corresponds to a depth-first search through the derivation tree. A stack
once again serves as an auxiliary memory for this kind of depth-first search.

126 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

Given the following grammar

S → AA, A → AB | b | c, B → b ,

we suppose that the tree shown below is guessed by a nondeterministic
automaton. On the right we can see how the stack content evolves after
each step of the depth-first search.

S

A A

A B c

b b

S
AA

ABA
bBA
BA
bA
A
c

£

By defining the configurations of a PDA as states of a transition system,
we can extend the PDA to an infinite automaton, since there are in general
infinitely many configurations. This shows again that PDAs can accept a
wider class of languages than finite automata.

Definition 4.5 [Configuration graph of a PDA] If A is a PDA, then the
configuration graph of A is defined as GA = (V, (Ea)a∈Σ∪{ε}), where

• V is the set of all configurations reachable from q0Z0, and

• (pZu, qβu) ∈ Ea or (pZu, qβu) ∈ Eε if there is a transition
(p, Z, a/ε, β, q) ∈ ∆.

A pushdown graph is the configuration graph of a PDA without ε-transitions.

Example 4.6 We define a PDA A for the language L = {anbn | n > 0}.
Let A = ({q0, q1}, {a, b}, {Z0, Z}, q0, Z0, ∆) with

∆ =

(q0, a, Z0, ZZ0, q0), (q0, a, Z, ZZ, q0),
(q0, b, Z, ε, q1), (q1, b, Z, ε, q1),
(q1, ε, Z0, ε, q1)

.

The configuration graph of A is shown below.

q0Z0
a

q0ZZ0
a

b

q0ZZZ0
a

b

. . .

b

q1 q1Z0
ε

q1ZZ0
b

q1ZZZ0
b . . .b

£

4.1. PUSHDOWN AND COUNTER AUTOMATA 127

The way we defined a PDA at the beginning of the section allows to
replace the top symbol of the stack by several ones (i. e. a word β) in one
step. We say that a PDA is in normal form, if it has only transitions
(p, a/ε, Z, β, q) with |β| ≤ 2. That is, in one step the length of the stack can
be increased or reduced by at most 1.

Lemma 4.7 For every PDA there exists an equivalent PDA in normal
form.

Proof: For each transition with |β| > 2 add |β|−2 intermediate transitions.
2

Every PDA induces a pushdown system, where we suppress the special
roles of q0 and Z0, and ignore the input letters.

Definition 4.8 A pushdown system (PDS) P is a tuple P = (P, Γ, ∆),
where P is a finite set of states, Γ is a finite stack alphabet, and ∆ ⊆
(P × Γ × P × Γ∗) is a finite set of transition rules, written pa → qv.

A configuration (or global state) of a pushdown system P is a word
pw ∈ P · Γ∗, where the first letter of w represents the top symbol of the
stack.

We write

• pw ` p′w′ if w = aw0, w′ = vw0, and pa → p′v ∈ ∆,

• pw `i p′w′ if there exists p0w0, . . . , piwi with pw = p0w0, piwi = p′w′,
and pjwj ` pj+1wj+1 for 0 ≤ j < i, and

• pw `∗ p′w′ if pw `i p′w′ for some i ≥ 0.

The configuration graph of a pushdown system P = (P, Γ, ∆) is the graph
with vertex set {c | c ∈ PΓ∗} and an edge between c1 and c2 if c1 ` c2.

Example 4.9 Let P = (P, Γ, ∆) be a PDS, where P = {p0, p1, p2}, Γ =
{a, b, c} and ∆ = {(p0a → p1ba), (p1b → p2ca), (p2c → p0b), (p0b → p0ε)}. A
sequence of configurations reachable from p2cbba is shown below.

p2cbba ` p0bbba ` p0bba ` p0ba ` p0a ` p1ba ` p2caa ` . . .

£

In the following we consider an extension of pushdown systems to systems
that have more than one stack.

Definition 4.10 [n-Pushdown System] An n-pushdown system is defined
analogously to a PDS but with n stacks. What needs to be redefined is the
way transitions are executed. By [n] we denote the set {1, . . . , n}. Then,

128 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

the transition relation is ∆ ⊆ Q× [n]×Γ×Γ∗×Q. A transition (p, i, a, v, q)
means that being in state p with a as the top symbol of stack i, the system
is allowed to replace this a by v and proceed to state q. The configurations
are analogous to the ones of a PDS.

We recall the special case of counter systems and extend them to more than
one counters by giving analogous formal definitions.

Definition 4.11 [Counter System] A counter system is a pushdown system
whose stack alphabet contains one single symbol Z apart from the initial
stack symbol Z0. Hence, the stack content is ZmZ0 and represents the
number m. A transition (p, Z, v, q) with v ∈ Z∗ means the following:

• for |v| > 1: addition of |v| − 1 and change to state q;

• for |v| = 1: change to state q;

• for |v| = 0: subtraction of 1 and change to state q.

A counter system is deterministic if the corresponding PDS is.

An n-counter system is an n-pushdown system where the stack alphabet
for all stacks contains one single symbol Z apart from the initial stack symbol
Z0. A configuration has the form (p, i1, . . . , in), denoting the current state
and the number currently represented by each of the n counters.

Counter systems appear in programming languages, however under a dif-
ferent name and format. To study the computation limits on functions over
N, register machines were introduced as a model of programming language.

Definition 4.12 [Register Machines (Shepherdson, Sturgis 1963)] An n-
register machine is a sequence of instructions 1 I1; 2 I2; . . . ; k Ik (i. e. a
program) with program variables X1, . . . , Xn. For j < k an instruction Ij

has one of the following forms:

• INC Xi (increase the value of Xi by 1 and proceed to the next instruc-
tion);

• DEC Xi (decrease the value of Xi by 1, if possible, and proceed to the
next instruction);

• IF Xi = 0 GOTO m (if the value of Xi = 0, jump to instruction Im,
otherwise proceed to Ij+1).

Ik is the instruction STOP. A configuration (j, valueOf(X1), . . . , valueOf(Xn))
contains the number j of the instruction that is executed in the next step,
and the values currently assigned to each of the n variables.

4.1. PUSHDOWN AND COUNTER AUTOMATA 129

Example 4.13 Consider the register machine R0:

1 IF X2 = 0 GOTO 5;
2 INC X1;
3 DEC X2;
4 IF X3 = 0 GOTO 1;
5 STOP

Because (1, x, y, 0) `∗ (5, x+y, 0, 0), R0 can be used to perform the addition
of two natural numbers. £

Even if register machines are allowed to perform only the three basic
instructions mentioned above, it can be shown that they possess the same
expressive power as Turing machines. That is, using only these three in-
structions and a finite number of variables one can compute all functions
in number theory. Instead of proving this directly, we conclude this section
by showing that register machines are indeed only a different formulation
of counter systems, and in a later section we reduce Turing machines to
counter systems.

Proposition 4.14 Deterministic counter systems Z in normal form can
simulate register machines R and vice versa.

More specifically, given a counter system Z, there exists a register ma-
chine R that comprises the states of Z such that:

Z : (p, i1, . . . , in) `∗ (q, j1, . . . , jn)
iff R : (p, i1, . . . , in) `∗ (q, j1, . . . , jn)

The converse direction can be expressed in an analogous way.

Proof (from register machines to counter systems): Given R con-
struct Z by using the instruction numbers 1, . . . , k as states and add the
following transitions:

• for Ij = INC Xi: (j, i, Z, ZZ, j + 1), (j, i, Z0, ZZ0, j + 1);

• for Ij = DEC Xi: (j, i, Z, ε, j + 1), (j, i, Z0, Z0, j + 1);

• for Ij = IF Xi = 0 GOTO m: (j, i, Z0, Z0, m), (j, i, Z, Z, j + 1).

2

Proof (from counter systems to register machines): For the sake of
simplicity we exclude complex cases in the transitions of the counter system.
We assume that transitions either do not depend on whether the current top
stack symbol is Z or Z0, or they leave the stack unchanged (each counter
system can easily be transformed into one satisfying these restrictions).

130 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

Given a deterministic n-counter system Z in normal form, we construct
an n + 1-register machine R where we use the last variable as a constant
Xn+1 = 0 to be able to express static GOTO instructions (i. e. not depending
on the “dynamic” value of a variable). Before proceeding to the construction
we make the counter system complete by adding transitions such that for
every possible control state and top stack symbol the counter system can
take a step. If Z has the states 1, . . . , k, introduce the instruction numbers
1, . . . , 2k + 1 (instruction 2k + 1 is STOP). We denote the static instruction
“j IF Xn+1 = 0 GOTO m” by “j GOTO m”. The transition relation is then
transformed to register specific instructions according to the following cases:

• for (j, i, Z/Z0, ZZ/ZZ0, m): 2j − 1 INC Xi; 2j GOTO 2m − 1

• for (j, i, Z, ε, m) and (j, i, Z0, Z0, m): 2j − 1 DEC Xi; 2j GOTO 2m − 1

• for (j, i, Z, Z, m) and (j, i, Z0, Z0, m
′):

2j − 1 IF Xi = 0 GOTO 2m′ − 1; 2j GOTO 2m − 1

2

4.2 The Reachability Problem for Pushdown Sys-
tems

Configuration graphs of pushdown systems are (in general) infinite. Hence
the question whether one can reach from a configuration c1 a configuration
c2 becomes more interesting. We call this the reachability problem. Let C
be a set of configurations. We define

post∗(C) := {c | c0 `∗ c for some c0 ∈ C}

and
pre∗(C) := {c | c `∗ c0 for some c0 ∈ C}.

With this notation the reachability problem for two configurations can be
restated in two versions:

• Forward reachability problem: Given c and the definition of C,
does c ∈ post∗(C) hold?

• Backwards reachability problem: Given c and the definition of C,
does c ∈ pre∗(C) hold?

These formulations can be sharpened to meet a generalized version of the
reachability problem. That is, given the definition of some configuration set
C, we want to determine the definitions of the configuration sets post∗(C)
and pre∗(C). Note that such a result is very helpful for testing certain safety
conditions in system design.

4.2. THE REACHABILITY PROBLEM FOR PUSHDOWN SYSTEMS131

Theorem 4.15 (Büchi 1964) Let P = (P, Γ, ∆) be a PDS and C ⊆ PΓ∗ a
regular set of configurations. Then pre∗(C) and post∗(C) are again regular.

Moreover, from an NFA A accepting C we can compute an NFA Ā ac-
cepting pre∗(C) and an NFA Ã accepting post∗(C).

Before proceeding to the proof, we look at some very significant results
that emanate from this theorem.

Corollary 4.16 The stack contents that are reachable from the initial con-
figuration q0Z0 of a PDA form a regular set.

Corollary 4.17 The point-to-point reachability problem for pushdown sys-
tems is decidable.

Proof: Let c1, c2 be two configurations. Obviously {c2} is a regular set.
By using Theorem 4.15 we can determine a DFA that recognizes pre∗({c2}).
Then we only need to check whether c1 is accepted by this DFA, in order to
decide if c2 is reachable from c1. 2

Since counter systems (and register machines equivalently) are a special-
ization of pushdown systems, the same statement as Corollary 4.17 must
hold for this case too.

Theorem 4.18 The point-to-point reachability problem for 1-counter sys-
tems (equivalently for 1-register machines) is decidable.

Corollary 4.19 The emptiness problem for context-free languages is decid-
able.

Proof: We use PDAs (instead of grammars) to prove this corollary. For
the language recognized by a PDA A the following holds:

L(A) 6= ∅ iff q0Z0 `∗ (q, ε) for some q ∈ Q .

This means that the context-free language is non-empty iff q0Z0 ∈ pre∗(Qε),
which can be decided by Theorem 4.15. 2

Proof (of Theorem 4.15): First we have to clarify how we will give
definitions for sets of configurations. We use special NFAs to represent such
regular sets. Let P = (P, Γ, ∆) be a PDS and C ⊆ PΓ∗ a regular set
of configurations. A P -automaton for C is an NFA A = (Q,Γ, P,∆A, F)
that accepts from an initial state p ∈ P exactly the words w ∈ Γ∗ such that
pw ∈ C. The control states of P are used as initial states of A. Additionally,
it is not allowed in A to have a transition to an initial state.

132 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

Input: A P -automaton A, a PDS P = (P,Γ,∆)

1. A0 := A, i := 0

2. repeat :

3. if pa → p′v ∈ ∆ and Ai : p′
v−→ q

4. then add (p, a, q) to Ai to obtain Ai+1

5. i := i + 1

6. until no more transitions can be added.

7. Ā := Ai

Output: Ā

Figure 4.1: First Saturation Algorithm

Example 4.20 Consider the pushdown system from Example 4.9 and the
configuration C = {p0aa}. The P -automaton for C is the following:

A : p2

p0
a s1

a s2

p1

£

The idea that we use (proposed by Bouajjani, Esparza, Maler, Hansel,
Rossmanith, Schwoon) is a transformation of such an NFA. We consider the
regular target set C of configurations of a PDS and suppose that the NFA
A(C) accepts qvw with a run q

v−→ r
w−→ F . If there exists a rule pa → qv

in the pushdown system, then paw must be accepted by the NFA as well.
Therefore we add a transition p

a−→ r to its transition relation.

Let P = (P, Γ, ∆) be a PDS and C ⊆ PΓ∗ a regular set of configura-
tions represented by a P -automaton A = (Q,Γ, P,∆A, F). We present two
saturation algorithms to compute P -automata Ā and Ã accepting the sets
pre∗(C) and post∗(C), respectively.

The first saturation algorithm is shown in Figure 4.1. Example 4.21
shows the P -automaton computed by the first saturation algorithm with the
pushdown system from Example 4.9 and the P -automaton from Example
4.20 as inputs.

Since the number of transitions that can be added to a P -automaton is
finite, the algorithm terminates. For the correctness we have to prove that

pw ∈ pre∗(C) ⇔ Ā : p
w−→ F.

4.2. THE REACHABILITY PROBLEM FOR PUSHDOWN SYSTEMS133

For the direction from left to right we show for n ≥ 0:

pw `n ru ∈ C ⇒ Ā : p
w−→ F.

For n = 0 there is nothing to show. Suppose now that pw `n ru and
ru ∈ C. We can decompose this sequence into paw′ ` p′vw′ `n−1 ru where
w = aw′ and pa → p′v is a transition of the pushdown system. By the

induction hypothesis we know that Ā : p′
vw′

−−→ F , i. e. there is a state q such

that Ā : p′
v−→ q

w′

−→ F . Hence the saturation rule ensures that there is a
transition (p, a, q) ∈ ∆Ā, and thus pw is accepted by Ā.

For the converse we have to show a more general claim to make the
induction work. We show that for all pw and all q we have

Ā : p
w−→ q ⇒ ∃p′w′ : A : p′

w′

−→ q and pw `∗ p′w′ (*)

For q ∈ F this yields the original claim because A : p′
w′

−→ q then means that
p′w′ ∈ C, and thus pw `∗ p′w′ implies that pw ∈ pre∗(C).

If Ā : p
w−→ q, then there exists i such that Ai : p

w−→ q. We prove (*)
by induction on i. For i = 0 the claim obviously holds with p′w′ = pw as
A0 = A.

For i > 0 let (p1, a, q1) be the transition that was added by the algorithm
to Ai−1 to obtain Ai. This transition is used j times in the run Ai : p

w−→ q
for some j ≥ 0. We prove the induction step for i by another induction, this
time on j. If j = 0, then we get Ai−1 : p

w−→ q and we can directly apply the
induction hypothesis for i.

If j > 0, then we can split the run Ai : p
w−→ q at the first position where

the new transition is used as follows (where w = u1au2):

Ai−1 : p
u1−→ p1

︸ ︷︷ ︸

(1)

, Ai : p1
a−→ q1

︸ ︷︷ ︸

(2)

, Ai : q1
u2−→ q

︸ ︷︷ ︸

(3)

.

We can apply the induction hypothesis for i to (1) (i. e. to pu1 and p1). This

means that there is p′1u
′
1 such that A : p′1

u′
1−→ p1 and pu1 `∗ p′1u

′
1. As a

P -automaton does not have any transitions leading to an initial state, the

only possibility for A : p′1
u′
1−→ p1 is u′

1 = ε and p′1 = p1. We get pu1 `∗ p1.
Considering (2), the transition (p1, a, q1) was added by the algorithm

because there is a pushdown rule p1a → p2v with Ai−1 : p2
v−→ q1. Concate-

nating this run with (3) we obtain the run Ai : p2
v−→ q1

u2−→ q in which the
transition (p1, a, q1) is used only j − 1 times. The induction hypothesis on j

yields p′w′ such that A : p′
w′

−→ q and p2vu2 `∗ p′w′.
Combining this with pu1 `∗ p1 (derived from (1)) and the rule p1a → p2v

we get pw `∗ p1au2 ` p2vu2 `∗ p′w′, proving (*).
For the part of Theorem 4.15 concerning post∗(C) we use the same idea.

We suppose we are given a PDS P = (P, Γ, ∆), this time in normal form,

134 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

Input: A P -automaton A and a PDS P = (P,Γ,∆)

1. Set A0 := A and i := 0

2. For each rule r : pa → p′bc add a new state r and a transition (p′, b, r)

3. repeat (Saturation steps):

4. if pa → p′ ∈ ∆ and Ai : p
a−→ q then add (p′, ε, q)

5. if pa → p′a′ ∈ ∆ and Ai : p
a−→ q then add (p′, a′, q)

6. if r : pa → p′a′a′′ ∈ ∆ and Ai : p
a−→ q then add (r, a′′, q)

7. i := i + 1

8. until no more transitions can be added.

9. Ã := Ai

Output: Ã

Figure 4.2: Second Saturation Algorithm

i. e. containing only rules pa → q or pa → qb or pa → qbc. We use a P -
automaton that recognizes the (regular) configuration set C of P. Suppose
that the NFA A(C) accepts paw with a run p

aw−−→ F . If there exists a rule
pa → qv in the pushdown system, then we must be able to construct a run
q

vw−−→ F in the NFA. If the first transition of the run p
aw−−→ F is p

a−→ r, then
we distinguish three cases for a rule pa → qv of the PDS.

1. v = ε: add a transition q
ε−→ r (now qvw = qw is accepted by the run

q
ε−→ r

w−→ F);

2. v = b: add a transition q
b−→ r (now qvw = qbw is accepted by the run

q
b−→ r

w−→ F);

3. v = bc: we have to add some transition “q
bc−→ r”. But since the

NFA can process only one letter at a time, we need an intermediate
state rρ for each such rule ρ with |v| = 2. In this case, before starting
the procedure we should first have extended the NFA by a transition

q
b−→ rρ. Now we can add the transition rρ

c−→ r, so that the NFA finally

accepts qvw = qbcw by the run q
b−→ rρ

c−→ r
w−→ F .

The second saturation algorithm is shown in Figure 4.2. Example 4.21
shows the P -automaton computed by this algorithm with the same inputs
as above.

Since the correctness proof is similar to the one for the first saturation
algorithm, it has been dropped here. 2

4.2. THE REACHABILITY PROBLEM FOR PUSHDOWN SYSTEMS135

Example 4.21 Let P be the pushdown system from Example 4.9. Apply-
ing the first saturation algorithm for the P -automaton from 4.20, we obtain
the automaton Ā accepting pre∗(p0aa).

Ā : p2

c

p0
a

a
b

s1
a s2

p1

b

b

The automaton Ã obtained by applying the second saturation algorithm
and accepting post∗(p0aa) is shown below.

Ã : p0
a

b,ε

s1
a s2

p1
b r1

a

a

p2
c r2

a

£

Complexity estimation of the first saturation algorithm: For the
backwards reachability problem we are given a PDS P = (P, Γ, ∆) in normal
form and a P -automaton A = (Q,Γ, P,∆A, F). Hence, the length of the
input for the algorithm is |P | + |∆| + |Q| + |∆A|. In the first step of each
loop (see Figure 4.1) we examine the existence of both a rule of the pushdown
system (there are |∆| many) and a matching run (with some v) in the P -
automaton. Because |v| ≤ 2 (normal form), such a run can comprise at
most two transitions. Hence, for each rule in ∆ we have to examine at most
|Q|2 runs, which in the worst case sums up to |∆| · |Q|2 checks in each loop.
Now because a transition is a combination of a pair of states and a letter
of the input alphabet, the loop can be executed at most |P | · |Q| · |Γ| times;
more transitions cannot be added to the P -automaton. All in all we get a
(polynomial) complexity of |∆| · |P | · |Q|3 · |Γ|.

Complexity estimation of the second saturation algorithm: The
input is the same as before. In this algorithm we have an additional compu-
tational effort that must be carried out before entering the loop (see Figure
4.2), in order to extend the P -automaton for each rule that increases the

136 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

stack by one symbol. This can be done as many times as there are rules,
namely |∆| times. In each loop and for each rule in ∆ we have to find out
in which of the three cases it belongs (at most 3 comparisons) and then find
a matching transition (not a run!). In the worst case this can be done in
3 · |∆| · |Q| steps. For a similar reason as before the loop can be executed at
most (|P |+ |∆|) · |Q| · |Γ| times. All in all we get a (polynomial) complexity
of |∆| + 3 · |∆| · (|P | + |∆|) · |Q|2 · |Γ|.

We conclude this section by recalling what holds about the equivalence
tests between two PDAs.

Theorem 4.22 The problem

“Given two PDAs A,B, do A and B recognize the same lan-
guage?”

is undecidable. However, it is decidable for deterministic PDAs.

Theorem 4.23 The problem

“Given two PDAs A,B, are A and B bisimilar?”

is decidable.

4.3 Recursive Hierarchical Automata

In the previous section we thoroughly studied the reachability problem for
PDSs. In this section we consider a kind of system whose analysis depends
on the application of this reachability test. These are the so called “recursive
hierarchical systems” which consist of components K0, . . . , Kn that can call
one another or even themselves (recursion). The states of such a system
are either “normal” ones or calls of a component Kj . Figure 4.3 shows the
system K0 that comprises three normal states and two calls, one to itself
and one to a component K1. Calls to components are usually represented
as boxes, like in the picture. Unlike the case of Figure 4.3, boxes may have

�

� K0

�

K1

a

K0

Figure 4.3: A recursive hierarchical system.

4.3. RECURSIVE HIERARCHICAL AUTOMATA 137

several inputs and outputs. For the sake of simplicity, we only consider the
case of a single input and output in the following.

The concept which recursive hierarchical systems rely on is of course
well-known to us from the context-free grammars. The idea of replacing a
component with several ones (including itself) is represented by the rules
that imply a substitution of some letter by several ones (including itself).

Example 4.24 Consider the context-free grammar G, defined by the fol-
lowing rules:

S → AB | ASB | SS, A → a | cA, B → b | cB .

S generates the bracket words over {A, B}, e. g. AABABBAB. If we imag-
ine “A” as “(” and “B” as “)”, then this word corresponds to “(()())()”. A
derivation tree of this word is shown below.

S

S S

A S B A B

S S

A B A B

Finally A is replaced by words in c∗a and B by words in c∗b.
The rules of this grammar induce a recursive hierarchical system S (Fig-

ure 4.4) that can sequentially call the components A, B or the components
A, S, B or the components S, S.

A BS

A B

S S

� �

S

Figure 4.4: A recursive hierarchical system corresponding to the grammar
of Example 4.24.

The component A is shown in Figure 4.5, where either a c is selected and
A is recursively called, or the call is completed by an a. The component B
is constructed similarly. £

138 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

�

� A

�

c

a
A

Figure 4.5: A component of the recursive hierarchical system of Figure 4.4.

Definition 4.25 [Recursive Hierarchical Automaton] A recursive hierarchi-
cal automaton over Σ has the form A = (K0, . . . , Kn), where every compo-
nent Kj = (Qj , BXj , BIj , ij , ∆j , oj) consists of the following:

• a finite state set Qj ;

• a finite set of boxes BXj ;

• a specification of the box content BIj : BXj → {0, . . . , n}. In partic-
ular, BIj(B) = i means that in the component Kj the box B is a call
to the component Ki;

• an input state ij and an output state oj ;

• a transition relation ∆j with transitions of the form (p, a, q), (p, ε, B),
(B, ε, q), (B, ε, B′) for p, q ∈ Qj , a ∈ Σ, and B, B′ ∈ BXj .

Definition 4.26 [Run of a Recursive Hierarchical Automaton] A run of A
is a sequence p0, b1, p1, b2, p2, . . . , bm, pm of

• states pi from Q =
⋃n

j=0 Qj and

• labels bi ∈ Σ ∪ {ε}.

For each segment pi, bi+1, pi+1 of the sequence there is a j ∈ {0, . . . , n} such
that the following holds:

• (pi, bi+1, pi+1) ∈ ∆j (normal transition), or

• (pi, bi+1, B) ∈ ∆j with B ∈ BXj , BIj(B) = m, and pi+1 = im (a call
to component Km), or

• (B, bi+1, pi+1) ∈ ∆j with B ∈ BXj , BIj(B) = m, and pi = om (return
from component Km), or

• (B, bi+1, B
′) ∈ ∆j with B, B′ ∈ BXj , BIj(B) = m, BIj(B

′) = m′,
pi = om, pi+1 = im′ (call to component Km′ , while returning from
component Km).

4.3. RECURSIVE HIERARCHICAL AUTOMATA 139

An accepting run on w is a run from i0 to o0, labeled by the word w. A
accepts w, if there exists an accepting run of A on w.

Example 4.27 Consider the word ccab and the recursive hierarchical sys-
tems of Figures 4.4 and 4.5. By following the upper branch of system S and
twice the lower and then once the upper branch of component A, we get
the following accepting run of ccab (of course we also follow once the upper
branch of component B, which is analogous to A):

iS
ε−→ iA

c−→ q
ε−→ iA

c−→ q
ε−→ iA

a−→ oA
ε−→ oA

ε−→ oA
ε−→ iB

b−→ oB
ε−→ oS .

£

Theorem 4.28 Recursive hierarchical automata recognize exactly the context-
free languages.

We skip the proof, since it merely goes by a direct transformation of gram-
mars to recursive hierarchical automata and vice versa. The transformation
of the first direction was illustrated in Example 4.24.

Naturally, the run of the recursive hierarchical automaton illustrated
in the last example motivates the question about the reachability problem;
namely, given two states of such an automaton, is there a sequence of tran-
sitions to reach one from the other? The following theorem answers this
question indirectly by giving an equivalence between recursive hierarchical
automata and pushdown automata. It is then obvious that we can solve the
reachability problem, since we have found an efficient solution for the case
of pushdown automata.

Theorem 4.29 For every recursive hierarchical automaton A an equivalent
pushdown automaton can be constructed.

Remark 4.30 1. Theorem 4.29 is a variant of the translation from gram-
mars to pushdown automata.

2. With some additional effort we obtain variants of Theorem 4.29 with
several input and output states.

Proof (of Theorem 4.29): Given a recursive hierarchical automaton A =
(K0, . . . , Kn) with Kj = (Qj , BXj , BIj , ij , ∆j , oj), we construct a pushdown
automaton with state set Q =

⋃n
j=0 Qj and stack alphabet {Z0}∪

⋃n
j=0 BXj .

The main idea of the construction is to store the current Kj-state in the
control state of the PDA, and to store on the stack the boxes that are called
in a LIFO fashion. This means that the box that is called is stored on top of
the stack. This way, the correct information about “where to return” when
a call is completed is always available. If only the initial stack symbol Z0

140 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

is stored on the stack, then no box call is currently active, and furthermore
the current state is in Q0.

A PDA-transition (p, b, Z, v, q) is added in the following cases:

• For a normal transition (p, b, q) ∈ ∆j , we set v = Z (the stack remains
unchanged).

• For an entrance transition (p, ε, B) ∈ ∆j into box B from p ∈ Qj , we
set b = ε, v = BZ (the box that is called is added on top of the stack
for later use), and q is the initial state of Km, where m = BIj(B).

• For a return transition (B, ε, q) ∈ ∆j from box B ∈ BXj , we set b = ε,
Z = B, v = ε (the box that finished its call is erased from the stack),
and p is the final state of Km where BIj(B) = m.

• For a “jump”-transition (B, ε, B′) ∈ ∆j from box B to box B′, both
in BXj , we set b = ε, Z = B, v = B′, p is the final state of Km, where
BIj(B) = m, and q is the initial state of Km′ , where BIj(B

′) = m′.

2

Remark 4.31 a) We are often not interested in the recognized language,
so we suppress the alphabet Σ and merely study recursive hierarchical
systems.

b) As discussed before, the theorem leads to the solution of the (forward and
backward) reachability problem for recursive hierarchical systems.

c) The theorem holds even when using bisimulation equivalence instead of
language equivalence.

4.4 Undecidability Results

Up to this point we have shown that the reachability problem is decidable
both for single pushdown and counter systems. We have also introduced
n-pushdown systems that make use of more than one auxiliary memory to
perform their computations. To proceed further we can take a generalization
step towards two different directions. One way is to extend the 1-CS with
a second counter and the other way is to add a second stack to the 1-PDS.
The following schema illustrates this idea by representing a generalization
by an arrow.

2-PDS

1-PDS 2-CS

1-CS

4.4. UNDECIDABILITY RESULTS 141

As far as the reachability problem is concerned, the system that is most
likely to lead us to an undecidability result is the most complex one, namely
the 2-PDS. In the following we first show that this statement indeed holds,
and then proceed to proving the same even for a 2-CS, by showing that it
has the same expressive power as a 2-PDS. Hence, we gain the insight that
both extensions cross the boundaries of decidability and lead us to Turing
complete systems.

Theorem 4.32 The reachability problem is undecidable for both 2-pushdown
systems and 2-counter systems.

Proof: The proof involves three main steps:

1. From TM to 2-PDS: Given a TM M we construct a 2-PDS PM and
configurations c0, c1, such that M halts when started on the empty
tape iff PM : c0 `∗ c1.

2. From 2-PDS to 4-counter systems: Given a 2-PDS P and configu-
rations c0, c1, we construct a 4-counter system Z and configurations
c′0, c

′
1 that simulate P, namely: P: c0 `∗ c1 iff Z : c′0 `∗ c′1.

3. From 4-counter systems to 2-counter systems: Given a 4-counter sys-
tem Z and configurations c0, c1, we construct a 2-counter system Z ′

and configurations c′0, c
′
1 that simulate Z, namely: Z : c0 `∗ c1 iff

Z ′ : c′0 `∗ c′1.

1. To simulate a TM we use the two stacks of a 2-PDS to store the tape
content on the left and on the right of the current working cell. Only the
immediate (left and right) neighbors of the working cell will be directly
accessible, since they will be the current top symbols of the stacks.

Lemma 4.33 Given a TM M one can construct a 2-PDS PM and config-
urations c0, c1, such that M halts when started on the empty tape iff PM :
c0 `∗ c1.

Proof: Consider a TM M = (Q,Γ, q0, ∆, qf) with transitions of the form
(p, a, b, R/L/N, q), expressed in colloquial language: “If in state p and read-
ing an a on the working tape, print letter b there, move the head to the
right / to the left / don’t move, and assume state q”. An M -configuration
is of the form [a1 · · · ampb1 · · · bn] with left and right end markers “[” and
“]” respectively. The corresponding configuration of the 2-PDS would then
be (p, b1 · · · bn], am · · · a1[). Hence, we construct a 2-PDS PM = (Q ∪ (Q ×
Γ), Γ, ∆′) with “]” and “[” as the initial stack symbol of the first and the
second stack respectively, and allow the following transitions:

142 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

• for each non-moving transition (p, a, b, N, q) add a PDS transition
(p, 1, a, b, q);

• for each right-moving transition (p, a, b, R, q) add the PDS transitions
(p, 1, a, ε, (q, b)) and ((q, b), 2, c, bc, q) for all c ∈ Γ;

• for each left-moving transition (p, a, b, L, q) add the PDS transitions
(p, 2, c, ε, (p, c)) and ((p, c), 1, a, cb, q) for all c ∈ Γ.

Furthermore we have to ensure that in the end both stacks of the PDS are
empty, so that it accepts exactly when the TM reaches a final state. Hence,
we have to add transitions that force the PDS to repeatedly erase the top
symbols in both stacks, until it reaches the initial ones (“]” and “[”), namely:

(qf , 1, a, ε, qf) for a 6=] and (qf , 2, a, ε, qf) for a 6= [.

Now we have ensured that M can reach a certain configuration from another
one if and only if PM can do the same for the corresponding configurations.
Formally:

M : [upv] `∗ [u′qv′] iff PM : (p, v], uR[) `∗ (q, v′], (u′)R[) .

This holds also if one configuration is the initial one (with an empty tape)
and the other is a final one:

M : [q0Ã] `∗ [u′qfv′] for some u′, v′ iff PM : (q0, Ã], [) `∗ (qf ,], [).

In other words, M terminates when started on the empty tape if and only
if PM can reach the configuration c1 := (qf ,], [) from the configuration
c0 := (q0, Ã], [). 2

2. To simulate a 2-PDS by a 4-counter system, we simulate each push-
down stack by a 2-counter system. The following lemma proves that this is
possible.

Lemma 4.34 Given a PDS P and configurations c0, c1, one can construct
a 2-counter system ZP and configurations c′0, c

′
1, such that P : c0 `∗ c1 iff

ZP : c′0 `∗ c′1.

Proof: To simulate a pushdown stack by two counters we code a stack
content over a stack alphabet with k elements by a k +1-adic 0-free number
n, carrying the code of the bottom most symbol at the leading position. We
only illustrate the proof for the case k = 9. Then we can relate each of
the letters in Γ to a (different) decimal digit (except 0) and map the stack
content i0 · · · ir to the number with the decimal representation ir · · · i0.

4.4. UNDECIDABILITY RESULTS 143

Example 4.35 Consider an initial stack content 3511. Then

• the stack content 3511 is coded by the number z = 1153;

• the top symbol is the remainder of z after dividing it by 10;

• erasing the top symbol of the stack corresponds to a division by 10
without remainder;

• replacing the top symbol of the stack e. g. by 7 corresponds to:
division by 10 without remainder, multiplication by 10 and addition
of 7;

• replacing the top symbol of the stack e. g. by 27 corresponds to:
division by 10 without remainder, multiplication by 10 and addition
of 7, multiplication by 10 and addition of 2.

£

These arithmetic operations can easily be carried out by using a second
counter. We assume that the PDS P = (P, Γ, ∆) is given in normal form.
To simplify the construction of the 2-counter system Z, we continue using
|Γ| = 9. Every P-transition is carried out by a block of Z-transitions (which
we will represent by a pseudo program p):

• Erasing the top symbol of the stack (with transition pa → q) is simu-
lated by:
p: if rem(z1) = a then z1 := z1 div 10, goto q

• Replacing the top symbol of the stack by another symbol (with tran-
sition pa → qb) is simulated by:
p: if rem(z1) = a then z1 := z1 div 10; z1 := z1 ∗ 10; z1 := z1 + b; goto
q

• Replacing the top symbol of the stack by two symbols (with transition
pa → qbc) is simulated by:
p: if rem(z1) = a then z1 := z1 div 10; z1 := z1 ∗ 10; z1 := z1 + c;
z1 := z1 ∗ 10; z1 := z1 + b; goto q

We give the counter operations only for the second case. The other two
are analogous. We describe (almost) all of the four operations of this case
below:

• The computation of rem(z1) can be done with the auxiliary counter
y1 as follows:

– Subtract 1 from z1 and add 1 to y1, going through the states
0, . . . , 9 in a cyclic manner.

144 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

– z1 becomes 0 on reaching state i iff rem(z1) = i. Hence we get
the remainder in the index of the state.

– Now the initial value of z1 is stored in y1, and we can write it
back to z1 with the opposite operation, but without changing the
state.

• Multiplication by 10:

– We use 10 auxiliary states and repeat the following until z1 = 0:
z1 := z1 − 1 and ten times y1 := y1 + 1. In other words, we
decrease the first counter one by one until it reaches 0, and for
each decrease we perform 10 increases of the second counter.

– Again, we can copy the value of y1 back to z1, simultaneously
resetting the auxiliary counter to 0.

• Addition of b is easy.

• Division by 10 without remainder is left as an exercise to the reader.

Finally, for the initial configuration c = (p, i0 · · · ir) of the PDS, the cor-
responding configuration of the 2-counter system is c′ = (p, (ir · · · i0)10, 9),
where 9 is used as the initial stack (counter) symbol. Then, since we have
coded all possible transitions of the PDS by corresponding ones for the 2-
counter system, the following holds:

P : c0 `∗ c1 iff ZP : c′0 `∗ c′1 .

2

It follows directly from Lemma 4.34 that any 2-PDS P can be simu-
lated by a 4-counter system ZP (actually 3 counters would suffice, since
we only need one auxiliary counter). For the initial configuration c =
(p, i0 · · · ir, j0 · · · js) of P, the corresponding configuration of ZP is then
c′ = (p, (ir · · · i0)10, 9, (js · · · j0)10, 9).

3. The following lemma shows that we can in fact further reduce the num-
ber of counters we need.

Lemma 4.36 For every 4-counter system Z and configurations c0, c1, one
can construct a 2-counter system Z ′ and configurations c′0, c

′
1, such that

Z : c0 `∗ c1 iff Z ′ : c′0 `∗ c′1.

Proof: To simulate four counters (each with content ki) by two, we code
(k1, . . . , k4) by k̂ := 2k1 · 3k2 · 5k3 · 7k4 and store this number in one of
the counters. Adding, respectively deleting, 1 to k1 then corresponds to
multiplying, respectively dividing, k̂ by 2, and analogously for k2, . . . , k4.

4.5. RETROSPECTION: THE SYMBOLIC METHOD 145

Again these operations can be computed using the second counter as an
auxiliary memory. 2

Now that we can simulate a TM by a counter system with two counters,
this suffices to show that the reachability problem is undecidable even for
2-counter systems. 2

A consequence of Theorem 4.32 is that a programming language with
two integer variables X1, X2, instructions Xi := Xi +1, Xi := Xi−1, and IF
Xi = 0 THEN JUMP TO (line) s is already Turing complete, i. e. powerful
enough to simulate every Turing machine.

4.5 Retrospection: The Symbolic Method

In this section we look back at the way we solved the reachability problem
for the different models of automata theory, but this time in a more abstract
sense. First of all, it is interesting to note why the reachability problem is
so important in system design. The typical problem that we face in such
cases is that we are given a transition system (e. g. a graph) and some set of
states or configurations (e. g. vertices) in this system. Then, we want to find
the transitive closure under predecessor of this set, i. e. we want to extend
this set in order to additionally include all those states from which, after
a finite number of steps, we can reach the initial designated set. Imagine
that the designated set includes all those states that we want a run to avoid
(deadlocks, endless loops, conflicts, etc.). Then of course we also want to
avoid the states from which a visit to the “malicious” states can be forced.
This is a typical kind of safety constraint that is checked in the framework
of Model Checking.

Returning once again to the example of a graph, we know that there is a
very efficient way to solve this problem, namely by a backwards breadth-first
search in time O(|V |+|E|), where V and E are the sets of vertices and edges
of the graph respectively. In fact we cannot hope for a more efficient result.
However, if we consider for example a circuit with 100 flip-flops (nothing
extraordinary nowadays), the number of different states in this system is
2100, which is also the number of steps that our very efficient algorithm has
to take before issuing the result. Hence, even if our method is as good as it
gets, it is still not satisfactory enough for large systems.

Since we cannot improve the algorithm itself, our only way out is to
improve the input. Strictly speaking, we have to find a way to improve
the method by which the systems are coded before they are given as an
input to an algorithm. This is exactly the idea of the symbolic method ;
instead of enumerating a set of states we can describe it (e. g. by some logic
formalism or an automaton) using significantly less space. Then, we can
perform a reachability analysis by successively computing the descriptions
of C, pre(C), pre2(C) etc., until no new states can be added anymore. Note

146 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

that this is definitely going to be the case sometime, because the overall
number of available states in the system is finite anyway.

In the algorithm that is presented below we actually manipulate a for-
mula or an automaton until it describes exactly the set that we are looking
for. We denote

• by β an abstract description (formula or automaton), and

• by [β] the set defined by β.

The symbolic algorithm for backwards reachability takes the following steps:

1. β := description of C;

2. β′ := description of [β] ∪ {q ∈ Q | there is a transition from q to [β]};

3. if [β] = [β′], terminate with output β as a description of pre∗(C);

otherwise β := β′ and back to 2.

We already know that in the case of finite systems on the state space {0, 1}n,
it is very convenient to describe sets by boolean formulas β(x1, . . . , xn).

Example 4.37 Consider the state set Q = {0, 1}5 and the designated set
of configurations C = {q ∈ Q | 3rd or 5th component = 0}. The set C can
be described by β = ¬x3∨¬x5. In Section 2.2 we studied a way to construct
a minimal acyclic automaton for such a boolean formula, namely OBDDs.
The OBDD for (the description of) C is shown below.

x3

x5

0 1

£

It is obvious that it is much easier to apply the reachability algorithm on
the level of OBDDs than to apply it on enumerated sets. To achieve this,
two steps of the algorithm presented above still remain to be implemented:

1. β′ := description of [β] ∪ {q ∈ Q | there is a transition from q to [β]};

2. the equivalence test (“[β] = [β′]?”).

At this point let us recall that this is exactly what we were striving to-
wards when we were trying to solve the reachability problem for pushdown
systems. To describe the given set C we used a P -automaton. To imple-
ment the extension to the transitive closure (under predecessor) of C, we

4.6. EXERCISES 147

gradually exhausted the states belonging strictly to pre∗(C) by adding new
transitions to the P -automaton. Furthermore, because we used such a struc-
ture, we were not concerned with an equivalence test. The termination of
the algorithm depended on whether it was possible to add new transitions
to the automaton. What we finally observe is that the reachability analysis
of pushdown systems is performed according to the symbolic method, by
using NFAs for the representation of state sets.

We conclude this chapter about pushdown systems by noting that these
are a first essential step in the verification of infinite systems. In such systems
we look at two words u, v, e. g. representing two configurations, and we want
to examine all ways that may lead from the first to the second. To change
the first letter of one word and replace it by another (or two) is only a special
case.

4.6 Exercises

Exercise 4.1 Show that every PDA A is (language) equivalent to a PDA
B that uses only purely expanding and purely reducing transitions.

Exercise 4.2 Let P := (P, Γ, ∆) be a pushdown system with P := {p0, p1},
Γ := {a, b, c} and the following set ∆ of transitions:

p0a → p0 p0b → p1c

p0c → p1 p1c → p0bb

Consider the configuration c1 = p0aac. As in the lecture {c1} is accepted by
an NFA A with states p0, p1, s1, s2, s3. Apply the saturation procedures to
compute the automata Ā and Ã accepting pre∗{c1} and post∗{c1}, respec-
tively.

Exercise 4.3 A 1-register machine R decides a set M ⊆ N, if R, initialized
with x ∈ N, always terminates and moreover with value 1 assigned to X1 in
case x ∈ M , and with value 0 assigned to X1 in case x 6∈ M .

Show that if M is eventually periodic, then M is decided by a 1-register
machine.

(M is eventually periodic, if for suitable k0, p the following holds:

for all x ≥ k0 : x ∈ M ⇔ x + p ∈ M .)

Exercise 4.4 ∗ Show that the following problem is decidable: Given a push-
down automaton A, does there exist a sequence q0Z0 ` q1w1 ` q2w2 ` . . . of
configurations such that the length of the configurations is unbounded, i. e.
for every n ∈ N there is an i such that |qiwi| > n?

Hint: Consider the repetitions and the following parameters: The num-
ber of states n, the number of symbols in the stack alphabet m, and the
maximal length of a word v in a transition (p, a/ε, Z, v, q).

148 CHAPTER 4. PUSHDOWN AND COUNTER SYSTEMS

Exercise 4.5 In the lecture we applied the saturation algorithm to com-
pute the set pre∗(C) to P -automata whose states from P have no incoming
transitions. Show that this assumption is necessary.

For this purpose, find a pushdown system P := (P, Γ, ∆), a set C of
configurations and a P -automaton A that recognizes C and has incoming
transitions into states in P , such that the saturation algorithm computes no
automaton for the set pre∗(C) when applied to A.

Exercise 4.6 Construct a recursive automaton that recognizes the lan-
guage generated by the following context-free grammar:

S → aB | bA
A → a | aS | bAA
B → b | bS | aBB

Give a run of the automaton on the word bbabaa.

Exercise 4.7 ∗ Show that the following problem is undecidable.

Given: A 2-pushdown system P and a configuration c of P.

Question: Does a number n exist, such that |c′| < n holds for all configu-
rations c′ ∈ post∗(c)?

The length of the configuration is the sum of the lengths of both stack
contents.

Hint: For a reduction the halting problem for offline Turing machines is
recommended, which can be assumed to be undecidable. (An offline Turing
machine has a read-only input tape and a read-write working tape.)

Chapter 5

Communicating Systems

In this chapter different types of automata are introduced which allow to
model parallel and distributed computations directly rather than encoding
the behavior of such a system into a single finite state device. We gain a
succinct representation of parallel processes, but also show that one has to be
careful not to include too powerful communication possibilities to maintain
the nice properties of finite state machines.

5.1 Synchronized Products

Recall the product construction for NFAs. We generalize this construction
by distinguishing which actions are relevant for which automata.

Definition 5.1 (Synchronized product) Let Ai = (Qi, Σi, q0i, ∆i, Fi)
be NFAs for 1 ≤ i ≤ n.. The synchronized product of A1, . . . ,An is the
automaton

A1 ◦ . . . ◦An := (Q1 × . . .×Qn, Σ1 ∪ . . .∪Σn, (q01, . . . , q0n), ∆, F1 × . . .×Fn)

with

(
(p1, . . . , pn), a, (q1, . . . , qn)

)
∈ ∆ :⇔

{

(pi, a, qi) ∈ ∆i for a ∈ Σi and

pi = qi for a 6∈ Σi.

In binary products we usually emphasize the synchronizing alphabet Σ0 :=
Σ1 ∩ Σ2 by writing A1 ◦Σ0 A2.

Example 5.2 We model a producer–consumer system by a synchronized
product.

1st process: This process models a shipbuilder with two sites for storing
ships. Possible actions are: produce ship, check the quality, sell a ship,
and retake a ship. This process can be implemented by the following

149

150 CHAPTER 5. COMMUNICATING SYSTEMS

NFA, where the upper three states indicate whether there are 0 (left),
1 (middle), or 2 ships (right) ready to be sold.

P1 : • r

p

•

s

r

p

•

s

•
q

q •
q

q

2nd process: This process models a very cautious ship owner who uses a
ship only if she possesses two. Possible actions are: buy (sell for 1st
process), return a ship (retake for 1st process), use ship, and lose a
ship. This process can be implemented by the following NFA.

P2 •

s

•

s

r

•

r,l

u

The synchronized product P1 ◦{r,s}P2 of these automata models the interac-
tion between the shipbuilder and the ship owner. It has 15 states and thus
cannot be represented as succinct as the component automata. £

Example 5.3 In this example we model a mutual exclusion protocol called
Peterson’s Protocol where two processes need access to a critical section.
The processes are the following ones:

P0:

repeat

1. (non-critical section)

2. d0 := 1

3. turn := 0

4. wait (d1 = 0 or turn = 1)

5. (critical section)

6. d0 := 0

P1:

repeat :

1. (non-critical section)

2. d1 := 1

3. turn := 1

4. wait (d0 = 0 or turn = 0)

5. (critical section)

6. d1 := 0

The protocol uses the Boolean variables di and turn. Process Pi sets di

to 1 and turn to i iff it request the critical section. The variable turn ensures
that access to the critical section alternates if both processes repeatedly pose
requests.

We represent the protocol by a synchronized product using a two-state
automaton B for each Boolean variable b

B : 0

b:=1

b:=0

b=0?

1

b:=0

b:=1

b=1?

5.1. SYNCHRONIZED PRODUCTS 151

and the following automaton for P0 (P1 is defined analogously):

P0 : 1
non-critical section 0

2
d0:=1

3

turn:=0

6

d0:=1

5
critical section 0

4

turn=1?

d1=0?

Peterson’s Protocol is modeled by the synchronized product P0 ◦ P1 ◦ D0 ◦
D1 ◦T . Note that the expanded product automaton has 23 ·62 = 288 states!

£

Example 5.4 We model the famous Dining Philosophers Problem as a syn-
chronized product. The problem is the following: 5 philosophers are sitting
at a table, and there is a fork in between two of them (as shown below).
Each philosopher either thinks or eats, and to eat she needs both of her
neighboring forks, i.e. philosopher i needs forks i and i + 1 (mod 5).

F1 P1

P5 F2

F5 P2

P4 F3

F4 P3

A simplified version where we assume that every philosopher picks both
forks simultaneously can be modeled by the synchronized product of

Pi : think

upforks i,i+1

eat

downforks i,i+1

and Fi : down

upforks i,i+1
upforks i−1,i

up

downforks i,i+1
downforks i−1,i

.

£

The synchronized product of the transition systems presented in the
previous example is only a model for all possible actions (transitions) that
can occur and for all possible situations (states), in which the group of
philosophers can find itself at any moment in time. To really describe the
problem of the dining philosophers (there are several versions of it) we have
to construct a protocol that specifies a code of behavior between them by
allowing and forbidding certain actions. Such a protocol would for example
force the following constraints:

152 CHAPTER 5. COMMUNICATING SYSTEMS

• A deadlock must not occur; that is from every reachable situation, an
action of at least one philosopher is allowed.

• Every philosopher will again and again obtain the forks that are ac-
cessible by him (liveliness condition).

• By introducing an intermediate state “hungry” we may require that
whenever a philosopher gets hungry, he will eventually obtain his forks.

Conditions like the ones above are not modeled in the transition rules of the
system. They are posed on the behavior of the system, i.e. on the possible
paths through the graph. A path can be coded by a word, and thus the
condition will specify a subset of all possible words, i.e. a language. The
first condition stated above is for example a typical reachability condition
and hence can be expressed by the techniques on finite words that we have
learned so far. For the last condition above one has to examine infinite
executions of the system and thus this cannot be expressed by the same
techniques.

In the general case the solution and verification of such problems is re-
alized in three different levels. The synchronized product is constructed
to describe a language L over the action alphabet representing the possi-
ble behavior. The required behavior of the communicating components is
described by an automaton for some language K. A solution (protocol)
is another automaton recognizing a sub-language L0 ⊆ K. Usually L and
K are given, and we have to follow an efficient method to determine L0.
Although the synchronized product offers a very compact description of a
system with say k components of n states each, the “state space explo-
sion” to the number nk is generally inevitable. Techniques like the symbolic
method are unfortunately not always helpful, and this is one of the main
problem of system verification nowadays.

5.2 Communication via FIFO Channels

In this section we introduce finite state machines which communicate with
each other via channels. A channel implements a FIFO queue, i.e messages
are processed in first-in first-out order. We represent the content of a queue
by a word a1 . . . an where letters added to the queue are appended to the
left and read from the right.

The basic idea for two automata A1 and A2 and channels c12 and
c21 is the following: A1 sends messages to A2 via channel c12 and, vice
versa, mathcalA2 sends messages to A1 using channel c12. The content
of a channel cij is a word over a message alphabet Γ. In general au-
tomata A1, . . . ,An communicate with each other via a set of channels CN ⊆
CNn := ({1, . . . , n}×{1, . . . , n})\{(1, 1), . . . , (n, n)}. For example, if CN =

5.2. COMMUNICATION VIA FIFO CHANNELS 153

{(1, 2), (3, 1), (3, 2)(2, 3)} we obtain the following communication structure:

A1
c12 A2

c23A3

c31

c32

Definition 5.5 A communicating finite state machine (CFSM) is a tuple
A = (A1, . . . ,An, Γ, CN) where CN ⊆ CNn, Γ is a message alphabet, and
for 1 ≤ i ≤ n Ai = (Qi, Σi, q0i, ∆i, Fi) is a finite automaton with transitions
of the form

• (p, a, q) ∈ Qi × Σi × Qi, (local)

• (p, m!j, q) where p, q ∈ Qi, m ∈ Γ, (i, j) ∈ CN , and (write)

• (p, m?j, q) where p, q ∈ Qi, m ∈ Γ, (j, i) ∈ CN . (read)

A configuration of a CFSM A is a tuple
(
(p1, . . . , pn), (wij)(i,j)∈CN

)
where

pi ∈ Qi and wij ∈ Γ∗ is content of channel cij . A configuration of A is also
called a global state.

The semantics of the transitions is defined as follows:

(p̄, (wij)) ` (q̄, (uij)) :⇔ there exists a k such that

(pk, a, qk) ∈ ∆k and
pi = qi for i 6= k,
uij = wij for (i, j) ∈ CN

(pk, m!j, qk) ∈ ∆k and
pi = qi for i 6= k,
ukj = mwkj , uii′ = wii′ for (i, i′) 6= (k, j)

(pk, m?j, qk) ∈ ∆k and
pi = qi for i 6= k,
ujkm = wjk, uii′ = wii′ for (i, i′) 6= (j, k)

A transition (p, a, q) of an automaton Ai is interpreted as usual, the transi-
tions (p, m!j, q) and (p, m?j, q) are used to write, respectively read, a letter
from the corresponding channel. Note that with this definition of a CFSM
only one component automaton Ai is active at a time. However this can be
easily generalized to real parallel processing.

Remark 5.6 IF a CFSM has bounded channels, i.e. in every execution of
the system the length of the channel contents is bounded by some l ∈ N, then
the number of configurations is bounded by |Q1| · . . . · |Qn| · (|Γ| + 1)|CN |·l.
Hence such a CFSM is equivalent to an NFA.

A configuration c of a CFSM A is reachable from the initial configuration
(q̄0, ε̄) (where q̄0 = (q01, . . . , q0n)) if (q̄0, ε̄) ` . . . ` c. Let C be a set of
configurations of a CFSM A. If the languages of the channel contents from

154 CHAPTER 5. COMMUNICATING SYSTEMS

C are regular, then C can be finitely represented by tuples consisting of a
control state and a regular expression rij for the content of channel cij . We
call such a set a regular set of configurations.

The reachability problem for CFSMs is the following:

Input : A CFSM A, a regular set C of configurations.
Problem: Is a configuration c ∈ C reachable from (q̄0, ε̄)?

Theorem 5.7 The reachability problem for CFSMs is undecidable.

Proof: We reduce the halting problem for Turing Machines to the reacha-
bility problem for CFSMs. Remember that instructions of a Turing machine
M are of the form (s, a, a′, ∗, s′) where s, s′ are states of M , a, a′ are symbols
from the tape alphabet, and ∗ ∈ {L, R, N} is the direction in which the head
of M moves. A configuration of M is a word [usv$ where [and $ are the
left and right end markers of the tape inscription, u is the word to the left of
the head of M , v is the word to the right of it (including the symbol beneath
the head), and s is the current state of M . We assume that M only stops if
a special state sfin is reached.

We define an effective transformation of a Turing machine M into a
CFSM AM where AM = (AM

1 ,AM
2 , {(1, 2), (2, 1)}) such that M stops when

started on the empty tape iff AM reaches a configuration in a set C to be
defined later on.

The idea is that AM
1 puts the current configuration of M into channel

c12. AM
2 reads this configuration, applying changes to it according to the

instructions of M and sends the new configuration back to AM
1 using channel

c21. More precisely:
To start the simulation of M , AM

1 puts the initial configuration [s0~$
into channel c12, and proceeds to state p0. From thereon AM

1 will write
every letter read from c21 to channel c12. AM

2 behaves as follows

1. Starting from the initial state read the first three letters a1, a2, a3 from
c12 and store them in a state [a1, a2, a3].

2. If a2 is not a state symbol then

• if a3 = $ write a1, a2, a3 to c21 and enter the initial state again.

• else write a1 to c21, read a letter b from c12 and update the state
to [a2, a3, b].

3. If [a1, a2, a3] = [a, s, b] then 0

• if b = $ write a to c21 and enter state [s, ~, $]

• else if

(i) (s, b, b′, N, s′) ∈ ∆M proceed to state [a, s′, b′]

5.2. COMMUNICATION VIA FIFO CHANNELS 155

(ii) (s, b, b′, R, s′) ∈ ∆M proceed to state [a, b′, s′]

(iii) (s, b, b′, L, s′) ∈ ∆M proceed to state [s′, a, b′] if a 6= [, else
write [to channel c21 and enter state [s′, ~, b′].

Let now C be the set of configurations of the communication state ma-
chine AM in which sfin occurs in channel c12. This set is obviously regular.
We obtain that the TM M started on the empty tape reaches the stop state
sfin iff AM reaches from the initial configuration ((q01, q02), ε, ε) a config-
uration in C. Hence the reachability problem for CFSMs is undecidable.

2

This proof can be easily modified such that one single automaton with
a channel to itself suffices to simulate Turing machines. We therefore con-
clude that the reachability problem is decidable for systems with an un-
bounded LIFO memory (stack), but undecidable for systems with an un-
bounded FIFO channel.

For the boundedness problem we experience a likewise situation. In
exercise 4.4 we proved that this problem is decidable for pushdown systems.
This is unfortunately not the case for a FIFO-communicating automaton.

Theorem 5.8 The problem, whether a FIFO-communicating automaton has
bounded channels starting from a configuration c, is undecidable.

The idea is to consider the decidability of the boundedness problem for
the case of a Turing machine. Since we have already found a way to simulate
TMs by CFSMs, the problem is decidable for the former if and only if it is
decidable for the latter.

Lemma 5.9 The boundedness problem for Turing Machines “Given a TM
M and a TM-configuration c, is M bounded starting from c?” is undecidable.

Proof: We call a TM M bounded starting from c, in case M reaches only
finitely many cells of the working tape, when starting from c. This may
happen because of two reasons; either M will eventually halt if started from
c, or it will not halt but will move in a bounded area by visiting again and
again the same cells. We know that the first case in undecidable, but we
are not sure about the second. For this reason we construct a new TM M ′

that simulates M in such a way that M terminates starting from c iff M ′

is bounded starting from c. This can be done easily by instructing M ′ to
work exactly as M and additionally replace the right end marker $ by ~$
after each step. Then obviously M halts starting from c iff M ′ is bounded
starting from c. 2

Proof of Theorem 5.8: We use the previous lemma and the construction
from the proof of Theorem 5.7. Thus, given M and c we can construct a
FIFO-communicating automaton AM such that M is bounded starting from

156 CHAPTER 5. COMMUNICATING SYSTEMS

c iff AM is bounded starting from a configuration where initially c is stored
in channel c12. 2

5.3 Message sequence charts

Message sequence charts are a simple formalism for the notation of asyn-
chronous communicating processes, their syntax settled in the International
Standard Z120.

Definition 5.10 A Message Sequence Chart (MSC) C is given by

• a finite set {P1, . . . , Pn} of processes,

• a finite set M = {m1, . . . , mk} of messages, where each mi involves a
send event si and a receive event ri and E = {s1, . . . , sk, r1, . . . , rk} is
the set of all events,

• a label function l : E → {P1, . . . , Pn}, assigning to each event a process
such that l(si) 6= l(ri), and

• for every 1 ≤ i ≤ n a total order <i defined on the set Ei := {e ∈ E |
l(e) = i} of all events belonging to process i (called visual order)

Example 5.11 An MSC is shown in Figure 5.1. In this MSC P = {P1, P2, P3}
and e.g. E2 = {r1, s2, s3, r4, s5} with r1 <2 s2 <2 s3 <2 r4 <2 s5.

P1 P2 P3

m1s1 r1
m2s2 r2
m3s3 r3
m4 s4r4

m5 s5r5
m6 s6r6

msc C

Figure 5.1: MSC from Example 5.11

£

5.3. MESSAGE SEQUENCE CHARTS 157

Our aim is to assign a semantics to MSCs by defining a partial order on
the send and receive events. To do this we need some facts on partial orders
as a preparation.

Definition 5.12 A partial order over a set A is a relation < ⊆ A×A such
that

• ¬(a < a) for all a ∈ A (< is irreflexive),

• (a < b) ∧ (b < c) ⇒ a < c for all a, b, c ∈ A (< is transitive), and

• ¬
(
(a < b) ∧ (b < a)

)
for all a, b ∈ A (< is acyclic).

Obviously every partial order gives rise to an acyclic graph. Conversely,
every acyclic graph (A,→) induces a partial order (A, <) with a < b :⇔
there is a non-empty →-path from a to b.

Definition 5.13 Let (A, <) be a partial order. The Hasse diagram (A, <·)
of (A, <) is the acyclic graph defined by

a <· b :⇔ a < b and there exists no c ∈ A : a < c < b

A linearization of a partial order (A, <) is a total order (A,≺) such that

a < b ⇒ a ≺ b.

A linearization of a partial order can be obtained algorithmically by a topo-
logical sort based on depth-first search.

Example 5.14 Let A := {pants, trousers, socks, shoes, watch, belt, shirt,
tie, jacket}. Figure 5.2 shows a Hasse diagram for A such that the associated
partial order allows to dress correctly. The associated partial order is defined
by a < b iff there exists a nonempty path from a to b in the Hasse diagram
for A.

A possible linearization of this partial order is the following:

watch < shirt < tie < pants < trousers < belt < jacket < socks < shoes.

£

Definition 5.15 Let C be an MSC. The semantics of C is the partial order
on the send and receive events of C induced by the acyclic graph (E,→)
defined by

e → e′ :⇔ e = sj and e′ = rj , or

e <i e′ and at least one of them is send event, or

e = rj , e′ = rk with l(rj) = l(rk) and sj <i sk.

A race of an MSC C is a pair of receive events r, r′ such that r <i r′ for
some i, but not r < r′ in the partial order induced by (E,→).

158 CHAPTER 5. COMMUNICATING SYSTEMS

pants

socks trousers shirt watch

shoes belt tie

jacket

Figure 5.2: Hasse Diagram for Example 5.14

Example 5.16 Figure 5.3 shows the Hasse diagram of the partial order
defined by the MSC C from Figure 5.1. Note that r5 and r6 are not ordered
in the partial order induced by (E,→), but r5 <1 r6, i.e. r5 and r6 are a
race of C. £

An important task when dealing with MSCs is to find all races. The
standard procedure is to construct the acyclic graph (E,→) from Definition
5.15, then compute its transitive closure (E, <), and compare this with the
visual orders <i.

MSCs can be generalized to higher level message sequence charts (HM-
SCs), where a HMSC is a directed graph composed of MSCs. A HMSC
defines a family of MSCs, obtained from paths in the HMSC graph by con-
catenating the component MSCs.

Example 5.17 Let a HMSC be given by the following graph with compo-
nent MSCs as shown in Figure 5.4:

C1

C2 C3

An expansion of this HMSC is shown in Figure 5.5, where the dashed lines
indicate that the part between label 1 and 2 can be repeated arbitrarily
often afterwards. We obtain a family of MSCs with an unbounded set of
races (for process P3).

£

The previous example leads us to partial orders with a larger and larger
number of nodes. There is a special theory that deals with such partial

5.3. MESSAGE SEQUENCE CHARTS 159

s1

r1

s2

r2

s3

r3

s4

r4

s6

s5

r5

r6

Figure 5.3: Hasse Diagram for the MSC of Figure 5.1

P1 P2 P3

msc C1

P1 P2 P3

msc C2

P1 P2 P3

msc C3

Figure 5.4: Component MSCs for Example 5.17

160 CHAPTER 5. COMMUNICATING SYSTEMS

P1 P2 P3

1

2

Figure 5.5: Expanded HMSC from Example 5.17

orders as trace languages. These represent a generalization of words to
labeled partial orders. They are defined by an independence relation on a
concurrency alphabet. Such an alphabet is of the form (Σ, I) with a set of
letters Σ and an irreflexive relation I ⊆ Σ × Σ. A pair (a, b) ∈ I implies
that two consecutive occurrences of a and b can be switched. Then, every
word w ∈ Σ∗ defines an equivalence class [w] which is the set of words which
can be obtained from w by a sequence of switches of neighboring letters a, b
with (a, b) ∈ I. We call [w] a trace (“Mazurkiewicz trace”).

Example 5.18 Let D be the relation (Σ × Σ) \ I. D describes the “de-
pendency relation” and contains all pairs (a, b) whose order must not be
switched. (Σ, D) can by given as an undirected graph, e.g. by

a d

b c

In this case, if w = adabcd, then aadbcd ∈ [w] and aabdcd ∈ [w]. £

5.4. EXERCISES 161

5.4 Exercises

Exercise 5.1 Consider the following automata A1 over {a.b} and A2 over
{b, c}.

A1 : 1
b

2

a

3

b

a

A2 : 4
b

5

b

c

6

b

c

(a) Draw the graph of the synchronized product A1 ◦b A2, disregarding the
states that are not reachable from the initial state (1, 4).

(b) Describe (informally or by a regular expression) the language accepted
by A1 ◦b A2.

Exercise 5.2 Consider the synchronized product modeling the five philoso-
phers, with automata P1, . . . ,P5 and F1, . . . ,F5 as explained in this chapter.
Determine the number of states of this synchronized product. Give an upper
bound (as small as you can justify) on the number of reachable states from
the initial states “think” for the philosophers and “down” for the forks.

Exercise 5.3 (a) Consider the language L defined by the regular expres-
sion (b+ac+a)∗. Find an NFA A1 over {a, b} and an NFA A2 over {a, c}
such that L is accepted by the synchronized product A1 ◦a A2.

(b) Show that no NFAs A1,A2 as in (a) exist such that the language
(b+ac+a)∗ + (c+ab+a)∗ is accepted by their synchronized product A1 ◦a

A2.

Exercise 5.4 Let A1 and A2 be synchronized products of NFAs, each con-
sisting of m factor NFAs with n states each. Describe a procedure to test
the equivalence of A1 and A2 and give a bound on the time complexity in
terms of m and n.

Exercise 5.5 (a) Develop a CFSM A that models the “Five Philosophers
Problem”. A shall consist of component automata P1, . . . ,P5 for the
philosophers and F1, . . . ,F5 for the forks, which are lifted separately
here. Pi shall be connected via forward and backward channels to both
Fi and Fi+1. In particular your model has to ensure that

(i) no fork can be lifted by two philosophers simultaneously,

162 CHAPTER 5. COMMUNICATING SYSTEMS

(ii) a philosopher can eat iff she possesses both of her forks,

(iii) a philosopher can think iff she possesses no fork, and

(iv) once a fork is requested, a philosopher is not in state “think” any-
more.

Explain your construction.

(b) Modify your CFSM such that a philosopher is allowed to drop her re-
quest for a fork (because the fork is in use) and go back to state “think”.

Exercise 5.6 In the course it was shown that CFSMs consisting of a sin-
gle component automaton A with a channel to itself induces an undecidable
reachability problem. (“Given such an A, can it reach from an initial config-
uration (q, ε) a configuration (p, w) with control state p and channel content
w?”)

Analyze this problem for the restricted case of a CFSM with an one-letter
message alphabet Γ = {m}. Justify your answer.

Exercise 5.7 Consider the message sequence chart from Figure 5.6.

P1 P2 P3 P4

Id1

Id2

Req

Check

Ack1

Inf

Interr

Disconn1

Disconn2

msc C

Figure 5.6: MSC for Exercise 5.7

We denote the send events by s(Id1), s(Id2), . . . and the receive events
by r(Id1), r(Id2),

(a) Draw the Hasse diagram for the partial order associated with C.

5.4. EXERCISES 163

(b) List the races occurring in C.

(c) Give three linearizations of the events of C.

164 CHAPTER 5. COMMUNICATING SYSTEMS

Chapter 6

Petri Nets

6.1 Basic Definitions

Petri nets are models for concurrent systems and their behavior.

Definition 6.1 A Petri net is a tuple N = (P, T, F) where P and T are
nonempty, finite and disjoint sets of places and transitions, respectively, and
F ⊆ P × T ∪ T × P is a flow relation.

A marking of a Petri net N = (P, T, F) is a function m : P → N that
assigns a number of tokens to a place. If P = {p1, . . . , pn} we also write
m̄ = (m1, . . . , mn) for the marking m where mi is the number of tokens on
place pi.

A transition t can be fired (or executed) if there is a token on every
place with an incoming edge to t. When t is fired, one token is removed
from every place with an incoming edge to t, and one token is put on every
place connected to t by an outgoing edge.

In figures we represent places by circles and transitions by bars. Tokens are
represented by dots inside a place. In the context of concurrent systems the
places are called resource holders, and tokens are resources.

Example 6.2 The following Petri net models a mutual exclusion protocol

165

166 CHAPTER 6. PETRI NETS

where two processes access a critical section.

•

noncritical section • critical section

•

£

Definition 6.3 Let N = (P, T, F) be a Petri net. The preset of a transition
t ∈ T is the set •t := {p ∈ P | (p, t) ∈ F}, the postset is the set t• :=
{p ∈ P | (t, p) ∈ F}. The preset •p and postset p• of a place p ∈ P are
defined analogously. The definitions above generalize to sets of transitions
and sets of places in the usual way, e.g., for a set S ⊆ T of transitions we
set S• := {p ∈ P | (t, p) ∈ F for some t ∈ S}.

Let m, m′ be markings of a Petri net N = (P, T, F). We write

m ≥ m′ :⇔ ∀p ∈ P m(p) ≥ m′(p), and

m > m′ :⇔ ∀p ∈ P m(p) ≥ m′(p) and ∃p : m(p) > m′(p).

Let m be a marking of a Petri net N = (P, T, F) and t ∈ T . We define

m ¤t m′ :⇔ ∀p ∈ •t : m(p) > 0 and

∀p ∈ P : m′(p) =

m(p) − 1 if p ∈ •t, p /∈ t•

m(p) + 1 if p /∈ •t, p ∈ t•

m(p) otherwise

We write m ¤ m′ if there is a transition t with m ¤t m′. A firing sequence
from m to m′ is a sequence τ = t1, . . . , tn of transitions such that there are
markings m0, . . .mn with m0 = m, mn = m′ and mi−1 ¤ti mi for 1 ≤ i ≤ n.
We write m¤τ m′ if τ is a firing sequence from m to m′ and m¤

∗ m′ if such
a sequence exists.

We call a marking m a deadlock for N if for all t ∈ T there exists a
p ∈ •t with m(p) = 0, i.e., no transition of N can be fired.

A Petri net with initial marking m0 is called unbounded (or unsafe) if
for all K ∈ N there exists a sequence m0 ¤ m1 ¤ m2 ¤ . . . of markings such
that there is an i with

∑

p∈P mi(p) > K.

6.1. BASIC DEFINITIONS 167

Example 6.4 The following picture illustrates the firing of a transition.

m : • • • •

•

••

m′ : •• ••

•

••

£

Example 6.5 The following Petri net illustrates the modeling power of
Petri nets.

1 • 2 •

a b c

3 4 5

d

Transitions a and b are in conflict, only one of them can be fired at a time.
We call such transitions nondeterministic. Transition c can be fired inde-
pendently of a and b. We call c concurrent to a and b. If transitions a, c
fire, the Petri net ends up in a deadlock. If b, c and d fire repeatedly, more
and more tokens are collected at place 1, i.e., the Petri net is unbounded. £

Example 6.6 The following Petri net models two production lines A and
B with two intermediate steps each; the main manufacturing phase and the
reset back to the idle state. Production line A requires resources p and q,

168 CHAPTER 6. PETRI NETS

Figure 6.1: A Petri net modeling the problem of five dining philosophers.

whereas production line B needs only q.

p q

A B

£

Example 6.7 Consider the problem of the dining philosophers as it was
described in Example 5.4. The Petri net depicted in Figure 6.1 represents a
snapshot of a possible modeling of the system, when only the first philoso-
pher holds his forks and eats. £

Example 6.8 Consider a small computer network where three PCs have to
share two printers. These two printers can be represented by an auxiliary

6.2. PETRI NETS AS LANGUAGE ACCEPTORS 169

place that possesses two tokens in the idle case.

• •

If any of the PCs wants to use a printer it must obviously be in an non-
printing state and furthermore it has to find at least one of the two tokens
in the auxiliary place. After finishing the print job, the token is put back to
the auxiliary place. £

A Petri net with n places p1, . . . , pn and markings in Nn models a vector
addition system, where a transition t leads from some marking m to a new
marking m′ = m+v, with v ∈ {−1, 0, 1}n. In particular, the i-th component
of v is

• −1, in case pi is in the preset but not in the postset of t,

• 1 in case pi is in the postset but not in the preset of t, and

• 0 otherwise.

In the special case of condition/event nets the markings are also 0-1-vectors.
That is, we are only interested whether there is a token at some place or
not, and even if there is more than one token at some place, the number is
normalized to 1, after each update of the marking. The mutual exclusion
protocol in Example 6.2 and the production lines in Example 6.6 are such
special cases.

6.2 Petri Nets as Language Acceptors

With a small extension of the original definition Petri nets can be used as
language acceptors.

170 CHAPTER 6. PETRI NETS

Definition 6.9 Let N = (P, T, F) be a Petri net and M−, M+ be finite sets
of initial markings and final markings, respectively. Let Σ be an alphabet
and l : T → Σ be a labeling function that associates with each transition
a label from Σ. N = (N, M−, M+, l) accepts a word w ∈ Σ∗ if there exists
a firing sequence τ = t1, . . . , tn from m− ∈ M− to m+ ∈ M+ such that
l(τ) := l(t1) . . . l(tn) = w. We denote by L(N) the language recognized by
the Petri net N .

Example 6.10 The following pictures illustrate how to construct from an
NFA A a Petri net N with initial marking m− = (1, 0, 0) and final marking
final marking m+ = (0, 1, 0) accepting the same language.

A : 1

a

a 2

b

3

b

N : a 1•
a

2

b

3

b

£

Lemma 6.11 For every regular language L there exists a Petri net N such
that L = L(N). 2

The power of Petri nets as language acceptors goes beyond the regular lan-
guages.

Example 6.12 Let L = {ancbn | n ≥ 0}. L is a Petri net language accepted
by the following Petri net with initial marking m− = (1, 0, 0) and final
marking m+ = (0, 0, 1).

1 •
a

2 b 3

c

6.2. PETRI NETS AS LANGUAGE ACCEPTORS 171

Reading an yields the marking (1, n, 0), from (1, n, 0) we proceed to (0, n, 1)
via c, and via bn from (0, n, 1) to (0, 0, 1). This is the only way to reach
(0, 0, 1) from (1, 0, 0). Hence this Petri net accepts L. £

In Figure 6.2 the power of Petri nets as language acceptors is shown. Ex-
ample languages are shown that separate the different classes.

CSL

REGPNL CFL

a
n
b
n
c
n

ww

ww
R

Figure 6.2: On the power of Petri nets as language acceptors

Example 6.13 We know that the language L = {anbncn | n > 0} is
context-sensitive, but not context-free. To prove its position in the inclusion
diagram of Figure 6.2 we construct the following Petri net:

a b c

a b c

This Petri net accepts L with initial marking m− = (1, 0, 0, 0, 0, 0) and final
marking m+ = (0, 0, 0, 0, 0, 1). £

The previous examples demonstrate the power of Petri nets in checking the
correct number of occurrences of a letter. However, Petri nets are weak
when it comes to checking also the order of occurrences. In the following we
realize this situation on the language consisting of the palindromes of even
length.

172 CHAPTER 6. PETRI NETS

Theorem 6.14 The context-free mirror-language L consisting of words wwR

with w ∈ {a, b}∗ is not a Petri net language.

Proof: Towards a contradiction we assume that there exists a Petri net N
with r transitions that recognizes L. After reading s letters (and firing s
transitions), N must be able to reach as many different markings as there
are words of length s. This must hold because N has to “remember” the first
half of the word wwR in order to compare it with the (reversed) second half.
Since we chose an alphabet with 2 letters, N has to reach at least 2s different
markings upon reading s letters. If it cannot reach that many states, then
there are two different words w, w′ that lead N to the same marking. This
means that N is not be able to distinguish between them and consequently,
it accept wwR if and only if it accepts w′wR. Contradiction.

Hence, it suffices to prove the following lemma.

Lemma 6.15 For every Petri net that recognizes L the following holds: For
a sufficiently large s, only less than 2s markings are reachable.

Suppose that the Petri net has r transitions. Consider a sequence of s
transitions. Each transition tj modifies a marking m by adding a vector
vj ∈ {−1, 0, 1}n. If tj is fired kj times during the whole sequence (1 ≤ j ≤ r),
then m is modified to the marking m + Σr

j=1kj · vj where Σjkj = s. Hence,
with s transitions one can reach at most as many markings as there are
such tuples (k1, . . . , kr). These r numbers have to sum up exactly to s and
therefore 0 ≤ ki ≤ s for all i ∈ {1, . . . , r}. Thus, there are at most (s + 1)r

such tuples. This is a polynomial in s because r is a characteristic of the
Petri net. Hence, for a sufficiently large s there are less than 2s markings
reachable by the Petri net. 2

6.3 Matrix Representation of Petri Nets

An alternative method to analyze Petri nets is provided by a matrix calculus.

Definition 6.16 Let N = (P, T, F) be a Petri net with P = {p1, . . . , pn}
and T = {t1, . . . , tr}. Let D− and D+ be the (r × n)-matrices defined by

D−(i, j) =

{

1 pj ∈ •ti
0 otherwise

and D+(i, j) =

{

1 pj ∈ t•i
0 otherwise

.

Let D := D+ − D−.

As before we view a marking as a vector (m1, . . . , mn). Transition ti is is

now coded by vector ei = (0, . . . , 0,
i
1, 0, . . . , 0) ∈ {0, 1}r. The matrix D

6.3. MATRIX REPRESENTATION OF PETRI NETS 173

contains all the information about the “net effect” of transition ti in its i-th
row. Suppose ti can be fired from a marking m̄ = (m1, . . . , mn). Then

m̄ ¤ti m̄′ ⇒ m̄′ = m̄ + ei · D.

Note that the converse does not hold, i.e.,

m̄′ = m̄ + ei · D 6⇒ m̄ ¤ti m̄i
′.

Example 6.17 Let N be the following Petri net.

2

t2

4

1

t1

3

t3

Then

D− =

1 1 1 0
0 0 0 1
0 0 1 0

 and D+ =

1 0 0 0
0 1 1 0
0 0 0 1

 .

So we obtain

D =

0 −1 −1 0
0 1 1 −1
0 0 −1 1

 .

Let m̄ = (1, 0, 1, 0) and fire t3. Then we get

(1, 0, 1, 0) + (0, 0, 1) · D = (1, 0, 1, 0) + (0, 0,−1, 1) = (1, 0, 0, 1)

£

Lemma 6.18 If m̄′ can be reached from m̄ by firing i1 times t1, . . ., ir times
tr, then m̄′ = m̄ + (i1, . . . , ir) · D. 2

As a consequence of the previous lemma we obtain that if m̄′ is reachable
from m̄, then the equation m̄′ = m̄ + (x1, . . . , xr) · D has a solution in Nr.

As mentioned above, the converse does not hold:

174 CHAPTER 6. PETRI NETS

Example 6.19 Let N be the following Petri net:

1

t1

2

t2

4

3

If m̄ = (1, 0, 0, 0) and m̄′ = (0, 0, 0, 1), then m̄′ is not reachable from m̄, but

(0, 0, 0, 1) = (1, 0, 0, 0) + (x1, x2) ·
(
−1 1 −1 0
0 −1 1 1

)

(x1, x2) = (1, 1) is a solution for the equation. £

However, we obtain: If m̄′ = m̄ + x̄ · D has no solution x̄, then m̄′ cannot
be reached from m̄.

Another application of the matrix representation of Petri nets is moti-
vated by applications for balanced distributed systems, where the total of
resources is neither consumed nor expanded.

Definition 6.20 A Petri net N = (P, T, F) with initial marking m− is said
to be strictly conservative if for all markings m reachable from m− we have
m−

1 + . . .+m−
n = m1 + . . .+mn. We may write this as m− ·1 = m ·1, where

1 = (1, . . . , 1) ∈ Nn
+.

N is called conservative if there is a weight vector w = (w1, . . . , wn) ∈ Nn
+

such that m− · w = m · w for every marking m reachable from m−.

Example 6.21 Let N be the following Petri net:

2 • 4

5 •

1 • 3

N is conservative for w = (1, 1, 2, 2, 1) and m− = (1, 1, 0, 0, 1). £

We have the following characterization of conservative Petri nets:

6.4. DECISION PROBLEMS FOR PETRI NETS 175

Lemma 6.22 Let N = (P, T, F) be a Petri net with initial marking m−

and let P = {p1, . . . , pn} and T = {t1, . . . , tr}. We assume that for every
transition ti there is a marking mi reachable from m− such that ti can be fired
from mi. Let D be the transition matrix of N and let 0 = (0, . . . , 0) ∈ Nr.
Then N is conservative iff the linear equation D · w = 0 has a solution
w ∈ Nn

+.

Proof: Assume that D · w = 0 for some w ∈ Nn
+. Let m be some marking

reachable from m−, say, by the firing sequence τ . Let [τ] be the vector
(i1, . . . , ir) where ij is the number of occurrences of tj in τ . By Lemma 6.18,
we have m = m− + [τ] · D. It follows that m · w = (m− + [τ] · D) · w =
m− · w + [τ] · D · w = m− · w. Hence, N is conservative.

Conversely, assume that N is conservative with weight vector w ∈ Nn
+

and let 1 ≤ i ≤ r. By assumption, there are mi, m̄i with m−
¤

∗ mi
¤ti m̄i.

Since both mi, m̄i are reachable from m−, we obtain m− ·w = mi ·w = m̄i ·w.
By Lemma 6.18, we have m̄i = mi + ei · D. It follows that m̄i · w =
(mi + ei ·D) ·w = mi ·w + ei ·D ·w and thus, ei ·D ·w = (D ·w)i = 0. Since
i was chosen arbitrarily, we obtain D · w = 0. 2

6.4 Decision Problems for Petri Nets

In this section we investigate important algorithmic issues for Petri nets.

Definition 6.23 The boundedness problem for Petri nets is the following:

Input : A Petri net N , an initial marking m−.
Problem: Is there a number K such that for all m reachable from

m− we have
∑

p∈P m(p) ≤ K?

The reachability problem for Petri nets is the following:

Input : A Petri net N , an initial marking m− and a final mark-
ing m+.

Problem: Is m+ reachable from m− in N?

The covering problem for Petri nets is the following:

Input : A Petri net N , an initial marking m− and a final mark-
ing m+.

Problem: Is there a marking m reachable from m− such that
m ≥ m+?

The boundedness of a Petri net N with respect to some initial marking m−

actually guarantees that N can be represented by a finite automaton. This
holds, because a Petri net with n places that is bounded by some number

176 CHAPTER 6. PETRI NETS

K has only markings (m1, . . . , mn) with Σn
i=1mi ≤ K. This means that also

mi ≤ K for every i and hence there are less than Kn different markings
reachable in N . These can be represented by the states of a huge, but still
finite automaton.

In the following we first solve the boundedness problem and then the cov-
ering problem. Unfortunately, we have to skip the proof for the decidability
of the reachability problem because it is far too complex to be presented
here.

Theorem 6.24 (Karp, Miller 1968) The boundedness problem for Petri
nets is decidable.

The proof of this theorem needs some preparation. We first define reacha-
bility trees over a Petri net and make some important observations about
them.

Definition 6.25 [Reachability Tree of a Petri net] Given a Petri net N and
an initial marking m−, the reachability tree t[N, m−] is defined as follows:

• the root of t[N, m−] is m−, and

• the immediate successors of a node m are all markings that are reach-
able from m by firing one transition.

Remark 6.26 The reachability tree t[N, m−] contains exactly the markings
that are reachable from m−.

However, since a place of a Petri net can have arbitrarily many markers,
the reachability tree can be infinite. Is there some way to break the (pos-
sibly never ending) construction of a reachability tree in order to be able
to perform the boundedness test? The construction of a reachability tree
for a Petri net relies on the following monotonicity property. If m is reach-
able from m− and there is a nonempty firing sequence τ such that m ¤τ m′

and m ≤ m′, then τ can be fired infinitely often. Two cases have to be
distinguished:

1. If m = m′, then m can be reproduced infinitely often by executing τ
again and again.

2. If m < m′, then mi < m′
i for some i, and mi can be increased ar-

bitrarily by executing τ again and again. In this case we obtain a
monotonically increasing marking sequence m < m′ < m′′ < . . . and
consequently the unboundedness of the Petri net.

Lemma 6.27 (Expansion Lemma) If m−
¤

∗m¤
∗m′ with m′ > m, then

the following holds: there exist m′′, m′′′ . . . with m−
¤

∗ m ¤
∗ m′

¤
∗ m′′

¤
∗

m′′′
¤

∗ . . . and m < m′ < m′′ < Hence, the Petri net is unbounded.

6.4. DECISION PROBLEMS FOR PETRI NETS 177

The algorithm from Figure 6.3 uses the previous observations to compute a
truncated reachability tree t(N, m−) for a Petri net N , the Karp-Miller tree.
For simplicity we assume that the initial marking m− is not a deadlock. Note
that the marking m′ is possibly changed in line 7 and thus, the conditions
in lines 8 and 9 are checked for this possibly new marking.

Input: A Petri net N = (P, T, F), an initial marking m−

1. Let m− be an unmarked leaf of t(N,m−)

2. while there are unmarked leafs in t(N,m−) do

3. Choose an unmarked leaf m

4. for m′ such that m ¤ m′ do

5. Add m′ as a new leaf below m

6. if there is a m1 < m′ on the path from m′ to the root

7. do change every m′
i
> m1

i
to ∞ od

8. if m′ already occurs in t(N,m−) do mark it od

9. if m′ is a deadlock do mark it od

10. od

11. od

Output: t(N,m−)

Figure 6.3: Algorithm computing t(N, m−)

As we shall prove in the following the Karp-Miller tree contains all the
information we need. Note that the structure of the output tree of the
algorithm may depend on the order of chosen leaves in line 3. Further, there
may be m1 < m′ and m2 < m′ with m1 £ m2 and m2 £ m1. The structure
of the output tree may also depend on the choice of such a marking in line 6.
But nevertheless, the set of all leaf labels for different output trees is always
the same, and this suffices for our purpose.

Example 6.28 The Karp-Miller tree for the Petri net from Example 6.5
has the following form:

(1, 1, 0, 0, 0)

a
b

c

(0, 1, 1, 0, 0)

c

(1,1,0,61,0)
(1,1,0,∞,0)

a
b

c

(1, 0, 0, 0, 1)

a

b

(0,0,1,0,1)
deadlock

(0,1,1,∞,0)

...

(1,1,0,∞,0)√
(1,0,0,∞,1)

...

(0,0,1,0,1)√
(1,0,0,61,1)
(1,0,0,∞,1)√

178 CHAPTER 6. PETRI NETS

£

Now we have all the knowledge we need to decide whether a Petri net is
bounded when started from some given marking. The procedure goes as
follows: Given a Petri net N and an initial marking m− we construct the
Karp-Miller tree t(N, m−) by using the algorithm of Figure 6.3. If no ∞ sign
occurs in the tree then N is bounded when started from m−. Otherwise, N
is unbounded when started from m−.

To prove the correctness of this method we proceed in two stages. First,
we show that the algorithm of Figure 6.3 terminates, i.e., that the Karp-
Miller tree is finite, and second that N is unbounded when started from m−

if and only if a ∞ occurs in t(N, m−).

Theorem 6.29 The algorithm from Figure 6.3 computing t(N, m−) termi-
nates, i.e., t(N, m−) is finite.

For the proof we need two intermediate results. The first one is the well
known König’s Lemma:

Lemma 6.30 (König) Every finitely branching infinite tree has an infinite
path.

Proof: Let t be a finitely branching infinite tree. Starting from the root
r of t we find an infinite path through t by repeatedly picking a son s of
the current node such that the subtree of t rooted at s is infinite. Since t is
assumed to be a finitely branching but infinite, this is always possible. 2

Lemma 6.31 (Dixon) Let V ⊆ Nr be infinite. Then there is an infinite
subset V0 ⊆ V that is totally ordered by ≤.

Proof: We prove this by induction on r. For r = 1 the order ≤ is total,
hence there is nothing to show. Assume now that V is an infinite subset
of Nr+1. Let V ′ := {m̄ ∈ Nr | ∃x : (m̄, x) ∈ V }. Two cases have to be
distinguished:
Case 1: V ′ is finite. Then there exists some m̄0 such that for infinitely many
x we have (m̄0, x) ∈ V . These vectors form the desired totally ordered set.
Case 2: V ′ is infinite. By induction hypothesis there is a totally ordered
infinite subset V ′

0 ⊆ V ′.

a) For some x0 we have x ≤ x0 for all (m̄, x) ∈ V with m̄ ∈ V ′
0 . Then there

exists x1 ≤ x0 such that (m̄, x1) ∈ V for infinitely many m̄ ∈ V ′
0 . These

vectors form the desired infinite totally ordered set.

b) For every (m̄0, x0) ∈ V with m̄0 ∈ V ′
0 there exists m̄ ∈ V ′

0 and x ∈ N with
m̄ > m̄0 and x > x0 such that (m̄, x) ∈ V . In this case the existence of
an infinite totally ordered set is trivial.

6.4. DECISION PROBLEMS FOR PETRI NETS 179

2

Proof of Theorem 6.29: Assume that t(N, m−) is infinite. By construc-
tion t(N, m−) is finitely branching. Hence, by König’s Lemma, t(N, m−)
contains an infinite path π. For markings (m1, . . . , mn) appearing on π let
i1, . . . , is be those components where eventually ∞ appears. We know that
{i1, . . . , is} 6= {1, . . . , n} because otherwise (∞, . . . ,∞) would be reached,
then repeated, and therefore π would be finite. So w.l.o.g. assume that af-
ter the last ∞ sign has been introduced (this happens after a finite number
of steps!) only markings (m1, . . . , mr,∞, . . . ,∞) (r ≥ 1) appear on π.

By Dixon’s Lemma there exists an infinite totally ordered set V0 of mark-
ings of the form (m1, . . . , mr,∞, . . . ,∞) on π. Let m ∈ V0 be the first such
marking appearing on π. Consider now the markings in V0 appearing after
m on π. Only finitely many of these can be smaller than m. Since V0 is
infinite there must be a m′ appearing after m on π with m′ > m. Hence
another ∞ sign would be introduced by the algorithm, contradicting the
assumption above. 2

Now that we proved that the algorithm terminates we have to show that
N is unbounded when started from m− if and only if a ∞ occurs in the
Karp-Miller tree t(N, m−).

Direction ⇐: If ∞ occurs in the Karp-Miller tree then m−
¤

∗ m ¤
∗ m′

with m < m′. According to the expansion lemma we obtain markings m−
¤

∗

m′
¤

∗ m′′
¤

∗ m′′′ . . . with m′ < m′′ < m′′′ . . . Hence, N is unbounded when
started from m−.

Direction ⇒: We argue that, if ∞ does not occur in t(N, m−), then N
is bounded when started from m−. According to the construction of the
tree, the markings that occur in t(N, m−) are exactly the ones that are
reachable from m− (see Remark 6.26), i.e., we have t(N, m−) = t[N, m−].
Since the Karp-Miller tree is finite (Theorem 6.29), there are only finitely
many different reachable markings. Hence, N is bounded when started from
m−. 2

The tree t(N, m−) computed by the Algorithm 6.3 can be applied to
decide the covering problem mentioned above, the reachability problem if
N is bounded, and other properties like whether there exists a deadlock,
or whether N is life (we say that a Petri net is life if for every marking m
reachable from m− and for every transition t there is a marking mt that can
be reached from m and where t can be fired).

However, a major drawback of the above mentioned algorithm is that its
complexity cannot be bounded even by a primitive recursive function.

The result on the reachability problem can be strengthened:

Theorem 6.32 The reachability problem is decidable even for unbounded
Petri nets. 2

180 CHAPTER 6. PETRI NETS

6.5 Exercises

Exercise 6.1 Consider the following Petri net N where the numbers denote
the names of the places.

1

2 3

4

(a) Construct the reachability tree of N with initial marking (0, 1, 0, 0).

(b) Determine the deadlock markings reachable from (0, 1, 0, 0) and give a
description of the reachable states.

Index

A ◦ B, see synchronized product
A/∼, 45
A : p

w−→ q, 7
AL, 51
A, 48
AT , 93
Aq, 47
FOΣ[S, <], 14
M(L), 68
MSOΣ[S, <], 14
Pa(x), 13
S(x, y), 13
SΣ, 86
T (G), 85
T (A)

transition monoid, 68
tree language, 83

TΣ, 81
X(y), 13
〈u〉L, 67
[m, n], 110
[u]L, 51
Σ++, 110
Σi, 80
·c, 94
∗c , 95
¤t, 166
∼L, 51
≈L, 67
∼T , 92
∼A, 50, 93
`, 124, 153
`∗, 124
dom(w), 14
domp, 110
domt, 82, 103

gsh(L), 38

lc(A), 38

n-counter system, 128

n-pushdown system, 127

n-register machine, 128

p, 111

post∗(C), 130

pre∗(C), 130

pw ` p′w′, 127

rk(a), 80

sh(L), 37

t, 99, 103

t(N, m−), 177
•t, 166

t•, 166

t[N, m−], 176

valp, 110

valt, 82, 103

w, 13

wA, 68

algebra, 48

alphabet, 6

ranked, 80

automaton

P -, 131

canonical, 51

complete, 7

deterministic

over trees, 82, 90

over words, 7

XML —, 106

nondeterministic

over trees, 88, 90

over words, 6

XML —, 105

181

182 INDEX

pushdown, 123
quotient, 45
recursive hierarchical, 138
tree walking —, 108

bisimilar, 62
bisimulation, 62

equivalence, 62
game, 62

winning strategy, 62
marking algorithm, 64

boundedness problem
for Petri nets, 175

box, 138

CFSM, 153
communicating finite state machine,

153
configuration

of a CFSM, 153
of a PDA, 124
of a PDS, 127

configuration graph
of a PDS, 127

congruence
for DFAs, 50
Nerode

over trees, 92
over words, 51

counter system, 128
n-CS, 128

counting language, 35
covering problem

for Petri nets, 175

deadlock, 166
DFA, 7
dining philosophers, 151
Dixon’s Lemma, 178
DTA, 82
↓DTA, 90
DTD, document-type definition, 104

emptiness problem
for NTAs, 91

for t-systems, 118
error scenario, see model checking

firing sequence, 166

global state, see configuration
grid, 110
group-free, 70

Hasse diagram, 157
HMSC, 158
homomorphism, 44

DFA-, 49
NFA-, 45

idempotent, 70

König’s Lemma, 178
Karp-Miller tree, 177
Kripke structure, 30

language, 6
counting, 35
grid —, 110
Kleene closure, 6
non-counting, 35
Petri net, 170
picture —, 110
recognizable, 7, 8, 83
regular, 83, 97, 105
tree —, 81, 97

loop complexity, 38
LTL, 32
LTS, see transition system

message sequence chart, 156
model checking, 28

error scenario, 28
monadic second-order, 13
monoid

syntactic, 68
transition, 68

MSC, 156
semantics, 157

MSO0-formulas, 19
MSO-Logic, 13

INDEX 183

MSO-logic
over pictures, 111
over trees, 99, 103

Nerode congruence, see congruence
NFA, 6
NTA, 88
↓NTA, 90

order
linearization of, 157
partial, 157
visual, see MSC

P -automaton, 131
PDA, see pushdown automaton
PDS, see pushdown system

n-PDS, 127
permutation-free, 72
Peterson’s protocol, 150
Petri net, 165

conservative, 174
life, 179
marking, 165
strictly conservative, 174
unbounded, 166
unsafe, 166

picture, 110
— model, 111

place, see Petri net
postset, 166
preset, 166
pumping lemma, 87
pushdown automaton, 123

configuration, 124
configuration graph, 126
normal form, 127

pushdown graph, 126
pushdown system, 127

race, 157
reachability problem

for PDS, 130
for CFSM, 154
for Petri nets, 175

register machine, 128
regular expression, 6

generalized, 26
over trees, 95, 97
star-free, 31

saturation algorithm, 132
first, 132
second, 134

star-free, see regular expression
star-height, 37

generalized, 38
symbol, 6

rank of, 80
synchronized product, 149
syntactic monoid, 68

t-system, tiling system, 113
term, see tree
token, see Petri net
transition monoid, 68
transition system

labeled, 62
pointed, 62

tree, 81
Σ-valued, 82, 103
— model, 99, 103
derivation —, 85
Karp-Miller, 177
special —, 86

TWA, 108

winning strategy, see bisimulation
word model, 13

XML document, 104

	Introduction
	Notation
	Nondeterministic Finite Automata
	Deterministic Finite Automata

	Automata and Logical Specifications
	MSO-Logic over words
	The Equivalence Theorem
	Consequences and Applications in Model Checking
	First-Order Definability
	Star-free Expressions
	Temporal Logic LTL

	Between FO- and MSO-definability
	Exercises

	Congruences and Minimization
	Homomorphisms, Quotients and Abstraction
	Minimization and Equivalence of DFAs
	Equivalence and Reduction of NFAs
	The Syntactic Monoid
	Exercises

	Tree Automata
	Trees and Tree Languages
	Tree Automata
	Deterministic Tree Automata
	Nondeterministic Tree Automata
	Emptiness, Congruences and Minimization

	Logic-Oriented Formalisms over Trees
	Regular Expressions
	MSO-Logic

	XML-Documents and Tree Automata
	Automata over Two-Dimensional Words (Pictures)
	Exercises

	Pushdown and Counter Systems
	Pushdown and Counter Automata
	The Reachability Problem for Pushdown Systems
	Recursive Hierarchical Automata
	Undecidability Results
	Retrospection: The Symbolic Method
	Exercises

	Communicating Systems
	Synchronized Products
	Communication via FIFO Channels
	Message sequence charts
	Exercises

	Petri Nets
	Basic Definitions
	Petri Nets as Language Acceptors
	Matrix Representation of Petri Nets
	Decision Problems for Petri Nets
	Exercises

	Index

