
THE OPEN LOGIC TEXT

Complete Build

Open Logic Project

Revision: 9d4975e
2015-06-26

The Open Logic Text
by the Open Logic
Project is licensed un-
der a Creative Com-
mons Attribution 4.0
International License.

http://openlogicproject.org/
https://github.com/OpenLogicProject/OpenLogic
http://openlogicproject.org/
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://openlogicproject.org/

About the Open Logic Project

The Open Logic Text is an open-source, collaborative textbook of formal meta-
logic and formal methods, starting at an intermediate level (i.e., after an intro-
ductory formal logic course). Though aimed at a non-mathematical audience
(in particular, students of philosophy and computer science), it is rigorous.

The Open Logic Text is a collaborative project and is under active develop-
ment. Coverage of some topics currently included may not yet be complete,
and many sections still require substantial revision. We plan to expand the
text to cover more topics in the future. We also plan to add features to the text,
such as a glossary, a list of further reading, historical notes, pictures, better
explanations, sections explaining the relevance of results to philosophy, com-
puter science, and mathematics, and more problems and examples. If you
find an error, or have a suggestion, please let the project team know.

The project operates in the spirit of open source. Not only is the text freely
available, we provide the LaTeX source under the Creative Commons Attri-
bution license, which gives anyone the right to download, use, modify, re-
arrange, convert, and re-distribute our work, as long as they give appropriate
credit.

Please see the Open Logic Project website at openlogicproject.org for addi-
tional information.

1

https://github.com/OpenLogicProject/OpenLogic/wiki/Contributing
http://openlogicproject.org/

Contents

I First-order Logic 7

1 Syntax and Semantics 8
1.1 First-Order Languages . 8
1.2 Terms and Formulas . 10
1.3 Unique Readability . 11
1.4 Main operator of a Formula . 14
1.5 Subformulas . 15
1.6 Free Variables and Sentences . 16
1.7 Substitution . 17
1.8 Structures for First-order Languages 18
1.9 Satisfaction of a Formula in a Structure 20
1.10 Extensionality . 24
1.11 Semantic Notions . 25

2 Theories and Their Models 27
2.1 Introduction . 27
2.2 Expressing Properties of Structures 29
2.3 Examples of First-Order Theories 29
2.4 Expressing Relations in a Structure 32
2.5 The Theory of Sets . 33
2.6 Expressing the Size of Structures 35

3 The Sequent Calculus 36
3.1 Rules and Derivations . 36
3.2 Examples of Derivations . 38
3.3 Proof-Theoretic Notions . 42
3.4 Properties of Derivability . 43
3.5 Soundness . 47
3.6 Derivations with Identity predicate 50

4 The Completeness Theorem 52
4.1 Introduction . 52
4.2 Outline of the Proof . 52

2

4.3 Maximally Consistent Sets of Sentences 54
4.4 Henkin Expansion . 56
4.5 Lindenbaum’s Lemma . 57
4.6 Construction of a Model . 58
4.7 Identity . 59
4.8 The Completeness Theorem . 61
4.9 The Compactness Theorem . 62
4.10 The Löwenheim-Skolem Theorem 62

5 Beyond First-order Logic 64
5.1 Overview . 64
5.2 Many-Sorted Logic . 65
5.3 Second-Order logic . 66
5.4 Higher-Order logic . 70
5.5 Intuitionistic logic . 72
5.6 Modal Logics . 76
5.7 Other Logics . 77

II Computability 79

6 Recursive Functions 80
6.1 Introduction . 80
6.2 Primitive Recursion . 81
6.3 Primitive Recursive Functions are Computable 84
6.4 Examples of Primitive Recursive Functions 85
6.5 Primitive Recursive Relations . 86
6.6 Bounded Minimization . 88
6.7 Sequences . 89
6.8 Other Recursions . 90
6.9 Non-Primitive Recursive Functions 92
6.10 Partial Recursive Functions . 93
6.11 The Normal Form Theorem . 95
6.12 The Halting Problem . 96
6.13 General Recursive Functions . 97

7 The Lambda Calculus 98
7.1 Introduction . 98
7.2 The Syntax of the Lambda Calculus 99
7.3 Reduction of Lambda Terms . 100
7.4 The Church-Rosser Property . 101
7.5 Representability by Lambda Terms 102
7.6 Lambda Representable Functions are Computable 102
7.7 Computable Functions are Lambda Representable 103

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 3

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

7.8 The Basic Primitive Recursive Functions are Lambda Repre-
sentable . 103

7.9 Lambda Representable Functions Closed under Composition . 104
7.10 Lambda Representable Functions Closed under Primitive Re-

cursion . 104
7.11 Fixed-Point Combinators . 106
7.12 Lambda Representable Functions Closed under Minimization . 107

8 Computability Theory 109
8.1 Introduction . 109
8.2 Coding Computations . 110
8.3 The Normal Form Theorem . 111
8.4 The s-m-n Theorem . 112
8.5 The Universal Partial Computable Function 112
8.6 No Universal Computable Function 112
8.7 The Halting Problem . 113
8.8 Comparison with Russell’s Paradox 114
8.9 Computable Sets . 115
8.10 Computably Enumerable Sets . 116
8.11 Definitions of C. E. Sets . 116
8.12 Union and Intersection of C.E. Sets 119
8.13 Computably Enumerable Sets not Closed under Complement . 120
8.14 Reducibility . 121
8.15 Properties of Reducibility . 122
8.16 Complete Computably Enumerable Sets 123
8.17 An Example of Reducibility . 124
8.18 Totality is Undecidable . 125
8.19 Rice’s Theorem . 125
8.20 The Fixed-Point Theorem . 127
8.21 Applying the Fixed-Point Theorem 131
8.22 Defining Functions using Self-Reference 132
8.23 Minimization with Lambda Terms 132

III Turing Machines 134

9 Turing Machine Computations 135
9.1 Introduction . 135
9.2 Turing Machines . 135
9.3 Configurations and Computations 136
9.4 Unary Representation of Numbers 137

10 Undecidability 138
10.1 Decision Problems . 138

4 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

10.2 Representing Turing Machines 139
10.3 Verifying the Representation . 141

IV Incompleteness 143

11 Arithmetization of Syntax 144
11.1 Introduction . 144
11.2 Coding Symbols . 144
11.3 Coding Terms . 145
11.4 Coding Formulas . 147
11.5 Substitution . 147
11.6 Proofs in LK . 148

12 Representability in Q 152
12.1 Introduction . 152
12.2 Functions Representable in Q are Computable 153
12.3 Computable Functions are Representable in Q 154
12.4 The Functions C . 154
12.5 The Beta Function Lemma . 155
12.6 Primitive Recursion in C . 157
12.7 Functions in C are Representable in Q 158
12.8 Representing Relations . 161
12.9 Undecidability . 161

13 Theories and Computability 163
13.1 Introduction . 163
13.2 Q is c.e.-complete . 163
13.3 ω-Consistent Extensions of Q are Undecidable 164
13.4 Consistent Extensions of Q are Undecidable 165
13.5 Computably Axiomatizable Theories 166
13.6 Computably Axiomatizable Complete Theories are Decidable . 166
13.7 Q has no Complete, Consistent, Computably Axiomatized Ex-

tensions . 166
13.8 Sentences Provable and Refutable in Q are Computably Insep-

arable . 167
13.9 Theories Consistent with Q are Undecidable 168
13.10Theories In Which Q is Intepretable are Undecidable 168

14 Incompleteness and Provability 170
14.1 Introduction . 170
14.2 The Fixed-Point Lemma . 171
14.3 The First Incompleteness Theorem 172
14.4 Rosser’s Theorem . 174

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 5

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

14.5 Comparison with Gödel’s Original Paper 174
14.6 The Provability Conditions for PA 175
14.7 The Second Incompleteness Theorem 176
14.8 Löb’s Theorem . 177
14.9 The Undefinability of Truth . 179

V Sets, Relations, Functions 181

15 Sets 182
15.1 Basics . 182
15.2 Some Important Sets . 183
15.3 Subsets . 183
15.4 Unions and Intersections . 184
15.5 Proofs about Sets . 185
15.6 Pairs, Tuples, Cartesian Products 187

16 Relations 188
16.1 Relations as Sets . 188
16.2 Special Properties of Relations . 189
16.3 Orders . 190
16.4 Operations on Relations . 191

17 Functions 193
17.1 Basics . 193
17.2 Kinds of Functions . 194
17.3 Operations on Functions . 195
17.4 Isomorphism . 195
17.5 Partial Functions . 196

18 The Size of Sets 197
18.1 Introduction . 197
18.2 Enumerable Sets . 197
18.3 Non-enumerable Sets . 200
18.4 Reduction . 201
18.5 Equinumerous Sets . 202
18.6 Comparing Sizes of Sets . 203

6 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Part I

First-order Logic

7

Chapter 1

Syntax and Semantics

1.1 First-Order Languages

Expressions of first-order logic are built up from a basic vocabulary containing
variables, constant symbols, predicate symbols and sometimes function symbols.
From them, together with logical connectives, quantifiers, and punctuation
symbols such as parentheses and commas, terms and formulas are formed.

Informally, predicate symbols are names for properties and relations, con-
stant symbols are names for individual objects, and function symbols are names
for mappings. These, except for the identity predicate =, are the non-logical
symbols and together make up a language. Any first-order language L is de-
termined by its non-logical symbols. In the most general case, L contains
infinitely many symbols of each kind.

In the general case, we make use of the following symbols in first-order
logic:

1. Logical symbols

a) Logical connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction),
→ (conditional),↔ (biconditional), ∀ (universal quantifier), ∃ (ex-
istential quantifier).

b) The propositional constant for falsity ⊥.

c) The propositional constant for truth >.

d) The two-place identity predicate =.

e) A denumerable set of variables: v0, v1, v2, . . .

2. Non-logical symbols, making up the standard language of first-order logic

a) A denumerable set of n-place predicate symbols for each n > 0: An
0 ,

An
1 , An

2 , . . .

b) A denumerable set of constant symbols: c0, c1, c2,

8

c) A denumerable set of n-place function symbols for each n > 0: f n
0 ,

f n
1 , f n

2 , . . .

3. Punctuation marks: (,), and the comma.

Most of our definitions and results will be formulated for the full standard
language of first-order logic. However, depending on the application, we may
also restrict the language to only a few predicate symbols, constant symbols,
and function symbols.

Example 1.1. The language LA of arithmetic contains a single two-place pred-
icate symbol <, a single constant symbol , one one-place function symbol ′,
and two two-place function symbols + and ×.

Example 1.2. The language of set theoryLZ contains only the single two-place
predicate symbol ∈.

Example 1.3. The language of orders L≤ contains only the two-place predi-
cate symbol ≤.

Again, these are conventions: officially, these are just aliases, e.g., <, ∈,
and ≤ are aliases for A2

0, for c0, ′ for f 1
0 , + for f 2

0 , × for f 2
1 .

You may be familiar with different terminology and symbols than the ones
we use above. Logic texts (and teachers) commonly use either ∼, ¬, and ! for
“negation”, ∧, ·, and & for “conjunction”. Commonly used symbols for the
“conditional” or “implication” are→,⇒, and⊃. Symbols for “biconditional,”
“bi-implication,” or “(material) equivalence” are ↔, ⇔, and ≡. The ⊥ sym-
bol is variously called “falsity,” “falsum,”, “absurdity,”, or “bottom.” The >
symbol is variously called “truth,” “verum,”, or “top.”

It is conventional to use lower case letters (e.g., a, b, c) from the begin-
ning of the Latin alphabet for constant symbols (sometimes called names),
and lower case letters from the end (e.g., x, y, z) for variables. Quantifiers
combine with variables, e.g., x; notational variations include ∀x, (∀x), (x),
Πx,

∧
x for the universal quantifier and ∃x, (∃x), (Ex), Σx,

∨
x for the existen-

tial quantifier.
We might treat all the propositional operators and both quantifiers as prim-

itive symbols of the language. We might instead choose a smaller stock of
primitive symbols and treat the other logical operators as defined. “Truth
functionally complete” sets of Boolean operators include {¬,∨}, {¬,∧}, and
{¬,→}—these can be combined with either quantifier for an expressively
complete first-order language.

You may be familiar with two other logical operators: the Sheffer stroke |
(named after Henry Sheffer), and Peirce’s arrow ↓, also known as Quine’s
dagger. When given their usual readings of “nand” and “nor” (respectively),
these operators are truth functionally complete by themselves.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 9

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1.2 Terms and Formulas

Once a first-order language L is given, we can define expressions built up
from the basic vocabulary of L. These include in particular terms and formulas.

Definition 1.4 (Terms). The set of terms Trm(L) of L is defined inductively
by:

1. Every variable is a term.

2. Every constant symbol of L is a term.

3. If f is an n-place function symbol and t1, . . . , tn are terms, then f (t1, . . . , tn)
is a term.

4. Nothing else is a term.

A term containing no variables is a closed term.

The constant symbols appear in our specification of the language and the
terms as a separate category of symbols, but they could instead have been in-
cluded as zero-place function symbols. We could then do without the second
clause in the definition of terms. We just have to understand f (t1, . . . , tn) as
just f by itself if n = 0.

Definition 1.5 (Formula). The set of formulas Frm(L) of the language L is
defined inductively as follows:

1. ⊥ is an atomic formula.

2. > is an atomic formula.

3. If R is an n-place predicate symbol of L and t1, . . . , tn are terms of L,
then R(t1, . . . , tn) is an atomic formula.

4. If t1 and t2 are terms of L, then =(t1, t2) is an atomic formula.

5. If ϕ is a formula, then ¬ϕ is formula.

6. If ϕ and ψ are formulas, then (ϕ ∧ ψ) is a formula.

7. If ϕ and ψ are formulas, then (ϕ ∨ ψ) is a formula.

8. If ϕ and ψ are formulas, then (ϕ→ ψ) is a formula.

9. If ϕ and ψ are formulas, then (ϕ↔ ψ) is a formula.

10. If ϕ is a formula and x is a variable, then ∀x ϕ is a formula.

11. If ϕ is a formula and x is a variable, then ∃x ϕ is a formula.

10 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

12. Nothing else is a formula.

The definitions of the set of terms and that of formulas are inductive defini-
tions. Essentially, we construct the set of formulas in infinitely many stages.
In the initial stage, we pronounce all atomic formulas to be formulas; this
corresponds to the first few cases of the definition, i.e., the cases for >, ⊥,
R(t1, . . . , tn) and =(t1, t2). “Atomic formula” thus means any formula of this
form.

The other cases of the definition give rules for constructing new formulas
out of formulas already constructed. At the second stage, we can use them to
construct formulas out of atomic formulas. At the third stage, we construct
new formulas from the atomic formulas and those obtained in the second
stage, and so on. A formula is anything that is eventually constructed at such
a stage, and nothing else.

By convention, we write = between its arguments and leave out the paren-
theses: t1 = t2 is an abbreviation for =(t1, t2). Moreover, ¬=(t1, t2) is abbre-
viated as t1 6= t2. When writing a formula (ψ ∗ χ) constructed from ψ, χ
using a two-place connective ∗, we will often leave out the outermost pair of
parentheses and write simply ψ ∗ χ.

Some logic texts require that the variable x must occur in ϕ in order for
∃x ϕ and ∀x ϕ to count as formulas. Nothing bad happens if you don’t require
this, and it makes things easier.

If we work in a language for a specific application, we will often write two-
place predicate symbols and function symbols between the respective terms,
e.g., t1 < t2 and (t1 + t2) in the language of arithmetic and t1 ∈ t2 in the
language of set theory. The successor function in the language of arithmetic
is even written conventionally after its argument: t′. Officially, however, these
are just conventional abbreviations forA2

0(t1, t2), f 2
0 (t1, t2), A2

0(t1, t2) and f 1
0 (t),

respectively.

Definition 1.6. The symbol ≡ expresses syntactic identity between strings of
symbols, i.e., ϕ ≡ ψ iff ϕ and ψ are strings of symbols of the same length and
which contain the same symbol in each place.

The ≡ symbol may be flanked by strings obtained by concatenation, e.g.,
ϕ ≡ (ψ ∨ χ) means: the string of symbols ϕ is the same string as the one
obtained by concatenating an opening parenthesis, the string ψ, the ∨ symbol,
the string χ, and a closing parenthesis, in this order. If this is the case, then we
know that the first symbol of ϕ is an opening parenthesis, ϕ contains ψ as a
substring (starting at the second symbol), that substring is followed by ∨, etc.

1.3 Unique Readability

The way we defined formulas guarantees that every formula has a unique read-
ing, i.e., there is essentially only one way of constructing it according to our

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 11

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

formation rules for formulas and only one way of “interpreting” it. If this were
not so, we would have ambiguous formulas, i.e., formulas that have more
than one reading or intepretation—and that is clearly something we want to
avoid. But more importantly, without this property, most of the definitions
and proofs we are going to give will not go through.

Perhaps the best way to make this clear is to see what would happen if we
had given bad rules for forming formulas that would not guarantee unique
readability. For instance, we could have forgotten the parentheses in the for-
mation rules for connectives, e.g., we might have allowed this:

If ϕ and ψ are formulas, then so is ϕ→ ψ.

Starting from an atomic formula θ, this would allow us to form θ → θ, and
from this, together with θ, we would get θ → θ → θ. But there are two ways
to do this: one where we take θ to be ϕ and θ → θ to be ψ, and the other
where ϕ is θ → θ and ψ is θ. Correspondingly, there are two ways to “read”
the formula θ → θ → θ. It is of the form ψ → χ where ψ is θ and χ is θ → θ,
but it is also of the form ψ→ χ with ψ being θ → θ and χ being θ.

If this happens, our definitions will not always work. For instance, when
we define the main operator of a formula, we say: in a formula of the form
ψ → χ, the main operator is the indicated occurrence of →. But if we can
match the formula θ → θ → θ with ψ → χ in the two different ways men-
tioned above, then in one case we get the first occurrence of → as the main
operator, and in the second case the second occurrence. But we intend the
main operator to be a function of the formula, i.e., every formula must have
exactly one main operator occurrence.

Lemma 1.7. The number of left and right parentheses in a formula ϕ are equal.

Proof. We prove this by induction on the way ϕ is constructed. This requires
two things: (a) We have to prove first that all atomic formulas have the prop-
erty in question (the induction basis). (b) Then we have to prove that when
we construct new formulas out of given formulas, the new formulas have the
property provided the old ones do.

Let l(ϕ) be the number of left parentheses, and r(ϕ) the number of right
parentheses in ϕ, and l(t) and r(t) similarly the number of left and right
parentheses in a term t. We leave the proof that for any term t, l(t) = r(t)
as an exercise.

1. ϕ ≡ ⊥: ϕ has 0 left and 0 right parentheses.

2. ϕ ≡ >: ϕ has 0 left and 0 right parentheses.

3. ϕ ≡ R(t1, . . . , tn): l(ϕ) = 1 + l(t1) + · · · + l(tn) = 1 + r(t1) + · · · +
r(tn) = r(ϕ). Here we make use of the fact, left as an exercise, that
l(t) = r(t) for any term t.

12 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

4. ϕ ≡ t1 = t2: l(ϕ) = l(t1) + l(t2) = r(t1) + r(t2) = r(ϕ).

5. ϕ ≡ ¬ψ: By induction hypothesis, l(ψ) = r(ψ). Thus l(ϕ) = l(ψ) =
r(ψ) = r(ϕ).

6. ϕ ≡ (ψ ∗ χ): By induction hypothesis, l(ψ) = r(ψ) and l(χ) = r(χ).
Thus l(ϕ) = 1 + l(ψ) + l(χ) = 1 + r(ψ) + r(χ) = r(ϕ).

7. ϕ ≡ ∀x ψ: By induction hypothesis, l(ψ) = r(ψ). Thus, l(ϕ) = l(ψ) =
r(ψ) = r(ϕ).

8. ϕ ≡ ∃x ψ: Similarly.

Definition 1.8. A string of symbols ψ is a proper prefix of a string of symbols ϕ
if concatenating ψ and a non-empty string of symbols yields ϕ.

Lemma 1.9. If ϕ is a formula, and ψ is a proper prefix of ϕ, then ψ is not a formula.

Proof. Exercise.

Proposition 1.10. If ϕ is an atomic formula, then it satisfes one, and only one of the
following conditions.

1. ϕ ≡ ⊥.

2. ϕ ≡ R(t1, . . . , tn) where R is an n-place predicate symbol, t1, . . . , tn are terms,
and each of R, t1, . . . , tn is uniquely determined.

3. ϕ ≡ t1 = t2 where t1 and t2 are uniquely determined terms.

Proof. Exercise.

Proposition 1.11 (Unique Readability). Every formula satisfies one, and only one
of the following conditions.

1. ϕ is atomic.

2. ϕ is of the form ¬ψ.

3. ϕ is of the form (ψ ∧ χ).

4. ϕ is of the form (ψ ∨ χ).

5. ϕ is of the form (ψ→ χ).

6. ϕ is of the form (ψ↔ χ).

7. ϕ is of the form ∀x ψ.

8. ϕ is of the form ∃x ψ.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 13

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Moreover, in each case ψ, or ψ and χ, are uniquely determined. This means that, e.g.,
there are no different pairs ψ, χ and ψ′, χ′ so that ϕ is both of the form (ψ→ χ) and
(ψ′ → χ′).

Proof. The formation rules require that if a formula is not atomic, it must start
with an opening parenthesis (, ¬, or with a quantifier. On the other hand,
every formula that start with one of the following symbols must be atomic:
a predicate symbol, a function symbol, a constant symbol, ⊥, >.

So we really only have to show that if ϕ is of the form (ψ ∗ χ) and also of
the form (ψ′ ∗′ χ′), then ψ ≡ ψ′, χ ≡ χ′, and ∗ = ∗′.

So suppose both ϕ ≡ (ψ ∗ χ) and ϕ ≡ (ψ′ ∗′ χ′). Then either ψ ≡ ψ′ or not.
If it is, clearly ∗ = ∗′ and χ ≡ χ′, since they then are substrings of ϕ that begin
in the same place and are of the same length. The other case is χ 6≡ χ′. Since
χ and χ′ are both substrings of ϕ that begin at the same place, one must be a
prefix of the other. But this is impossible by Lemma 1.9.

1.4 Main operator of a Formula

It is often useful to talk about the last operator used in constructing a for-
mula ϕ. This operator is called the main operator of ϕ. Intuitively, it is the
“outermost” operator of ϕ. For example, the main operator of ¬ϕ is ¬, the
main operator of (ϕ ∨ ψ) is ∨, etc.

Definition 1.12 (Main operator). The main operator of a formula ϕ is defined
as follows:

1. ϕ is atomic: ϕ has no main operator.

2. ϕ ≡ ¬ψ: the main operator of ϕ is ¬.

3. ϕ ≡ (ψ ∧ χ): the main operator of ϕ is ∧.

4. ϕ ≡ (ψ ∨ χ): the main operator of ϕ is ∨.

5. ϕ ≡ (ψ→ χ): the main operator of ϕ is→.

6. ϕ ≡ (ψ↔ χ): the main operator of ϕ is↔.

7. ϕ ≡ ∀x ψ: the main operator of ϕ is ∀.

8. ϕ ≡ ∃x ψ: the main operator of ϕ is ∃.

In each case, we intend the specific indicated occurrence of the main opera-
tor in the formula. For instance, since the formula ((θ → α) → (α → θ)) is of
the form (ψ→ χ) where ψ is (θ → α) and χ is (α→ θ), the second occurrence
of→ is the main operator.

14 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

This is a recursive definition of a function which maps all non-atomic for-
mulas to their main operator occurrence. Because of the way formulas are de-
fined inductively, every formula ϕ satisfies one of the cases in Definition 1.12.
This guarantees that for each non-atomic formula ϕ a main operator exists.
Because each formula satisfies only one of these conditions, and because the
smaller formulas from which ϕ is constructed are uniquely determined in each
case, the main operator occurrence of ϕ is unique, and so we have defined a
function.

We call formulas by the following names depending on which symbol their
main operator is:

Main operator Type of formula Example
none atomic (formula) ⊥, >, R(t1, . . . , tn), t1 = t2
¬ negation ¬ϕ
∧ conjunction (ϕ ∧ ψ)
∨ disjunction (ϕ ∨ ψ)
→ conditional (ϕ→ ψ)
∀ universal (formula) ∀x ϕ
∃ existential (formula) ∃x ϕ

1.5 Subformulas

It is often useful to talk about the formulas that “make up” a given formula.
We call these its subformulas. Any formula counts as a subformula of itself; a
subformula of ϕ other than ϕ itself is a proper subformula.

Definition 1.13 (Immediate Subformula). If ϕ is a formula, the immediate sub-
formulas of ϕ are defined inductively as follows:

1. Atomic formulas have no immediate subformulas.

2. ϕ ≡ ¬ψ: The only immediate subformula of ϕ is ψ.

3. ϕ ≡ (ψ ∗ χ): The immediate subformulas of ϕ are ψ and χ (∗ is any one
of the two-place connectives).

4. ϕ ≡ ∀x ψ: The only immediate subformula of ϕ is ψ.

5. ϕ ≡ ∃x ψ: The only immediate subformula of ϕ is ψ.

Definition 1.14 (Proper Subformula). If ϕ is a formula, the proper subformulas
of ϕ are recursively as follows:

1. Atomic formulas have no proper subformulas.

2. ϕ ≡ ¬ψ: The proper subformulas of ϕ are ψ together with all proper
subformulas of ψ.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 15

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

3. ϕ ≡ (ψ ∗ χ): The proper subformulas of ϕ are ψ, χ, together with all
proper subformulas of ψ and those of χ.

4. ϕ ≡ ∀x ψ: The proper subformulas of ϕ are ψ together with all proper
subformulas of ψ.

5. ϕ ≡ ∃x ψ: The proper subformulas of ϕ are ψ together with all proper
subformulas of ψ.

Definition 1.15 (Subformula). The subformulas of ϕ are ϕ itself together with
all its proper subformulas.

Note the subtle difference in how we have defined immediate subformulas
and proper subformulas. In the first case, we have directly defined the imme-
diate subformulas of a formula ϕ for each possible form of ϕ. It is an explicit
definition by cases, and the cases mirror the inductive definition of the set of
formulas. In the second case, we have also mirrored the way the set of all
formulas is defined, but in each case we have also included the proper subfor-
mulas of the smaller formulas ψ, χ in addition to these formulas themselves.
This makes the definition recursive. In general, a definition of a function on an
inductively defined set (in our case, formulas) is recursive if the cases in the
definition of the function make use of the function itself. To be well defined,
we must make sure, however, that we only ever use the values of the function
for arguments that come “before” the one we are defining—in our case, when
defining “proper subformula” for (ψ ∗ χ) we only use the proper subformulas
of the “earlier” formulas ψ and χ.

1.6 Free Variables and Sentences

Definition 1.16 (Free occurrences of a variable). The free occurrences of a vari-
able in a formula are defined inductively as follows:

1. ϕ is atomic: all variable occurrences in ϕ are free.

2. ϕ ≡ ¬ψ: the free variable occurrences of ϕ are exactly those of ψ.

3. ϕ ≡ (ψ ∗ χ): the free variable occurrences of ϕ are those in ψ together
with those in χ.

4. ϕ ≡ ∀x ψ: the free variable occurrences in ϕ are all of those in ψ except
for occurrences of x.

5. ϕ ≡ ∃x ψ: the free variable occurrences in ϕ are all of those in ψ except
for occurrences of x.

Definition 1.17 (Bound Variables). An occurrence of a variable in a formula ϕ
is bound if it is not free.

16 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 1.18 (Scope). If ∀x ψ is an occurrence of a subformula in a for-
mula ϕ, then the corresponding occurrence of ψ in ϕ is called the scope of the
corresponding occurrence of ∀x. Similarly for ∃x.

If ψ is the scope of a quantifier occurrence ∀x or ∃x in ϕ, then all occur-
rences of x which are free in ψ are said to be bound by the mentioned quantifier
occurrence.

Example 1.19. Here is a somewhat complicated formula ϕ:

∀x0 (A1
0(x0)→ A2

0(x0, x1))︸ ︷︷ ︸
ψ

→ ∃x1 (A2
1(x0, x1) ∨ ∀x0

θ︷ ︸︸ ︷
¬A1

1(x0))︸ ︷︷ ︸
χ

ψ is the scope of the first ∀x0, χ is the scope of ∃x1, and θ is the scope of the
second ∀x0. The first ∀x0 binds the occurrences of x0 in ψ, ∃x1 the occurrence of
x1 in χ, and the second ∀x0 binds the occurrence of x0 in θ. The first occurrence
of x1 and the fourth occurrence of x0 are free in ϕ. The last occurrence of x0 is
free in θ, but bound in χ and ϕ.

Definition 1.20 (Sentence). A formula ϕ is a sentence iff it contains no free
occurrences of variables.

1.7 Substitution

Definition 1.21 (Substitution in a term). We define s[t/x], the result of substi-
tuting t for every occurrence of x in s, recursively:

1. s ≡ c: s[t/x] is just s.

2. s ≡ y: s[t/x] is also just s, provided y is a variable other than x.

3. s ≡ x: s[t/x] is t.

4. s ≡ f (t1, . . . , tn): s[t/x] is f (t1[t/x], . . . , tn[t/x]).

Definition 1.22. A term t is free for x in ϕ if none of the free occurrences of x
in ϕ occur in the scope of a quantifier that binds a variable in t.

Definition 1.23 (Substitution in a formula). If ϕ is a formula, x is a variable,
and t is a term free for x in ϕ, then ϕ[t/x] is the result of substituting t for all
free occurrences of x in ϕ.

1. ϕ ≡ P(t1, . . . , tn): ϕ[t/x] is P(t1[t/x], . . . , tn[t/x]).

2. ϕ ≡ t1 = t2: ϕ[t/x] is t1[t/x] = t2[t/x].

3. ϕ ≡ ¬ψ: ϕ[t/x] is ¬ψ[t/x].

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 17

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

4. ϕ ≡ (ψ ∧ χ): ϕ[t/x] is (ψ[t/x] ∧ χ[t/x]).

5. ϕ ≡ (ψ ∨ χ): ϕ[t/x] is (ψ[t/x] ∨ χ[t/x]).

6. ϕ ≡ (ψ→ χ): ϕ[t/x] is (ψ[t/x]→ χ[t/x]).

7. ϕ ≡ (ψ↔ χ): ϕ[t/x] is (ψ[t/x]↔ χ[t/x]).

8. ϕ ≡ ∀y ψ: ϕ[t/x] is ∀y ψ[t/x], provided y is a variable other than x;
otherwise ϕ[t/x] is just ϕ.

9. ϕ ≡ ∃y ψ: ϕ[t/x] is ∃y ψ[t/x], provided y is a variable other than x;
otherwise ϕ[t/x] is just ϕ.

Note that substitution may be vacuous: If x does not occur in ϕ at all, then
ϕ[t/x] is just ϕ.

The restriction that t must be free for x in ϕ is necessary to exclude cases
like the following. If ϕ ≡ ∃y x < y and t ≡ y, then ϕ[t/y] would be ∃y y <
y. In this case the free variable y is “captured” by the quantifier ∃y upon
substitution, and that is undesirable. For instance, we would like it to be the
case that whenever ∀x ψ holds, so does ψ[t/x]. But consider ∀x ∃y x < y (here
ψ is ∃y x < y). It is sentence that is true about, e.g., the natural numbers:
for every number x there is a number y greater than it. If we allowed y as a
possible substitution for x, we would end up with ψ[y/x] ≡ ∃y y < y, which
is false. We prevent this by requiring that none of the free variables in t would
end up being bound by a quantifier in ϕ.

We often use the following convention to avoid cumbersume notation: If
ϕ is a formula with a free variable x, we write ϕ(x) to indicate this. When it is
clear which ϕ and x we have in mind, and t is a term (assumed to be free for
x in ϕ(x)), then we write ϕ(t) as short for ϕ(x)[t/x].

1.8 Structures for First-order Languages

First-order languages are, by themselves, uninterpreted: the constant symbols,
function symbols, and predicate symbols have no specific meaning attached
to them. Meanings are given by specifying a structure. It specifies the domain,
i.e., the objects which the constant symbols pick out, the function symbols
operate on, and the quantifiers range over. In addition, it specifies which con-
stant symbols pick out which objects, how a function symbol maps objects
to objects, and which objects the predicate symbols apply to. Structures are
the basis for semantic notions in logic, e.g., the notion of consequence, valid-
ity, satisfiablity. They are variously called “structures,” “interpretations,” or
“models” in the literature.

Definition 1.24 (Structures). A structure M, for a language L of first-order
logic consists of the following elements:

18 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. Domain: a non-empty set, |M|

2. Interpretation of constant symbols: for each constant symbol c of L, an ele-
ment cM ∈ |M|

3. Interpretation of predicate symbols: for each n-place predicate symbol R of
L (other than =), an n-ary relation RM ⊆ |M|n

4. Interpretation of function symbols: for each n-place function symbol f of
L, an n-ary function fM : |M|n → |M|

Example 1.25. A structure M for the language of arithmetic consists of a set,
an element of |M|, M, as interpretation of the constant symbol , a one-place
function ′M : |M| → |M|, two two-place functions +M and×M, both |M|2 →
|M|, and a two-place relation <M ⊆ |M|2.

An obvious example of such a structure is the following:

1. |N| = N

2. N = 0

3. ′N(n) = n + 1 for all n ∈N

4. +N(n, m) = n + m for all n, m ∈N

5. ×N(n, m) = n ·m for all n, m ∈N

6. <N = {〈n, m〉 : n ∈N, m ∈N, n < m}

The structure N for LA so defined is called the standard model of arithmetic,
because it interprets the non-logical constants of LA exactly how you would
expect.

However, there are many other possible structures for LA. For instance,
we might take as the domain the set Z of integers instead of N, and define the
interpretations of , ′, +, ×, < accordingly. But we can also define structures
for LA which have nothing even remotely to do with numbers.

Example 1.26. A structure M for the language LZ of set theory requires just a
set and a single-two place relation. So technically, e.g., the set of people plus
the relation “x is older than y” could be used as a structure for LZ, as well as
N together with n ≥ m for n, m ∈N.

A particularly interesting structure for LZ in which the elements of the
domain are actually sets, and the interpretation of ∈ actually is the relation “x
is an element of y” is the structure HF of hereditarily finite sets:

1. |HF| = ∅ ∪ ℘(∅) ∪ ℘(℘(∅)) ∪ ℘(℘(℘(∅))) ∪ . . . ;

2. ∈HF = {〈x, y〉 : x, y ∈ |HF| , x ∈ y}.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 19

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Recall that a term is closed if it contains no variables.

Definition 1.27 (Value of closed terms). If t is a closed term of the langage L
and M is a structure for L, the value ValM(t) is defined as follows:

1. If t is just the constant symbol c, then ValM(c) = cM.

2. If t is of the form f (t1, . . . , tn), then ValM(t) is fM(ValM(t1), . . . , ValM(tn)).

Definition 1.28 (Covered structure). A structure is covered if every element of
the domain is the value of some closed term.

Example 1.29. Let L be the language with constant symbols zero, one, two, . . .,
the binary predicate symbols = and <, and the binary function symbols + and
×. Then a structure M for L is the one with domain |M| = {0, 1, 2, . . .} and
name assignment zeroM = 0, oneM = 1, twoM = 2, and so forth. For the
binary relation symbol <, the set <M is the set of all pairs 〈c1, c2〉 ∈ |M|2
such that the integer c1 is less than the integer c2: for example, 〈1, 3〉 ∈<M but
〈2, 2〉 /∈<M. For the binary function symbol +, define +M in the usual way—
for example, +M(2, 3) maps to 5, and similarly for the binary function symbol
×. Hence, the value of f our is just 4, and the value of×(two,+(three, zero))
(or in infix notation, two × (three + zero)) is

ValM(×(two,+(three, zero)) = ×M(ValM(two), ValM(two,+(three, zero)))

= ×M(ValM(two),+M(ValM(three), ValM(zero)))

= ×M(twoM,+M(threeM, zeroM))

= ×M(2,+M(3, 0))

= ×M(2, 3)

= 6

The stipulations we make as to what counts as a structure impact our logic.
For example, the choice to prevent empty domains ensures, given the usual
account of satisfaction (or truth) for quantified sentences, that ∃x (ϕ(x)∨¬ϕ(x))
is valid—that is, a logical truth. And the stipulation that all constant symbols
must refer to an object in the domain ensures that the existential generaliza-
tion is a sound pattern of inference: ϕ(a), therefore ∃x ϕ(x). If we allowed
names to refer outside the domain, or to not refer, then we would be on our
way to a free logic, in which existential generalization requires an additional
premise: ϕ(a) and ∃x x = a, therefore ∃x ϕ(x).

1.9 Satisfaction of a Formula in a Structure

The basic notion that relates expressions such as terms and formulas, on the
one hand, and structures on the other, are those of value of a term and satisfac-

20 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

tion of a formula. Informally, the value of a term is an element of a structure—
if the term is just a constant, its value is the object assigned to the constant
by the structure, and if it is built up using function symbols, the value is com-
puted from the values of constants and the functions assigned to the functions
in the term. A formula is satisfied in a structure if the interpretation given to
the predicates makes the formula true in the domain of the structure. This
notion of satisfaction is specified inductively: the specification of the struc-
ture directly states when atomic formulas are satisfied, and we define when a
complex formula is satisfied depending on the main connective or quantifier
and whether or not the immediate subformulas are satisfied. The case of the
quantifiers here is a bit tricky, as the immediate subformula of a quantified for-
mula has a free variable, and structures don’t specify the values of variables.
In order to deal with this difficulty, we also introduce variable assignments and
define satisfaction not with respect to a structure alone, but with respect to a
structure plus a variable assignment.

Definition 1.30 (Variable Assignment). A variable assignment s for a struc-
ture M is a function which maps each variable to an element of |M|, i.e.,
s : Var→ |M|.

A structure assigns a value to each constant symbol, and a variable assign-
ment to each variable. But we want to use terms built up from them to also
name elements of the domain. For this we define the value of terms induc-
tively. For constant symbols and variables the value is just as the structure or
the variable assignment specifies it; for more complex terms it is computed
recursively using the functions the structure assigns to the function symbols.

Definition 1.31 (Value of Terms). If t is a term of the language L, M is a struc-
ture for L, and s is a variable assignment for M, the value ValMs (t) is defined
as follows:

1. t ≡ c: ValMs (t) = cM.

2. t ≡ x: ValMs (t) = s(x).

3. t ≡ f (t1, . . . , tn):

ValMs (t) = fM(ValMs (t1), . . . , ValMs (tn)).

Definition 1.32 (x-Variant). If s is a variable assignment for a structure M,
then any variable assignment s′ for M which differs from s at most in what it
assigns to x is called an x-variant of s. If s′ is an x-variant of s we write s ∼x s′.

Note that an x-variant of an assignment s does not have to assign something
different to x. In fact, every assignment counts as an x-variant of itself.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 21

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 1.33 (Satisfaction). Satisfaction of a formula ϕ in a structure M rel-
ative to a variable assignment s, in symbols: M, s |= ϕ, is defined recursively
as follows. (We write M, s 6|= ϕ to mean “not M, s |= ϕ.”)

1. ϕ ≡ ⊥: not M, s |= ϕ.

2. ϕ ≡ >: M, s |= ϕ.

3. ϕ ≡ R(t1, . . . , tn): M, s |= ϕ iff 〈ValMs (t1), . . . , ValMs (tn)〉 ∈ RM.

4. ϕ ≡ t1 = t2: M, s |= ϕ iff ValMs (t1) = ValMs (t2).

5. ϕ ≡ ¬ψ: M, s |= ϕ iff M, s 6|= ψ.

6. ϕ ≡ (ψ ∧ χ): M, s |= ϕ iff M, s |= ψ and M, s |= χ.

7. ϕ ≡ (ψ ∨ χ): M, s |= ϕ iff M, s |= ϕ or M, s |= ψ (or both).

8. ϕ ≡ (ψ→ χ): M, s |= ϕ iff M, s 6|= ψ or M, s |= χ (or both).

9. ϕ ≡ (ψ ↔ χ): M, s |= ϕ iff either both M, s |= ψ and M, s |= χ, or
neither M, s |= ψ nor M, s |= χ.

10. ϕ ≡ ∀x ψ: M, s |= ϕ iff for every x-variant s′ of s, M, s′ |= ψ.

11. ϕ ≡ ∃x ψ: M, s |= ϕ iff there is an x-variant s′ of s so that M, s′ |= ψ.

The variable assignments are important in the last two clauses. We cannot
define satisfaction of ∀x ψ(x) by “for all a ∈ |M|, M |= ψ(a). We cannot define
satisfaction of ∃x ψ(x) by “for at least one a ∈ |M|, M |= ψ(a). The reason is
that a is not symbol of the language, and so ψ(a) is not a formula (that is,
ψ[a/x] is undefined). We can also not assume that we have constant symbols
or terms available that name every element of M, since there is nothing in the
definition of structures that requires it. Even in the standard language the set
of constant symbols is denumerable, so if |M| is not enumerable there aren’t
even enough constant symbols to name every object.

A variable assignment s provides a value for every variable in the language.
This is of course not necessary: whether or not a formula ϕ is satisfied in a
structure with respect to s only depends on the assignments s makes to the free
variables that actually occur in ϕ. This is the content of the next theorem. We
require variable assignments to assign values to all variables simply because
it makes things a lot easier.

Proposition 1.34. If x1, . . . , xn are the only free variables in ϕ and s(xi) = s′(xi)
for i = 1, . . . , n, then M, s |= ϕ iff M, s′ |= ϕ.

Proof. We use induction on the complexity of ϕ. For the base case, where ϕ
is atomic, ϕ can be: >, ⊥, R(t1, . . . , tk) for a k-place predicate R and terms t1,
. . . , tk, or t1 = t2 for terms t1 and t2.

22 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. ϕ ≡ >: both M, s |= ϕ and M, s′ |= ϕ.

2. ϕ ≡ ⊥: both M, s 6|= ϕ and M, s′ 6|= ϕ.

3. ϕ ≡ R(t1, . . . , tk): let M, s |= ϕ. Then 〈ValMs (t1), . . . , ValMs (tk)〉 ∈ RM.
For i = 1, . . . , k, if ti is a constant, then ValMs (ti) = ValM(ti) = ValMs′ (ti).
If ti is a free variable, then since the mappings s and s′ agree on all free
variables, ValMs (ti) = s(ti) = s′(ti) = ValMs′ (ti). Similarly, if ti is of
the form f (t′1, . . . , t′j), we will also get ValMs (ti) = ValMs′ (ti). Hence,

ValMs (ti) = ValMs′ (ti) for any term ti for i = 1, . . . , k, so we also have
〈ValMs′ (ti), . . . , ValMs′ (tk)〉 ∈ RM.

4. ϕ ≡ t1 = t2: if M, s |= ϕ, ValMs′ (t1) = ValMs (t1) = ValMs (t2) =
ValMs′ (t2), so M, s′ |= t1 = t2.

Now assume M, s |= ψ iff M, s′ |= ψ for all formulas ψ less complex than ϕ.
The induction step proceeds by cases determined by the main operator of ϕ.
In each case, we only demonstrate the forward direction of the biconditional;
the proof of the reverse direction is symmetrical.

1. ϕ ≡ ¬ψ: if M, s |= ϕ, then M, s 6|= ψ, so by the induction hypothesis,
M, s′ 6|= ψ, hence M, s′ |= ϕ.

2. ϕ ≡ ψ ∧ χ: if M, s |= ϕ, then M, s |= ψ and M, s |= χ, so by induction
hypothesis, M, s′ |= ψ and M, s′ |= χ. Hence, M, s′ |= ϕ.

3. ϕ ≡ ψ ∨ χ: if M, s |= ϕ, then M, s |= ψ or M, s |= χ. By induction
hypothesis, M, s′ |= ψ or M, s′ |= χ, so M, s′ |= ϕ.

4. ϕ ≡ ψ → χ: if M, s |= ϕ, then M, s 6|= ψ or M, s |= χ. By the induction
hypothesis, M, s′ 6|= ψ or M, s′ |= χ, so M, s′ |= ϕ.

5. ϕ ≡ ψ ↔ χ: if M, s |= ϕ, then either M, s |= ψ and M, s |= χ, or
M, s 6|= ψ and M, s 6|= χ. By the induction hypothesis, either M, s′ |= ψ
and M, s′ |= χ or M, s′ 6|= ψ and M, s′ 6|= χ. In either case, M, s′ |= ϕ.

6. ϕ ≡ ∃x ψ: if M, s |= ϕ, there is an x-variant s̄ of s so that M, s̄ |= ψ. Let s̄′

denote the x-variant of s′ that assigns the same thing to x as does s̄: then
by the induction hypothesis, M, s̄′ |= ψ. Hence, there is an x-variant of
s′ that satisfies ψ, so M, s′ |= ϕ.

7. ϕ ≡ ∀x ψ: if M, s |= ϕ, then for every x-variant s̄ of s, M, s̄ |= ψ. Hence,
if s̄′ is the x-variant of s′ that assigns the same thing to x as does s̄, then
we have M, s̄′ |= ψ. Hence, every x-variant of s′ satisfies ψ, so M, s′ |= ϕ

By induction, we get that M, s |= ϕ iff M, s′ |= ϕ whenever x1, . . . , xn are the
only free variables in ϕ and s(xi) = s′(xi) for i = 1, . . . , n.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 23

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 1.35. If ϕ is a sentence, we say that a structure M satisfies ϕ, M |= ϕ,
iff M, s |= ϕ for all variable assignments s.

Proposition 1.36. Suppose ϕ(x) only contains x free, and M is a structure. Then:

1. M |= ∃x ϕ(x) iff M, s |= ϕ(x) for at least one variable assignment s.

2. M |= ∀x ϕ(x) iff M, s |= ϕ(x) for all variable assignments s.

Proof. Exercise.

1.10 Extensionality

Extensionality, sometimes called relevance, can be expressed informally as fol-
lows: the only thing that bears upon the satisfaction of formula ϕ in a struc-
ture M relative to a variable assignment s, are the assignments made by M

and s to the elements of the language that actually appear in ϕ.
One immediate consequence of extensionality is that where two struc-

tures M and M′ agree on all the elements of the language appearing in a
sentence ϕ and have the same domain, M and M′ must also agree on ϕ
itself.

Proposition 1.37 (Extensionality). Let ϕ be a sentence, and M and M′ be struc-
tures. If cM = cM

′
, RM = RM′

, and fM = fM
′

for every constant symbol c,
relation symbol R, and function symbol f occurring in ϕ, then M |= ϕ iff M′ |= ϕ.

Moreover, the value of a term, and whether or not a structure satisfies a
formula, only depends on the values of its subterms.

Proposition 1.38. Let M be a structure, t and t′ terms, and s a variable assignment.
Let s′ ∼x s be the x-variant of s given by s′(x) = ValMs (t′). Then ValMs (t[t′/x]) =
ValMs′ (t).

Proof. By induction on t.

1. If t is a constant, say, t ≡ c, then t[t′/x] = c, and ValMs (c) = cM =
ValMs′ (c).

2. If t is a variable other than x, say, t ≡ y, then t[t′/x] = y, and ValMs (y) =
ValMs′ (y) since s′ ∼x s.

3. If t ≡ x, then t[t′/x] = t′. But ValMs′ (x) = ValMs (t′) by definition of s′.

4. If t ≡ f (t1, . . . , tn) then we have:

ValMs (t[t′/x]) = ValMs (f (t1[t′/x], . . . , tn[t′/x])) by definition of t[t′/x]

= fM(ValMs (t1[t′/x]), . . . , ValMs (tn[t′/x])) by definition of ValMs (f (. . .))

= fM(ValMs′ (t1), . . . , ValMs′ (tn)) by induction hypothesis

= ValMs′ (t) by definition of ValMs′ (f (. . .))

24 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proposition 1.39. Let M be a structure, ϕ a formula, t a term, and s a variable
assignment. Let s′ ∼x s be the x-variant of s given by s′(x) = ValMs (t). Then
M, s |= ϕ[t/x] iff M, s′ |= ϕ.

Proof. Exercise.

1.11 Semantic Notions

Give the definition of structures for first-order languages, we can define some
basic semantic properties of and relationships between sentences. The sim-
plest of these is the notion of validity of a sentence. A sentence is valid if it is
satisfied in every structure. Valid sentences are those that are satisfied regard-
less of how the non-logical symbols in it are interpreted. Valid sentences are
therefore also called logical truths—they are true, i.e., satisfied, in any struc-
ture and hence their truth depends only on the logical symbols occurring in
them and their syntactic structure, but not on the non-logical symbols or their
interpretation.

Definition 1.40 (Validity). A sentence ϕ is valid, |= ϕ, iff M |= ϕ for every
structure M.

Definition 1.41 (Entailment). A set of sentences Γ entails a sentence ϕ, Γ |= ϕ,
iff for every structure M with M |= Γ, M |= ϕ.

Definition 1.42 (Satisfiability). A set of sentences Γ is satisfiable if M |= Γ for
some structure M. If Γ is not satisfiable it is called unsatisfiable.

Proposition 1.43. A sentence ϕ is valid iff Γ |= ϕ for every set of sentences Γ.

Proof. For the forward direction, let ϕ be valid, and let Γ be a set of sentences.
Let M be a structure so that M |= Γ. Since ϕ is valid, M |= ϕ, hence Γ |= ϕ.

For the contrapositive of the reverse direction, let ϕ be invalid, so there is
a structure M with M 6|= ϕ. When Γ = {>}, since > is valid, M |= Γ. Hence,
there is a structure M so that M |= Γ but M 6|= ϕ, hence Γ does not entail
ϕ.

Proposition 1.44. Γ |= ϕ iff Γ ∪ {¬ϕ} is unsatisfiable.

Proof. For the forward direction, suppose Γ |= ϕ and suppose to the contrary
that there is a structure M so that M |= Γ ∪ {¬ϕ}. Since M |= Γ and Γ |= ϕ,
M |= ϕ. Also, since M |= Γ ∪ {¬ϕ}, M |= ¬ϕ, so we have both M |= ϕ and
M 6|= ϕ, a contradiction. Hence, there can be no such structure M, so Γ ∪ {ϕ}
is unsatisfiable.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 25

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

For the reverse direction, suppose Γ ∪ {¬ϕ} is unsatisfiable. So for every
structure M, either M 6|= Γ or M |= ϕ. Hence, for every structure M with
M |= Γ, M |= ϕ, so Γ |= ϕ.

Proposition 1.45. If Γ ⊆ Γ′ and Γ |= ϕ, then Γ′ |= ϕ.

Proof. Suppose that Γ ⊆ Γ′ and Γ |= ϕ. Let M be such that M |= Γ′; then
M |= Γ, and since Γ |= ϕ, we get that M |= ϕ. Hence, whenever M |= Γ′,
M |= ϕ, so Γ′ |= ϕ.

Theorem 1.46 (Semantic Deduction Theorem). Γ ∪ {ϕ} |= ψ iff Γ |= ϕ→ ψ.

Proof. For the forward direction, let Γ ∪ {ϕ} |= ψ and let M be a structure so
that M |= Γ. If M |= ϕ, then M |= Γ ∪ {ϕ}, so since Γ ∪ {ϕ} entails ψ, we get
M |= ψ. Therefore, M |= ϕ→ ψ, so Γ |= ϕ→ ψ.

For the reverse direction, let Γ |= ϕ → ψ and M be a structure so that
M |= Γ ∪ {ϕ}. Then M |= Γ, so M |= ϕ → ψ, and since M |= ϕ, M |= ψ.
Hence, whenever M |= Γ ∪ {ϕ}, M |= ψ, so Γ ∪ {ϕ} |= ψ.

26 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 2

Theories and Their Models

2.1 Introduction

The development of the axiomatic method is a significant achievement in the
history of science, and is of special importnace in the history of mathemat-
ics. An axiomatic development of a field involves the clarification of many
questions: What is the field about? What are the most fundamental concepts?
How are they related? Can all the concepts of the field be defined in terms of
these fundamental concepts? What laws do, and must, these concepts obey?

The axiomatic method and logic were made for each other. Formal logic
provides the tools for formulating axiomatic theories, for proving theorems
from the axioms of the theory in a precisely specified way, for studying the
properties of all systems satisfying the axioms in a systematic way.

Definition 2.1. A set of sentences Γ is closed iff, whenever Γ |= ϕ then ϕ ∈ Γ.
The closure of a set of sentences Γ is {ϕ : Γ |= ϕ}.

We say that Γ is axiomatized by a set of sentences ∆ if Γ is the closure of ∆

We can think of an axiomatic theory as the set of sentences that is axiom-
atized by its set of axioms ∆. In other words, when we have a first-order lan-
guage which contains non-logical symbols for the primitives of the axiomat-
ically developed science we wish to study, together with a set of sentences
that express the fundamental laws of the science, we can think of the theory
as represented by all the sentences in this language that are entailed by the
axioms. This ranges from simple examples with only a single primitive and
simple axioms, such as the theory of partial orders, to complex theories such
as Newtonian mechanics.

The important logical facts that make this formal approach to the axiomatic
method so important are the following. Suppose Γ is an axiom system for a
theory, i.e., a set of sentences.

27

1. We can state precisely when an axiom system captures an intended class
of structures. That is, if we are interested in a certain class of structures,
we will successfully capture that class by an axiom system Γ iff the struc-
tures are exactly those M such that M |= Γ.

2. We may fail in this respect because there are M such that M |= Γ, but M
is not one of the structures we intend. This may lead us to add axioms
which are not true in M.

3. If we are successful at least in the respect that Γ is true in all the intended
structures, then a sentence ϕ is true in all intended structures whenever
Γ |= ϕ. Thus we can use logical tools (such as proof methods) to show
that sentences are true in all intended structures simply by showing that
they are entailed by the axioms.

4. Sometimes we don’t have intended structures in mind, but instead start
from the axioms themselves: we begin with some primitives that we
want to satisfy certain laws which we codify in an axiom system. One
thing that we would like to verify right away is that the axioms do not
contradict each other: if they do, there can be no concepts that obey
these laws, and we have tried to set up an incoherent theory. We can
verify that this doesn’t happen by finding a model of Γ. And if there are
models of our theory, we can use logical methods to investigate them,
and we can also use logical methods to construct models.

5. The independence of the axioms is likewise an important question. It
may happen that one of the axioms is actually a consequence of the oth-
ers, and so is redundant. We can prove that an axiom ϕ in Γ is redundant
by proving Γ \ {ϕ} |= ϕ. We can also prove that an axiom is not redun-
dant by showing that (Γ \ {ϕ})∪{¬ϕ} is satisfiable. For instance, this is
how it was shown that the parallel postulate is independent of the other
axioms of geometry.

6. Another important question is that of definability of concepts in a the-
ory: The choice of the language determines what the models of a theory
consists of. But not every aspect of a theory must be represented sep-
arately in its models. For instance, every ordering ≤ determines a cor-
responding strict ordering <—given one, we can define the other. So it
is not necessary that a model of a theory involving such an order must
also contain the corresponding strict ordering. When is it the case, in
general, that one relation can be defined in terms of others? When is it
impossible to define a relation in terms of other (and hence must add it
to the primitives of the language)?

28 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2.2 Expressing Properties of Structures

It is often useful and important to express conditions on functions and rela-
tions, or more generally, that the functions and relations in a structure satisfy
these conditions. For instance, we would like to have ways of distinguishing
those structures for a language which “capture” what we want the predicate
symbols to “mean” from those that do not. Of course we’re completely free
to specify which structures we “intend,” e.g., we can specify that the inter-
pretation of the predicate symbol ≤ must be an ordering, or that we are only
interested in interpretations of L in which the domain consists of sets and ∈
is interpreted by the “is an element of” relation. But can we do this with sen-
tences of the language? In other words, which conditions on a structure M can
we express by a sentence (or perhaps a set of sentences) in the language of M?
There are some conditions that we will not be able to express. For instance,
there is no sentence of LA which is only true in a structure M if |M| = N.
We cannot express “the domain contains only natural numbers.” But there
are “structural properties” of structures that we perhaps can express. Which
properties of structures can we express by sentences? Or, to put it another
way, which collections of structures can we describe as those making a sen-
tence (or set of sentences) true?

Definition 2.2. Let Γ be a set of sentences in a language L. We say that a
structure M is a model of Γ if M |= ϕ for all ϕ ∈ Γ.

Example 2.3. The sentence ∀x x ≤ x is true in M iff ≤M is a reflexive relation.
The sentence ∀x ∀y ((x ≤ y ∧ y ≤ x) → x = y) is true in M iff ≤M is anti-
symmetric. The sentence ∀x ∀y ∀z ((x ≤ y ∧ y ≤ z) → x ≤ z) is true in M iff
≤M is transitive. Thus, the models of

{ ∀x x ≤ x,

∀x ∀y ((x ≤ y ∧ y ≤ x)→ x = y),

∀x ∀y ∀z ((x ≤ y ∧ y ≤ z)→ x ≤ z) }

are exactly those structures in which ≤M is reflexive, symmetric, and transi-
tive, i.e., a partial order. Hence, we can take them as axioms for the first-order
theory of partial orders.

2.3 Examples of First-Order Theories

Example 2.4. The theory of strict linear orders in the language L< is axioma-
tized by the set

∀x¬x < x,

∀x ∀y ((x < y ∨ y < x) ∨ x = y),

∀x ∀y ∀z ((x < y ∧ y < z)→ x < z)

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 29

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

It completely captures the intended structures: every strict linear order is a
model of this axiom system, and vice versa, if R is a linear order on a set X,
then the structure M with |M| = X and <M= R is a model of this theory.

Example 2.5. The theory of groups in the language (constant symbol), ·
(two-place function symbol) is axiomatized by

∀x (x ·) = x

∀x ∀y ∀z (x · (y · z)) = ((x · y) · z)
∀x ∃y (x · y) =

Example 2.6. The theory of Peano arithmetic is axiomatized by the following
sentences in the language of arithmetic LA.

¬∃x x′ =

∀x ∀y (x′ = y′ → x = y)

∀x ∀y (x < y↔ ∃z (x + z′ = y))

∀x (x +) = x

∀x ∀y (x + y′) = (x + y)′

∀x (x×) =
∀x ∀y (x× y′) = ((x× y) + x)

plus all sentences of the form

(ϕ() ∧ ∀x (ϕ(x)→ ϕ(x′)))→ ∀x ϕ(x)

Since there are infinitely many sentences of the latter form, this axiom sys-
tem is infinite. The latter form is called the induction schema. (Actually, the
induction schema is a bit more complicated than we let on here.)

The third axiom is an explicit definition of <.

Example 2.7. The theory of pure sets plays an important role in the founda-
tions (and in the philosophy) of mathematics. A set is pure if all its elements
are also pure sets. The empty set counts therefore as pure, but a set that has
something as an element that is not a set would not be pure. So the pure sets
are those that are formed just from the empty set and no “urelements,” i.e.,
objects that are not themselves sets.

The following might be considered as an axiom system for a theory of pure
sets:

∃x¬∃y y ∈ x

∀x ∀y (∀z(z ∈ x ↔ z ∈ y)→ x = y)

∀x ∀y ∃z ∀u (u ∈ z↔ (u = x ∨ u = y))

∀x ∃y ∀z (z ∈ y↔ ∃u (z ∈ u ∨ u ∈ x))

30 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

plus all sentences of the form

∃x ∀y (y ∈ x ↔ ϕ(y))

The first axiom says that there is a set with no elements (i.e., ∅ exists); the
second says that sets are extensional; the third that for any sets X and Y, the
set {X, Y} exists; the fourth that for any sets X and Y, the set X ∪Y exists.

The sentences mentioned last are collectively called the naive comprehension
scheme. It essentially says that for every ϕ(x), the set {x : ϕ(x)} exists—so
at first glance a true, useful, and perhaps even necessary axiom. It is called
“naive” because, as it turns out, it makes this theory unsatisfiable: if you take
ϕ(y) to be ¬y ∈ y, you get the sentence

∃x ∀y (y ∈ x ↔ ¬y ∈ y)

and this sentence is not satisfied in any structure.

Example 2.8. In the area of mereology, the relation of parthood is a fundamental
relation. Just like theories of sets, there are theories of parthood that axioma-
tize various conceptions (sometimes conflicting) of this relation.

The language of mereology contains a single two-place predicate sym-
bol P , and P (x, y) “means” that x is a part of y. When we have this inter-
pretation in mind, a structure for this language is called a parthood structure.
Of course, not every structure for a single two-place predicate will really de-
serve this name. To have a chance of capturing “parthood,” PM must satisfy
some conditions, which we can lay down as axioms for a theory of parthood.
For instance, parthood is a partial order on objects: every object is a part (al-
beit an improper part) of itself; no two different objects can be parts of each
other; a part of a part of an object is itself part of that object. Note that in this
sense “is a part of” resembles “is a subset of,” but does not resemble “is an
element of” which is neither reflexive nor transitive.

∀x P (x, x),

∀x ∀y ((P (x, y) ∧ P (y, x))→ x = y),

∀x ∀y ∀z ((P (x, y) ∧ P (y, z))→ P (x, z)),

Moreover, any two objects have a fusion (an object that has only these two
objects and all their parts as parts).

∀x ∀y ∃z ∀u (P (u, z)↔ (P (u, x) ∧ P (u, y)))

These are only some of the basic principles of parthood considered by meta-
physicians. Further principles, however, quickly become hard to formulate or
write down without first introducting some defined relations. For instance,
most metaphysicians interested in mereology also view the following as a
valid principle: whenever an object x has a proper part y, it also has a part z
that has no parts in common with y, and so that the fusion of y and z is x.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 31

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2.4 Expressing Relations in a Structure

One main use formulas can be put to is to express properties and relations in
a structure M in terms of the primitives of the language L of M. By this we
mean the following: the domain of M is a set of objects. The constant symbols,
function symbols, and predicate symbols are interpreted in M by some objects
in|M|, functions on |M|, and relations on |M|. For instance, if A2

0 is in L, then

M assigns to it a relation R = A2
0
M. Then the formula A2

0(x1, x2) expresses that
very relation, in the following sense: if a variable assignment s maps x1 to
a ∈ |M| and x2 to b ∈ |M|, then

Rab iff M, s |= A2
0(x1, x2).

Note that we have to involve variable assignments here: we can’t just say “Rab
iff M |= A2

0(a, b)” because a and b are not symbols of our language: they are
elements of |M|.

Since we don’t just have atomic formulas, but can combine them using
the logical connectives and the quantifiers, more complex formulas can define
other relations which aren’t directly built into M. We’re interested in how to
do that, and specifically, which relations we can define in a structure.

Definition 2.9. Let ϕ(x1, . . . , xn) be a formula of L in which only x1,. . . , xn
occur free, and let M be a structure forL. ϕ(x1, . . . , xn) expresses the relation R ⊆
|M|n iff

Ra1 . . . an iff M, s |= ϕ(x1, . . . , xn)

for any variable assignment s with s(xi) = ai (i = 1, . . . , n).

Example 2.10. In the standard model of arithmetic N, the formula x1 < x2 ∨
x1 = x2 expresses the ≤ relation on N. The formula x2 = x ′1 expresses the suc-
cessor relation, i.e., the relation R ⊆N2 where Rnm holds if m is the successor
of n. The formula x1 = x ′2 expresses the predecessor relation. The formulas
∃x3 (x3 6= ∧ x2 = (x1 + x3)) and ∃x3 (x1 + x3′) = x2 both express the < re-
lation. This means that the predicate symbol < is actually superfluous in the
language of arithmetic; it can be defined.

This idea is not just interesting in specific structures, but generally when-
ever we use a language to describe an intended model or models, i.e., when
we consider theories. These theories often only contain a few predicate sym-
bols as basic symbols, but in the domain they are used to describe often many
other relations play an important role. If these other relations can be system-
atically expressed by the relations that interpret the basic predicate symbols
of the language, we say we can define them in the language.

32 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2.5 The Theory of Sets

Almost all of mathematics can be developed in the theory of sets. Developing
mathematics in this theory involves a number of things. First, it requires a set
of axioms for the relation ∈. A number of different axiom systems have been
developed, sometimes with conflicting properties of ∈. The axiom system
known as ZFC, Zermelo-Fraenkel set theory with the axiom of choice stands
out: it is by far the most widely used and studied, because it turns out that its
axioms suffice to prove almost all the things mathematicians expect to be able
to prove. But before that can be established, it first is necessary to make clear
how we can even express all the things mathematicians would like to express.
For starters, the language contains no constant symbols or function symbols,
so it seems at first glance unclear that we can talk about particular sets (such as
∅ or N), can talk about operations on sets (such as X ∪Y and ℘(X)), let alone
other constructions which involve things other than sets, such as relations and
functions.

To begin with, “is an element of” is not the only relation we are interested
in: “is a subset of” seems almost as important. But we can define “is a subset
of” in terms of “is an element of.” To do this, we have to find a formula ϕ(x, y)
in the language of set theory which is satisfied by a pair of sets 〈X, Y〉 iff X ⊆
Y. But X is a subset of Y just in case all elements of X are also elements of Y.
So we can define ⊆ by the formula

∀z (z ∈ x → z ∈ y)

Now, whenever we want to use the relation ⊆ in a formula, we could instead
use that formula (with x and y suitably replaced, and the bound variable z
renamed if necessary). For instance, extensionality of sets means that if any
sets x and y are contained in each other, then x and y must be the same set.
This can be expressed by ∀x ∀y ((x ⊆ y∧ y ⊆ x)→ x = y), or, if we replace ⊆
by the above definition, by

∀x ∀y ((∀z (z ∈ x → z ∈ y) ∧ ∀z (z ∈ y→ z ∈ x))→ x = y).

This is in fact one of the axioms of ZFC, the “axiom of extensionality.”
There is no constant symbol for ∅, but we can express “x is empty” by

¬∃y y ∈ x. Then “∅ exists” becomes the sentence ∃x¬∃y y ∈ x. This is an-
other axiom of ZFC. (Note that the axiom of extensionality implies that there
is only one empty set.) Whenever we want to talk about ∅ in the language of
set theory, we would write this as “there is a set that’s empty and . . . ” As an
example, to express the fact that ∅ is a subset of every set, we could write

∃x (¬∃y y ∈ x ∧ ∀z x ⊆ z)

where, of course, x ⊆ z would in turn have to be replaced by its definition.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 33

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

To talk about operations on sets, such has X ∪Y and ℘(X), we have to use
a similar trick. There are no function symbols in the language of set theory,
but we can express the functional relations X ∪Y = Z and ℘(X) = Y by

∀u ((u ∈ x ∨ u ∈ y)↔ u ∈ z)

∀u (u ⊆ x ↔ u ∈ y)

since the elements of X ∪Y are exactly the sets that are either elements of X or
elements of Y, and the elements of ℘(X) are exactly the subsets of X. However,
this doesn’t allow us to use x ∪ y or ℘(x) as if they were terms: we can only
use the entire formulas that define the relations X ∪ Y = Z and ℘(X) = Y.
In fact, we do not know that these relations are ever satisfied, i.e., we do not
know that unions and power sets always exist. For instance, the sentence
∀x ∃y℘(x) = y is another axiom of ZFC (the power set axiom).

Now what about talk of ordered pairs or functions? Here we have to ex-
plain how we can think of ordered pairs and functions as special kinds of sets.
One way to define the ordered pair 〈x, y〉 is as the set {{x}, {x, y}}. But like
before, we cannot introduce a function symbol that names this set; we can
only define the relation 〈x, y〉 = z, i.e., {{x}, {x, y}} = z:

∀u (u ∈ z↔ (∀v (v ∈ u↔ v = x) ∨ ∀v (v ∈ u↔ (v = x ∨ v = y))))

This says that the elements u of z are exactly those sets which either have x
as its only element or have x and y as its only elements (in other words, those
sets that are either identical to {x} or identical to {x, y}). Once we have this,
we can say further things, e.g., that X×Y = Z:

∀z (z ∈ Z ↔ ∃x ∃y (x ∈ X ∧ y ∈ Y ∧ 〈x, y〉 = z))

A function f : X → Y can be thought of as the relation f (x) = y, i.e., as
the set of pairs {〈x, y〉 : f (x) = y}. We can then say that a set f is a function
from X to Y if (a) it is a relation ⊆ X × Y, (b) it is total, i.e., for all x ∈ X
there is some y ∈ Y such that 〈x, y〉 ∈ f and (c) it is functional, i.e., whenever
〈x, y〉, 〈x, y′〉 ∈ f , y = y′ (because values of functions must be unique). So “ f
is a function from X to Y” can be written as:

∀u (u ∈ f → ∃x ∃y (x ∈ X ∧ y ∈ Y ∧ 〈x, y〉 = u)) ∧
∀x (x ∈ X → (∃y (y ∈ Y ∧maps(f , x, y)) ∧

(∀y ∀y′ ((maps(f , x, y) ∧maps(f , x, y′))→ y = y′)))

where maps(f , x, y) abbreviates ∃v (v ∈ f ∧ 〈x, y〉 = v) (this formula ex-
presses “ f (x) = y”).

It is now also not hard to express that f : X → Y is injective, for instance:

f : X → Y ∧
∀x ∀x′ ((x ∈ X ∧ x′ ∈ X ∧ ∃y (maps(f , x, y) ∧maps(f , x′, y)))→ x = x′)

34 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

A function f : X → Y is injective iff, whenever f maps x, x′ ∈ X to a single y,
x = x′. If we abbreviate this formula as inj(f , X, Y), we’re already in a position
to state in the language of set theory something as non-trivial as Cantor’s
theorem: there is no injective function from ℘(X) to X:

∀X ∀Y (℘(X) = Y → ¬∃ f inj(f , Y, X))

2.6 Expressing the Size of Structures

There are some properties of structures we can express even without using
the non-logical symbols of a language. For instance, there are sentences which
are true in a structure iff the domain of the structure has at least, at most, or
exactly a certain number n of elements.

Proposition 2.11. The sentence

ϕ≥n ≡ ∃x1 ∃x2 . . . ∃xn (x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4 ∧ · · · ∧ x1 6= xn ∧
x2 6= x3 ∧ x2 6= x4 ∧ · · · ∧ x2 6= xn ∧

...

xn−1 6= xn)

is true in a structure M iff |M| contains at least n elements. Consequently, M |=
¬ϕ≥n+1 iff |M| contains at most n elements.

Proposition 2.12. The sentence

ϕ=n ≡ ∃x1 ∃x2 . . . ∃xn (x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4 ∧ · · · ∧ x1 6= xn ∧
x2 6= x3 ∧ x2 6= x4 ∧ · · · ∧ x2 6= xn ∧

...

xn−1 6= xn ∧
∀y (y = x1 ∨ . . . y = xn) . . .))

is true in a structure M iff |M| contains exactly n elements.

Proposition 2.13. A structure is infinite iff it is a model of

{ϕ≥1, ϕ≥2, ϕ≥3, . . . }

There is no single purely logical sentence which is true in M iff |M| is
infinite. However, one can give sentences with non-logical predicate symbols
which only have infinite models (although not every infinite structure is a
model of them). The property of being a finite structure, and the property of
being a non-enumerable structure cannot even be expressed with an infinite
set of sentences. These facts follow from the compactness and Löwenheim-
Skolem theorems.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 35

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 3

The Sequent Calculus

3.1 Rules and Derivations

Let L be a first-order language with the usual constants, variables, logical
symbols, and auxiliary symbols (parentheses and the comma).

Definition 3.1 (sequent). A sequent is an expression of the form

Γ ⇒ ∆

where Γ and ∆ are finite (possibly empty) sets of sentences of the language L.
The formulas in Γ are the antecedent formulas, while the formulae in ∆ are the
succedent formulas.

The intuitive idea behind a sequent is: if all of the antecedent formu-
las hold, then at least one of the succedent formulas holds. That is, if Γ =
{Γ1, . . . , Γm} and ∆ = {∆1, . . . , ∆n}, then Γ ⇒ ∆ holds iff

(Γ1 ∧ · · · ∧ Γm)→ (∆1 ∨ · · · ∨∆n)

holds.
When m = 0, ⇒ ∆ holds iff ∆1 ∨ · · · ∨ ∆n holds. When n = 0, Γ ⇒

holds iff Γ1 ∧ · · · ∧ Γm does not. An empty succedent is sometimes filled with
the ⊥ symbol. The empty sequent ⇒ canonically represents a contradic-
tion.

We write Γ, ϕ (or ϕ, Γ) for Γ ∪ {ϕ}, and Γ, ∆ for Γ ∪∆.

Definition 3.2 (Inference). An inference is an expression of the form

S1
S

or
S1 S2

S
where S, S1, and S2 are sequents. S1 and S2 are called the upper sequents and S
the lower sequent of the inference.

Inferences represent the idea that whenever the upper sequent(s) is (are)
asserted, from it, we may logically infer the lower sequent.

36

For the following, let Γ, ∆, Π, Λ represent finite sets of sentences.
The rules for LK are divided into two main types: structural rules and logi-

cal rules. The logical rules are further divided into propositional rules (quantifier-
free) and quantifier rules.

Structural rules: Weakening:

Γ ⇒ ∆
ϕ, Γ ⇒ ∆

and Γ ⇒ ∆
Γ ⇒ ∆, ϕ

where ϕ is called the weakening formula.
Cut:

Γ ⇒ ∆, ϕ ϕ, Π ⇒ Λ

Γ, Π ⇒ ∆, Λ

Logical rules: The rules are named by the main operator of the principal for-
mula of the inference (the formula containing ϕ and/or ψ in the lower se-
quent). The designations “left” and “right” indicate whether the logical sym-
bol has been introduced in an antecedent formula or a succedent formula (to
the left or to the right of the sequent symbol).

Propositional Rules:

Γ ⇒ ∆, ϕ
¬ left¬ϕ, Γ ⇒ ∆

ϕ, Γ ⇒ ∆
¬ right

Γ ⇒ ∆,¬ϕ

ϕ, Γ ⇒ ∆
∧ left

ϕ ∧ ψ, Γ ⇒ ∆

ψ, Γ ⇒ ∆
∧ left

ϕ ∧ ψ, Γ ⇒ ∆

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ
∧ right

Γ ⇒ ∆, ϕ ∧ ψ

ϕ, Γ ⇒ ∆ ψ, Γ ⇒ ∆
∨ left

ϕ ∨ ψ, Γ ⇒ ∆

Γ ⇒ ∆, ϕ
∨ right

Γ ⇒ ∆, ϕ ∨ ψ

Γ ⇒ ∆, ψ
∨ right

Γ ⇒ ∆, ϕ ∨ ψ

Γ ⇒ ∆, ϕ ψ, Π ⇒ Λ
→ left

ϕ→ ψ, Γ, Π ⇒ ∆, Λ

ϕ, Γ ⇒ ∆, ψ
→ right

Γ ⇒ ∆, ϕ→ ψ

Quantifier Rules:

ϕ(t), Γ ⇒ ∆
∀ left∀x ϕ(x), Γ ⇒ ∆

Γ ⇒ ∆, ϕ(a)
∀ right

Γ ⇒ ∆, ∀x ϕ(x)

where t is a ground term (i.e., one without variables), and a is a constant which
does not occur anywhere in the lower sequent of the ∀ right rule. We call a the
eigenvariable of the ∀ right inference.

ϕ(a), Γ ⇒ ∆
∃ left∃x ϕ(x), Γ ⇒ ∆

Γ ⇒ ∆, ϕ(t)
∃ right

Γ ⇒ ∆, ∃x ϕ(x)

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 37

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

where t is a ground term, and a is a constant which does not occur in the lower
sequent of the ∃ left rule. We call a the eigenvariable of the ∃ left inference.

The condition that an eigenvariable not occur in the upper sequent of the
∀ right or ∃ left inference is called the eigenvariable condition.

We use the term “eigenvariable” even though a in the above rules is a
constant. This has historical reasons.

In ∃ right and ∀ left there are no restrictions, and the term t can be any-
thing, so we do not have to worry about any conditions. However, because
the t may appear elsewhere in the sequent, the values of t for which the se-
quent is satisfied are constrained. On the other hand, in the ∃ left and ∀ right
rules, the eigenvariable condition requires that a does not occur anywhere
else in the sequent. Thus, if the upper sequent is valid, the truth values of the
formulas other than ϕ(a) are independent of a.

Definition 3.3 (Initial Sequent). An initial sequent is a sequent of the form ϕ⇒
ϕ for any sentence ϕ in the language.

Definition 3.4 (LK derivation). An LK-derivation of a sequent S is a tree of
sequents satisfying the following conditions:

1. The topmost sequents of the tree are initial sequents.

2. Every sequent in the tree (except S) is an upper sequent of an inference
whose lower sequent stands directly below that sequent in the tree.

We then say that S is the end-sequent of the derivation and that S is derivable in
LK (or LK-derivable).

Definition 3.5 (LK theorem). A sentence ϕ is a theorem of LK if the sequent
⇒ ϕ is LK-derivable.

3.2 Examples of Derivations

Example 3.6. Give an LK-derivation for the sequent ϕ ∧ ψ⇒ ϕ.
We begin by writing the desired end-sequent at the bottom of the deriva-

tion.

ϕ ∧ ψ ⇒ ϕ

Next, we need to figure out what kind of inference could have a lower sequent
of this form. This could be a structural rule, but it is a good idea to start by
looking for a logical rule. The only logical connective occurring in a formula in
the lower sequent is ∧, so we’re looking for an ∧ rule, and since the ∧ symbol
occurs in the antecedent formulas, we’re looking at the ∧ left rule.

∧ left
ϕ ∧ ψ ⇒ ϕ

38 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

There are two options for what could have been the upper sequent of the ∧
left inference: we could have an upper sequent of ϕ ⇒ ϕ, or of ψ ⇒ ϕ.
Clearly, ϕ ⇒ ϕ is an initial sequent (which is a good thing), while ψ ⇒ ϕ is
not derivable in general. We fill in the upper sequent:

ϕ ⇒ ϕ
∧ left

ϕ ∧ ψ ⇒ ϕ

We now have a correct LK-derivation of the sequent ϕ ∧ ψ⇒ ϕ.

Example 3.7. Give an LK-derivation for the sequent ¬ϕ ∨ ψ⇒ ϕ→ ψ.
Begin by writing the desired end-sequent at the bottom of the derivation.

¬ϕ ∨ ψ ⇒ ϕ→ ψ

To find a logical rule that could give us this end-sequent, we look at the log-
ical connectives in the end-sequent: ¬, ∨, and →. We only care at the mo-
ment about ∨ and→ because they are main operators of sentences in the end-
sequent, while ¬ is inside the scope of another connective, so we will take care
of it later. Our options for logical rules for the final inference are therefore the
∨ left rule and the→ right rule. We could pick either rule, really, but let’s pick
the → right rule (if for no reason other than it allows us to put off splitting
into two branches). According to the form of → right inferences which can
yield the lower sequent, this must look like:

ϕ,¬ϕ ∨ ψ ⇒ ψ
→ right¬ϕ ∨ ψ ⇒ ϕ→ ψ

Now we can apply the ∨ left rule. According to the schema, this must split
into two upper sequents as follows:

ϕ,¬ϕ ⇒ ψ ϕ, ψ ⇒ ψ
∨ left

ϕ,¬ϕ ∨ ψ ⇒ ψ
→ right¬ϕ ∨ ψ ⇒ ϕ→ ψ

Remember that we are trying to wind our way up to initial sequents; we seem
to be pretty close! The right branch is just one weakening away from an initial
sequent and then it is done:

ϕ,¬ϕ ⇒ ψ

ψ ⇒ ψ

ϕ, ψ ⇒ ψ
∨ left

ϕ,¬ϕ ∨ ψ ⇒ ψ
→ right¬ϕ ∨ ψ ⇒ ϕ→ ψ

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 39

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

The double line indicates a weakening inference has been left out.
Now looking at the left branch, the only logical connective in any sentence

is the ¬ symbol in the antecedent sentences, so we’re looking at an instance of
the ¬ left rule.

ϕ ⇒ ψ, ϕ
¬ left

ϕ,¬ϕ ⇒ ψ

ψ ⇒ ψ

ϕ, ψ ⇒ ψ
∨ left

ϕ,¬ϕ ∨ ψ ⇒ ψ
→ right¬ϕ ∨ ψ ⇒ ϕ→ ψ

Similarly to how we finished off the right branch, we are just one weakening
away from finishing off this left branch as well.

ϕ ⇒ ϕ

ϕ ⇒ ψ, ϕ
¬ left

ϕ,¬ϕ ⇒ ψ

ψ ⇒ ψ

ϕ, ψ ⇒ ψ
∨ left

ϕ,¬ϕ ∨ ψ ⇒ ψ
→ right¬ϕ ∨ ψ ⇒ ϕ→ ψ

Example 3.8. Give an LK-derivation of the sequent ¬ϕ ∨ ¬ψ⇒ ¬(ϕ ∧ ψ)
Using the techniques from above, we start by writing the desired end-

sequent at the bottom.

¬ϕ ∨ ¬ψ ⇒ ¬(ϕ ∧ ψ)

The available main connectives of sentences in the end-sequent are the ∨ sym-
bol and the ¬ symbol. It would work to apply either the ∨ left or the ¬ right
rule here, but we start with the ¬ right rule because it avoids splitting up into
two branches for a moment:

ϕ ∧ ψ,¬ϕ ∨ ¬ψ ⇒
¬ right

¬ϕ ∨ ¬ψ ⇒ ¬(ϕ ∧ ψ)

Now we have a choice of whether to look at the ∧ left or the ∨ left rule. Let’s
see what happens when we apply the ∧ left rule: we have a choice to start
with either the sequent ϕ,¬ϕ ∨ ψ ⇒ or the sequent ψ,¬ϕ ∨ ψ ⇒ . Since
the proof is symmetric with regards to ϕ and ψ, let’s go with the former:

ϕ,¬ϕ ∨ ¬ψ ⇒
∧ left

ϕ ∧ ψ,¬ϕ ∨ ¬ψ ⇒
¬ right

¬ϕ ∨ ¬ψ ⇒ ¬(ϕ ∧ ψ)

Continuing to fill in the derivation, we see that we run into a problem:

40 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

ϕ ⇒ ϕ
¬ leftϕ,¬ϕ ⇒

?
ϕ ⇒ ψ

¬ left
ϕ,¬ψ ⇒

∨ left
ϕ,¬ϕ ∨ ¬ψ ⇒

∧ left
ϕ ∧ ψ,¬ϕ ∨ ¬ψ ⇒

¬ right
¬ϕ ∨ ¬ψ ⇒ ¬(ϕ ∧ ψ)

The top of the right branch cannot be reduced any further, and it cannot be
brought by way of structural inferences to an initial sequent, so this is not the
right path to take. So clearly, it was a mistake to apply the ∧ left rule above.
Going back to what we had before and carrying out the ∨ left rule instead, we
get

ϕ ∧ ψ,¬ϕ ⇒ ϕ ∧ ψ,¬ψ ⇒
∨ left

ϕ ∧ ψ,¬ϕ ∨ ¬ψ ⇒
¬ right

¬ϕ ∨ ¬ψ ⇒ ¬(ϕ ∧ ψ)

Completing each branch as we’ve done before, we get

ϕ ⇒ ϕ
∧ left

ϕ ∧ ψ ⇒ ϕ
¬ left

ϕ ∧ ψ,¬ϕ ⇒

ψ ⇒ ψ
∧ left

ϕ ∧ ψ ⇒ ψ
¬ left

ϕ ∧ ψ,¬ψ ⇒
∨ left

ϕ ∧ ψ,¬ϕ ∨ ¬ψ ⇒
¬ right

¬ϕ ∨ ¬ψ ⇒ ¬(ϕ ∧ ψ)

(We could have carried out the ∧ rules lower than the ¬ rules in these steps
and still obtained a correct derivation).

Example 3.9. Give an LK-derivation of the sequent ∃x¬ϕ(x)⇒ ¬∀x ϕ(x).
When dealing with quantifiers, we have to make sure not to violate the

eigenvariable condition, and sometimes this requires us to play around with
the order of carrying out certain inferences. In general, it helps to try and take
care of rules subject to the eigenvariable condition first (they will be lower
down in the finished proof). Also, it is a good idea to try and look ahead and
try to guess what the initial sequent might look like. In our case, it will have to
be something like ϕ(a)⇒ ϕ(a). That means that when we are “reversing” the
quantifier rules, we will have to pick the same term—what we will call a—for
both the ∀ and the ∃ rule. If we picked different terms for each rule, we would
end up with something like ϕ(a)⇒ ϕ(b), which, of course, is not derivable.

Starting as usual, we write

∃x¬ϕ(x) ⇒ ¬∀x ϕ(x)

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 41

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

We could either carry out the ∃ left rule or the ¬ right rule. Since the ∃ left
rule is subject to the eigenvariable condition, it’s a good idea to take care of it
sooner rather than later, so we’ll do that one first.

¬ϕ(a) ⇒ ¬∀x ϕ(x)
∃ left∃x¬ϕ(x) ⇒ ¬∀x ϕ(x)

Applying the ¬ left and right rules to eliminate the ¬ signs, we get

∀x ϕ(x) ⇒ ϕ(a)
¬ right

⇒ ¬∀x ϕ(x), ϕ(a)
¬ left¬ϕ(a) ⇒ ¬∀xϕ(x)

∃ left∃x¬ϕ(x) ⇒ ¬∀xϕ(x)

At this point, our only option is to carry out the ∀ left rule. Since this rule is
not subject to the eigenvariable restriction, we’re in the clear. Remember, we
want to try and obtain an initial sequent (of the form ϕ(a) ⇒ ϕ(a)), so we
should choose a as our argument for ϕ when we apply the rule.

ϕ(a) ⇒ ϕ(a)
∀ left∀x ϕ(x) ⇒ ϕ(a)

¬ right
⇒ ¬∀x ϕ(x), ϕ(a)

¬ left¬ϕ(a) ⇒ ¬∀x ϕ(x)
∃ left∃x¬ϕ(x) ⇒ ¬∀x ϕ(x)

It is important, especially when dealing with quantifiers, to double check at
this point that the eigenvariable condition has not been violated. Since the
only rule we applied that is subject to the eigenvariable condition was ∃ left,
and the eigenvariable a does not occur in its lower sequent (the end-sequent),
this is a correct derivation.

3.3 Proof-Theoretic Notions

Just as we’ve defined a number of important semantic notions (validity, entail-
ment, satisfiabilty), we now define corresponding proof-theoretic notions. These
are not defined by appeal to satisfaction of sentences in structures, but by ap-
peal to the derivability or non-derivability of certain sequents. It was an im-
portant discovery, due to Gödel, that these notions coincide. That they do is
the content of the completeness theorem.

Definition 3.10 (Theorems). A sentence ϕ is a theorem if there is a derivation
in LK of the sequent ⇒ ϕ. We write `LK ϕ if ϕ is a theorem and 6`LK ϕ if it
is not.

42 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 3.11 (Derivability). A sentence ϕ is derivable from a set of sentences Γ,
Γ `LK ϕ, if there is a finite subset Γ0 ⊆ Γ such that LK derives Γ0 ⇒ ϕ. If ϕ is
not derivable from Γ we write Γ 6`LK ϕ.

Definition 3.12 (Consistency). A set of sentences Γ is consistent iff Γ 6`LK ⊥.
If Γ is not consistent, i.e., if Γ `LK ⊥, we say it is inconsistent.

Proposition 3.13. Γ `LK ϕ iff Γ ∪ {¬ϕ} is inconsistent.

Proof. Exercise.

Proposition 3.14. Γ is inconsistent iff Γ `LK ϕ for every sentence ϕ.

Proof. Exercise.

Proposition 3.15. If Γ ` ϕ iff for some finite Γ0 ⊆ Γ, Γ0 ` ϕ.

Proof. Follows immediately from the definion of `.

3.4 Properties of Derivability

Proposition 3.16 (Monotony). If Γ ⊆ ∆ and Γ ` ϕ, then ∆ ` ϕ.

Proof. Any finite Γ0 ⊆ Γ is also a finite subset of ∆, so a derivation of Γ0 ⇒ ϕ
also shows ∆ ` ϕ.

Proposition 3.17. 1. If Γ `LK ϕ and Γ ∪ {ϕ} `LK ⊥, then Γ is inconsistent.

2. If Γ ∪ {ϕ} `LK ⊥, then Γ `LK ¬ϕ.

3. If Γ ∪ {ϕ} `LK ⊥ and Γ ∪ {¬ϕ} `LK ⊥, then Γ `LK ⊥.

4. If Γ ∪ {ϕ} `LK ⊥ and Γ ∪ {ψ} `LK ⊥, then Γ ∪ {ϕ ∨ ψ} `LK ⊥.

5. If Γ `LK ϕ or Γ `LK ψ, then Γ `LK ϕ ∨ ψ.

6. If Γ `LK ϕ ∧ ψ then Γ `LK ϕ and Γ `LK ψ.

7. If Γ `LK ϕ and Γ `LK ψ, then Γ `LK ϕ ∧ ψ.

8. If Γ `LK ϕ and Γ `LK ϕ→ ψ, then Γ `LK ψ.

9. If Γ `LK ¬ϕ or Γ `LK ψ, then Γ `LK ϕ→ ψ.

Proof. 1. Let the LK-derivation of Γ0 ⇒ ϕ be Π0 and the LK-derivation of
Γ1 ∪ {ϕ} ⇒ ⊥ be Π1. We can then derive

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 43

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Π0

Γ0 ⇒ ϕ

Γ0, Γ1 ⇒ ϕ

Π1

Γ1, ϕ ⇒ ⊥
Γ0, Γ1, ϕ ⇒ ⊥

cut
Γ0, Γ1 ⇒ ⊥

Since Γ0 ⊆ Γ and Γ1 ⊆ Γ, Γ0 ∪ Γ1 ⊆ Γ, hence Γ `LK ⊥.

2. Suppose that Γ ∪ {ϕ} `LK ⊥. Then there is a finite set Γ0 ⊆ Γ with
`LK Γ0 ∪ {ϕ} ⇒ ⊥. Let Π0 be an LK-derivation of Γ0 ∪ {ϕ} ⇒ ⊥, and
consider

Π0

Γ0, ϕ ⇒ ⊥
¬ right

Γ0 ⇒ ¬ϕ

3. There are finite sets Γ0 ⊆ Γ and Γ1 ⊆ Γ and LK-derivations Π0 and Π1
of Γ0, ϕ⇒ ⊥ and Γ1,¬ϕ⇒ ⊥, respectively. We can then derive

Π0

Γ0, ϕ ⇒ ⊥
¬ right

Γ0 ⇒ ¬ϕ

Π1

Γ1,¬ϕ ⇒ ⊥
cut

Γ0, Γ1 ⇒ ⊥

Since Γ0 ⊆ Γ and Γ1 ⊆ Γ, Γ0 ∪ Γ1 ⊆ Γ. Hence Γ `LK ⊥.

4. There are finite sets Γ0, Γ1 ⊆ Γ and LK-derivations Π0 and Π1 such that

Π0

Γ0, ϕ ⇒ ⊥
Γ0, Γ1, ϕ ⇒ ⊥

Π1

Γ1, ψ ⇒ ⊥
Γ0, Γ1, ψ ⇒ ⊥

∨ left
Γ0, Γ1, ϕ ∨ ψ ⇒ ⊥

Since Γ0, Γ1 ⊆ Γ and Γ ∪ {ϕ ∨ ψ} ` ⊥.

44 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

5. There is an LK-derivation Π0 and a finite set Γ0 ⊆ Γ such that we can
derive

Π0

Γ0 ⇒ ϕ
∨ right

Γ0 ⇒ ϕ ∨ ψ

Therefore Γ ` ϕ ∨ ψ. The proof for when Γ `LK ψ is similar.

6. If Γ `LK ϕ ∧ ψ, there is a finite set Γ0 ⊆ Γ and an LK-derivation Π0 of
Γ0 ⇒ ϕ ∧ ψ. Consider

Π0

Γ0, ⇒ ϕ ∧ ψ

ϕ ⇒ ϕ
∧ left

ϕ ∧ ψ ⇒ ϕ
cut

Γ0 ⇒ ϕ

Hence, Γ `LK ϕ. A similar derivation starting with ψ ⇒ ψ on the right
side shows that Γ `LK ψ.

7. If Γ `LK ϕ as well as Γ `LK ψ, there are finite sets Γ0, Γ1 ⊆ Γ and an
LK-derivations Π0 of Γ0 ⇒ ϕ and Π1 of Γ1 ⇒ ϕ. Consider

Π0

Γ0, ⇒ ϕ

Π1

Γ1, ⇒ ψ
∧ right

Γ0, Γ1 ⇒ ϕ ∧ ψ

Since Γ0 ∪ Γ1 ⊆ Γ, we have Γ `LK ϕ ∧ ψ.

8. Suppose that Γ `LK ϕ and Γ `LK ϕ→ ψ. There are finite sets Γ0, Γ1 ⊆ Γ
such that there are LK-derivations Π0 of Γ0 ⇒ ϕ and Π1 of Γ1 ⇒ ϕ→ ψ.
Consider:

Π0

Γ1 ⇒ ϕ→ ψ

Γ0, Γ1, Γ2 ⇒ ϕ→ ψ

Π1

Γ0 ⇒ ϕ

ψ ⇒ ψ

Γ0, ψ ⇒ ψ
→ left

Γ0, ϕ→ ψ ⇒ ψ
cut

Γ0, Γ1 ⇒ ψ

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 45

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Since Γ0 ∪ Γ1 ⊆ Γ, this means that Γ `LK ψ.

9. First suppose Γ `LK ¬ϕ. Then for some finite Γ0 ⊆ Γ there is a LK-
derivation of Γ0 ⇒ ¬ϕ. The following derivation shows that Γ `LK
ϕ→ ψ:

Π0

Γ0 ⇒ ¬ϕ

ϕ ⇒ ϕ
¬right¬ϕ, ϕ ⇒

ϕ,¬ϕ ⇒ ψ
→ right¬ϕ ⇒ ϕ→ ψ
cut

Γ0 ⇒ ϕ→ ψ

Now suppose Γ `LK ψ. Then for some finite Γ0 ⊆ Γ there is a LK-
derivation of Γ0 ⇒ ψ. The following derivation shows that Γ `LK ϕ →
ψ:

Π0

Γ0 ⇒ ψ

ψ ⇒ ψ

ϕ, ψ ⇒ ψ
→ right

ψ ⇒ ϕ→ ψ
cut

Γ0 ⇒ ϕ→ ψ

Theorem 3.18. If c is a constant not occurring in Γ or ϕ(x) and Γ ` ϕ(c), then
Γ ` ∀x ϕ(c).

Proof. Let Π0 be an LK-derivation of Γ0 ⇒ ϕ(c) for some finite Γ0 ⊆ Γ. By
adding a ∀ right inference, we obtain a proof of Γ ⇒ ∀x ϕ(x), since c does not
occur in Γ or ϕ(x) and thus the eigenvariable condition is satisfied.

Theorem 3.19. 1. If Γ ` ϕ(t) then Γ ` ∃x ϕ(x).

2. If Γ ` ∀x ϕ(x) then Γ ` ϕ(t).

Proof. 1. Suppose Γ ` ϕ(t). Then for some finite Γ0 ⊆ Γ, LK derives Γ0 ⇒
ϕ(t). Add an ∃ right inference to get a derivation of Γ0 ⇒ ∃x ϕ(x).

2. Suppose Γ ` ¬ϕ(t). Then there is a finite Γ0 ⊆ Γ and an LK-derivation
Π of Γ0 ⇒ ∀x ϕ(x). Then

Π

Γ0 ⇒ ∀x ϕ(x)
ϕ(t) ⇒ ϕ(t)

∀ left∀x ϕ(x) ⇒ ϕ(t)
cut

Γ0 ⇒ ϕ(t)

46 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

shows that Γ0 ` ϕ(t).

3.5 Soundness

A derivation system, such as the sequent calculus, is sound if it cannot de-
rive things that do not actually hold. Soundness is thus a kind of guaranteed
safety property for derivation systems. Depending on which proof theoretic
property is in question, we would like to know for instance, that

1. every derivable sentence is valid;

2. if a sentence is derivable from some others, it is also a consequence of
them;

3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do not
hold, the derivation system is deficient—it would derive too much. Conse-
quently, establishing the soundness of a derivation system is of the utmost
importance.

Because all these proof-theoretic properties are defined via derivability in
the sequent calculus of certain sequents, proving (1)–(3) above requires prov-
ing something about the semantic properties of derivable sequents. We will
first define what it means for a sequent to be valid, and then show that every
derivable sequent is valid. (1)–(3) then follow as corollaries from this result.

Definition 3.20. A structure M satisfies a sequent Γ ⇒ ∆ iff either M 6|= α for
some α ∈ Γ or M |= α for some α ∈ ∆.

A sequent is valid iff every structure M satisfies it.

Theorem 3.21 (Soundness). If LK derives Γ ⇒ ∆, then Γ ⇒ ∆ is valid.

Proof. Let Π be a derivation of Γ ⇒ ∆. We proceed by induction on the num-
ber of inferences in Π.

If the number of inferences is 0, then Π consists only of an initial sequent.
Every initial sequent ϕ⇒ ϕ is obviously valid, since for every M, either M 6|=
ϕ or M |= ϕ.

If the number of inferences is greater than 0, we distinguish cases accord-
ing to the type of the lowermost inference. By induction hypothesis, we can
assume that the premises of that inference are valid.

First, we consider the possible inferences with only one premise Γ′ ⇒ ∆′.

1. The last inference is a weakening. Then Γ′ ⊆ Γ and ∆ = ∆′ if it’s a
weakening on the left, or Γ = Γ′ and ∆′ ⊆ ∆ if it’s a weaking on the
right. In either case, ∆′ ⊆ ∆ and Γ′ ⊆ Γ. If M 6|= α for some α ∈ Γ′, then,

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 47

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

since Γ′ ⊆ Γ, α ∈ Γ as well, and so M 6|= α for the same α ∈ Γ. Similarly,
if M |= α for some α ∈ ∆′, as α ∈ ∆, M |= α for some α ∈ ∆. Since
Γ′ ⇒ ∆′ is valid, one of these cases obtains for every M. Consequently,
Γ ⇒ ∆ is valid.

2. The last inference is ¬ left: Then for some ϕ ∈ ∆′, ¬ϕ ∈ Γ. Also, Γ′ ⊆ Γ,
and ∆′ \ {ϕ} ⊆ ∆.

If M |= ϕ, then M 6|= ¬ϕ, and since ¬ϕ ∈ Γ, M satisfies Γ ⇒ ∆. Since
Γ′ ⇒ ∆′ is valid, if M 6|= ϕ, then either M 6|= α for some α ∈ Γ′ or
M |= α for some α ∈ ∆′ different from ϕ. Consequently, M 6|= α for
some α ∈ Γ (since Γ′ ⊆ Γ) or M |= α for some α ∈ ∆′ different from ϕ
(since ∆′ \ {ϕ} ⊆ ∆).

3. The last inference is ¬ right: Exercise.

4. The last inference is ∧ left: There are two variants: ϕ∧ψ may be inferred
on the left from ϕ or from ψ on the left side of the premise. In the first
case, ϕ ∈ Γ′. Consider a structure M. Since Γ′ ⇒ ∆′ is valid, (a) M 6|= ϕ,
(b) M 6|= α for some α ∈ Γ′ \ {ϕ}, or (c) M |= α for some α ∈ ∆′. In
case (a), M 6|= ϕ ∧ ψ. In case (b), there is an α ∈ Γ \ {ϕ ∧ ψ} such that
M 6|= α, since Γ′ \ {ϕ} ⊆ Γ \ {ϕ ∧ ψ}. In case (c), there is a α ∈ ∆ such
that M |= α, as ∆ = ∆′. So in each case, M satisfies ϕ ∧ ψ, Γ ⇒ ∆. Since
M was arbitrary, Γ ⇒ ∆ is valid. The case where ϕ ∧ ψ is inferred from
ψ is handled the same, changing ϕ to ψ.

5. The last inference is ∨ right: There are two variants: ϕ ∨ ψ may be in-
ferred on the right from ϕ or from ψ on the right side of the premise. In
the first case, ϕ ∈ ∆′. Consider a structure M. Since Γ′ ⇒ ∆′ is valid, (a)
M |= ϕ, (b) M 6|= α for some α ∈ Γ′, or (c) M |= α for some α ∈ ∆′ \ {ϕ}.
In case (a), M |= ϕ ∨ ψ. In case (b), there is α ∈ Γ such that M 6|= α, as
Γ = Γ′. In case (c), there is an α ∈ ∆ such that M |= α, since ∆′ \ {ϕ} ⊆ ∆.
So in each case, M satisfies ϕ ∧ ψ, Γ ⇒ ∆. Since M was arbitrary, Γ ⇒ ∆
is valid. The case where ϕ ∨ ψ is inferred from ψ is handled the same,
changing ϕ to ψ.

6. The last inference is → right: Then ϕ ∈ Γ′, ψ ∈ ∆′, Γ′ \ {ϕ} ⊆ Γ and
∆′ \ {ψ} ⊆ ∆. Since Γ′ ⇒ ∆′ is valid, for any structure M, (a) M 6|= ϕ,
(b) M |= ψ, (c) M 6|= α for some α ∈ Γ′ \ {ϕ}, or M |= α for some
α ∈ ∆′ \ {ψ}. In cases (a) and (b), M |= ϕ → ψ. In case (c), for some
α ∈ Γ, M 6|= α. In case (d), for some α ∈ ∆, M |= α. In each case, M
satisfies Γ ⇒ ∆. Since M was arbitrary, Γ ⇒ ∆ is valid.

7. The last inference is ∀ left: Then there is a formula ϕ(x) and a ground
term t such that ϕ(t) ∈ Γ′, ∀x ϕ(x) ∈ Γ, and Γ′ \ {ϕ(t)} ⊆ Γ. Consider
a structure M. Since Γ′ ⇒ ∆′ is valid, (a) M 6|= ϕ(t), (b) M 6|= α for some
α ∈ Γ′ \ {ϕ(t)}, or (c) M |= α for some α ∈ ∆′. In case (a), M 6|= ∀x ϕ(x).

48 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

In case (b), there is an α ∈ Γ \ {ϕ(t)} such that M 6|= α. In case (c), there
is a α ∈ ∆ such that M |= α, as ∆ = ∆′. So in each case, M satisfies
Γ ⇒ ∆. Since M was arbitrary, Γ ⇒ ∆ is valid.

8. The last inference is ∃ right: Exercise.

9. The last inference is ∀ right: Then there is a formula ϕ(x) and a constant
symbol a such that ϕ(a) ∈ ∆′, ∀x ϕ(x) ∈ ∆, and ∆′ \ {ϕ(a)} ⊆ ∆. Fur-
thermore, a /∈ Γ ∪ ∆. Consider a structure M. Since Γ′ ⇒ ∆′ is valid,
(a) M |= ϕ(a), (b) M 6|= α for some α ∈ Γ′, or (c) M |= α for some
α ∈ ∆′ \ {ϕ(a)}.
First, suppose (a) is the case but neither (b) nor (c), i.e., M |= α for all
α ∈ Γ′ and M 6|= α for all α ∈ ∆′ \ {ϕ(a)}. In other words, assume
M |= ϕ(a) and that M does not satisfy Γ′ ⇒ ∆′ \ {ϕ(a)}. Since a /∈ Γ∪∆,
also a /∈ Γ′ ∪ (∆′ \ {ϕ(a)}). Thus, if M′ is like M except that aM 6= aM

′
,

M′ also does not satisfy Γ′ ⇒ ∆′ \ {ϕ(a)} by extensionality. But since
Γ′ ⇒ ∆′ is valid, we must have M′ |= ϕ(a).

We now show that M |= ∀x ϕ(x). To do this, we have to show that for
every variable assignment s, M, s |= ∀x ϕ(x). This in turn means that
for every x-variant s′ of s, we must have M, s′ |= ϕ(x). So consider any
variable assignment s and let s′ be an x-variant of s. Since Γ′ and ∆′

consist entirely of sentences, M, s |= α iff M, s′ |= α iff M |= α for all
α ∈ Γ′ ∪ ∆′. Let M′ be like M except that aM

′
= s′(x). Then M, s′ |=

ϕ(x) iff M′ |= ϕ(a) (as ϕ(x) does not contain a). Since we’ve already
established that M′ |= ϕ(a) for all M′ which differ from M at most in
what they assign to a, this means that M, s′ |= ϕ(x). Thus weve shown
that M, s |= ∀x ϕ(x). Since s is an arbitrary variable assignment and
∀x ϕ(x) is a sentence, then M |= ∀x ϕ(x).

If (b) is the case, there is a α ∈ Γ such that M 6|= α, as Γ = Γ′. If (c) is the
case, there is an α ∈ ∆′ \ {ϕ(a)} such that M |= α. So in each case, M
satisfies Γ ⇒ ∆. Since M was arbitrary, Γ ⇒ ∆ is valid.

10. The last inference is ∃ left: Exercise.

Now let’s consider the possible inferences with two premises: cut, ∨ left,
∧ right, and→ left.

1. The last inference is a cut: Suppose the premises are Γ′ ⇒ ∆′ and Π′ ⇒
Λ′ and the cut formula ϕ is in both ∆′ and Π′. Since each is valid, every
structure M satisfies both premises. We distinguish two cases: (a) M 6|=
ϕ and (b) M |= ϕ. In case (a), in order for M to satisfy the left premise,
it must satisfy Γ′ ⇒ ∆′ \ {ϕ}. But Γ′ ⊆ Γ and ∆′ \ {ϕ} ⊆ ∆, so M also
satisfies Γ ⇒ ∆. In case (b), in order for M to satisfy the right premise,
it must satisfy Π′ \ {ϕ} ⇒ Λ′. But Π′ \ {ϕ} ⊆ Γ and Λ′ ⊆ ∆, so M also
satisfies Γ ⇒ ∆.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 49

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. The last inference is ∧ right. The premises are Γ ⇒ ∆′ and Γ ⇒ ∆′′,
where ϕ ∈ ∆′ an ψ ∈ ∆′′. By induction hypothesis, both are valid. Con-
sider a structure M. We have two cases: (a) M 6|= ϕ∧ψ or (b) M |= ϕ∧ψ.
In case (a), either M 6|= ϕ or M 6|= ψ. In the former case, in order for M
to satisfy Γ ⇒ ∆′, it must already satisfy Γ ⇒ ∆′ \ {ϕ}. In the latter
case, it must satisfy Γ ⇒ ∆′′ \ {ψ}. But since both ∆′ \ {ϕ} ⊆ ∆ and
∆′′ \ {ψ} ⊆ ∆, that means M satisfies Γ ⇒ ∆. In case (b), M satisfies
Γ ⇒ ∆ since ϕ ∧ ψ ∈ ∆.

3. The last inference is ∨ left: Exercise.

4. The last inference is→ left. The premises are Γ ⇒ ∆′ and Γ′ ⇒ ∆, where
ϕ ∈ ∆′ an ψ ∈ Γ′. By induction hypothesis, both are valid. Consider a
structure M. We have two cases: (a) M 6|= ϕ → ψ or (b) M |= ϕ → ψ.
In case (a), either M 6|= ϕ or M |= ψ. In the former case, in order for
M to satisfy Γ ⇒ ∆′, it must already satisfy Γ ⇒ ∆′ \ {ϕ}. In the latter
case, it must satisfy Γ′ \ {ψ} ⇒ ∆. But since both ∆′ \ {ϕ} ⊆ ∆ and
Γ′ \ {ψ} ⊆ Γ, that means M satisfies Γ ⇒ ∆. In case (b), M satisfies
Γ ⇒ ∆ since ϕ→ ψ ∈ Γ.

Corollary 3.22. If ` ϕ then ϕ is valid.

Corollary 3.23. If Γ ` ϕ then Γ |= ϕ.

Proof. If Γ ` ϕ then for some finite subset Γ0 ⊆ Γ, there is a derivation of
Γ0 ⇒ ϕ. By Theorem 3.21, every structure M either makes some ψ ∈ Γ0 false
or makes ϕ true. Hence, if M |= Γ0 then also M |= ϕ.

Corollary 3.24. If Γ is satisfiable, then it is consistent.

Proof. We prove the contrapositive. Suppose that Γ is not consistent. Then Γ `
⊥, i.e., there is a finite Γ0 ⊆ Γ and a derivation of Γ0 ⇒ ⊥. By Theorem 3.21,
Γ0 ⇒ ⊥ is valid. Since M 6|= ⊥ for every structure M, for M to satisfy Γ0 ⇒ ⊥
there must be an α ∈ Γ0 so that M 6|= α, and since Γ0 ⊆ Γ, that α is also in Γ.
In other words, no M satisfies Γ, i.e., Γ is not satisfiable.

3.6 Derivations with Identity predicate

Derivations with the identity predicate require additional inference rules.

Initial sequents for =: If t is a closed term, then ⇒ t = t is an initial
sequent.

50 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Rules for =:

Γ, t1 = t2 ⇒ ∆, ϕ(t1) =
Γ, t1 = t2 ⇒ ∆, ϕ(t2)

and
Γ, t1 = t2 ⇒ ∆, ϕ(t2) =
Γ, t1 = t2 ⇒ ∆, ϕ(t1)

where t1 and t2 are closed terms.

Example 3.25. If s and t are ground terms, then ϕ(s), s = t ` ϕ(t):

ϕ(s) ⇒ ϕ(s)
weak

ϕ(s), s = t ⇒ ϕ(s)
=

ϕ(s), s = t ⇒ ϕ(t)

This may be familiar as the principle of substitutability of identicals, or Leib-
niz’ Law.

LK proves that = is symmetric and transitive:

t1 = t2 ⇒ t1 = t1 weakt1 = t2 ⇒ t1 = t1 =
t1 = t2 ⇒ t2 = t1

t1 = t2 ⇒ t1 = t2 weakt1 = t2, t2 = t3 ⇒ t1 = t2 =
t1 = t2, t2 = t3 ⇒ t1 = t3

In the proof on the left, the formula x = t1 is our ϕ(x), and correspondingly,
ϕ(t2) ≡ x[t2/x] = t1. On the right, we take ϕ(x) to be t1 = x.

Proposition 3.26. LK with initial sequents and rules for identity is sound.

Proof. Initial sequents of the form ⇒ t = t are valid, since for every struc-
ture M, M |= t = t. (Note that we assume the term t to be ground, i.e., it
contains no variables, so variable assignments are irrelevant).

Suppose the last inference in a derivation is =. Then the premise Γ′ ⇒ ∆′

contains t1 = t2 on the left and ϕ(t1) on the right, and the conclusion is Γ ⇒ ∆
where Γ = Γ′ and ∆ = (∆′ \ {ϕ(t1)}) ∪ {ϕ(t2)}. Consider a structure M.
Since, by induction hypothesis, the premise Γ′ ⇒ ∆′ is valid, either (a) for
some α ∈ Γ′, M 6|= α, (b) for some α ∈ ∆′ \ {ϕ(s)}, M |= α, or (c) M |=
ϕ(t1). In both cases cases (a) and (b), since Γ = Γ′, and ∆′ \ {ϕ(s)} ⊆ ∆,
M satisfies Γ ⇒ ∆. So assume cases (a) and (b) do not apply, but case (c)
does. If (a) does not apply, M |= α for all α ∈ Γ′, in particular, M |= t1 = t2.
Therefore, ValM(t1) = ValM(t2). Let s be any variable assignment, and s′ be
the x-variant given by s′(x) = ValM(t1) = ValM(t2). By Proposition 1.39,
M, s |= ϕ(t2) iff M, s′ |= ϕ(x) iff M, s |= ϕ(t1). Since M |= ϕ(t1) therefore
M |= ϕ(t2).

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 51

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 4

The Completeness Theorem

4.1 Introduction

The completeness theorem is one of the most fundamental results about logic.
It comes in two formulations, the equivalence of which we’ll prove. In its first
formulation it says something fundamental about the relationship between
semantic consequence and our proof system: if a sentence ϕ follows from
some sentences Γ, then there is also a derivation that establishes Γ ` ϕ. Thus,
the proof system is as strong as it can possibly be without proving things that
don’t actually follow. In its second formulation, it can be stated as a model
existence result: every consistent set of sentences is satisfiable.

These aren’t the only reasons the completeness theorem—or rather, its
proof—is important. It has a number of important consequences, some of
which we’ll discuss separately. For instance, since any derivation that shows
Γ ` ϕ is finite and so can only use finitely many of the sentences in Γ, it fol-
lows by the completeness theorem that if ϕ is a consequence of Γ, it is already
a consequence of a finite subset of Γ. This is called compactness. Equivalently,
if every finite subset of Γ is consistent, then Γ itself must be consistent. It
also follows from the proof of the completeness theorem that any satisfiable
set of sentences has a finite or denumerable model. This result is called the
Löwenheim-Skolem theorem.

4.2 Outline of the Proof

The proof of the completeness theorem is a bit complex, and upon first reading
it, it is easy to get lost. So let us outline the proof. The first step is a shift of
perspective, that allows us to see a route to a proof. When completeness is
thought of as “whenever Γ |= ϕ then Γ ` ϕ,” it may be hard to even come up
with an idea: for to show that Γ ` ϕ we have to find a derivation, and it does
not look like the hypothesis that Γ |= ϕ helps us for this in any way. For some
proof systems it is possible to directly construct a derivation, but we will take

52

a slightly different tack. The shift in perspective required is this: completeness
can also be formulated as: “if Γ is consistent, it has a model.” Perhaps we can
use the information in Γ together with the hypothesis that it is consistent to
construct a model. After all, we know what kind of model we are looking for:
one that is as Γ describes it!

If Γ contains only atomic sentences, it is easy to construct a model for it:
for atomic sentences are all of the form P(a1, . . . , an) where the ai are constant
symbols. So all we have to do is come up with a domain |M| and an inter-
pretation for P so that M |= P(a1, . . . , an). But nothing’s easier than that: put
|M| = N, cMi = i, and for every P(a1, . . . , an) ∈ Γ, put the tuple 〈k1, . . . , kn〉
into PM, where ki is the index of the constant symbol ai (i.e., ai ≡ cki

).
Now suppose Γ contains some sentence ¬ψ, with ψ atomic. We might

worry that the construction of M interferes with the possibility of making ¬ψ
true. But here’s where the consistency of Γ comes in: if ¬ψ ∈ Γ, then ψ /∈ Γ, or
else Γ would be inconsistent. And if ψ /∈ Γ, then according to our construction
of M, M 6|= ψ, so M |= ¬ψ. So far so good.

Now what if Γ contains complex, non-atomic formulas? Say, it contains
ϕ∧ψ. Then we should proceed as if both ϕ and ψ were in Γ. And if ϕ∨ψ ∈ Γ,
then we will have to make at least one of them true, i.e., proceed as if one of
them was in‘Γ.

This suggests the following idea: we add additional sentences to Γ so as to
(a) keep the resulting set consistent and (b) make sure that for every possible
atomic sentence ϕ, either ϕ is in the resulting set, or ¬ϕ, and (c) such that,
whenever ϕ ∧ ψ is in the set, so are both ϕ and ψ, if ϕ ∨ ψ is in the set, at least
one of ϕ or ψ is also, etc. We keep doing this (potentially forever). Call the
set of all sentences so added Γ∗. Then our construction above would provide
us with a structure for which we could prove, by induction, that all sentences
in Γ∗ are true in M, and hence also all sentence in Γ since Γ ⊆ Γ∗.

There is one wrinkle in this plan: if ∃x ϕ(x) ∈ Γ we would hope to be able
to pick some constant symbol c and add ϕ(c) in this process. But how do we
know we can always do that? Perhaps we only have a few constant symbols
in our language, and for each one of them we have ¬ψ(c) ∈ Γ. We can’t also
add ψ(c), since this would make the set inconsistent, and we wouldn’t know
whether M has to make ψ(c) or ¬ψ(c) true. Moreover, it might happen that Γ
contains only sentences in a language that has no constant symbols at all (e.g.,
the language of set theory).

The solution to this problem is to simply add infinitely many constants at
the beginning, plus sentences that connect them with the quantifiers in the
right way. (Of course, we have to verify that this cannot introduce an incon-
sistency.)

Our original construction works well if we only have constant symbols in
the atomic sentences. But the language might also contain function symbols.
In that case, it might be tricky to find the right functions on N to assign to

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 53

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

these function symbols to make everything work. So here’s another trick: in-
stead of using i to interpret ci, just take the set of constant symbols itself as
the domain. Then M can assign every constant symbol to itself: cMi = ci. But
why not go all the way: let |M| be all terms of the language! If we do this,
there is an obvious assignment of functions (that take terms as arguments and
have terms as values) to function symbols: we assign to the function sym-
bol f n

i the function which, given n terms t1, . . . , tn as input, produces the term
f n
i (t1, . . . , tn) as value.

The last piece of the puzzle is what to do with =. The predicate symbol =
has a fixed interpretation: M |= t = t′ iff ValM(t) = ValM(t′). Now if we set
things up so that the value of a term t is t itself, then this structure will make
no sentence of the form t = t′ true unless t and t′ are one and the same term.
And of course this is a problem, since basically every interesting theory in a
language with function symbols will have as theorems sentences t = t′ where
t and t′ are not the same term (e.g., in theories of arithmetic: (+) =). To
solve this problem, we change the domain of M: instead of using terms as the
objects in |M|, we use sets of terms, and each set is so that it contains all those
terms which the sentences in Γ require to be equal. So, e.g., if Γ is a theory of
arithmetic, one of these sets will contain: , (+), (×), etc. This will be
the set we assign to , and it will turn out that this set is also the value of all
the terms in it, e.g., also of (+). Therefore, the sentence (+) = will be
true in this revised structure.

4.3 Maximally Consistent Sets of Sentences

Definition 4.1. A set Γ of sentences is maximally consistent iff

1. Γ is consistent, and

2. if Γ (Γ′, then Γ′ is inconsistent.

An alternate definition equivalent to the above is: a set Γ of sentences is
maximally consistent iff

1. Γ is consistent, and

2. If Γ ∪ {ϕ} is consistent, then ϕ ∈ Γ.

In other words, one cannot add sentences not already in Γ to a maximally
consistent set Γ without making the resulting larger set inconsistent.

Maximally consistent sets are important in the completeness proof since
we can guarantee that every consistent set of sentences Γ is contained in a
maximally consistent set Γ∗, and a maximally consistent set contains, for each
sentence ϕ, either ϕ or its negation ¬ϕ. This is true in particular for atomic
sentences, so from a maximally consistent set in a language suitably expanded
by constant symbols, we can construct a structure where the interpretation of

54 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

predicate symbols is defined according to which atomic sentences are in Γ∗.
This structure can then be shown to make all sentences in Γ∗ (and hence also
in Γ) true. The proof of this latter fact requires that ¬ϕ ∈ Γ∗ iff ϕ /∈ Γ∗,
(ϕ ∨ ψ) ∈ Γ∗ iff ϕ ∈ Γ∗ or ψ ∈ Γ∗, etc.

Proposition 4.2. Suppose Γ is maximally consistent. Then:

1. If Γ ` ϕ, then ϕ ∈ Γ.

2. For any ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ.

3. (ϕ ∧ ψ) ∈ Γ iff both ϕ ∈ Γ and ψ ∈ Γ.

4. (ϕ ∨ ψ) ∈ Γ iff either ϕ ∈ Γ or ψ ∈ Γ.

5. (ϕ→ ψ) ∈ Γ iff either ϕ /∈ Γ or ψ ∈ Γ.

Proof. Let us suppose for all of the following that Γ is maximally consistent.

1. If Γ ` ϕ, then ϕ ∈ Γ.

Suppose that Γ ` ϕ. Suppose to the contrary that ϕ /∈ Γ: then since
Γ is maximally consistent, Γ ∪ {ϕ} is inconsistent, hence Γ ∪ {ϕ} ` ⊥.
By Proposition 3.17(1) Γ is inconsistent. This contradicts the assumption
that Γ is consistent. Hence, it cannot be the case that ϕ /∈ Γ, so ϕ ∈ Γ.

2. For any ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ.

Suppose to the contrary that for some ϕ both ϕ /∈ Γ and ¬ϕ /∈ Γ. Since
Γ is maximally consistent, Γ ∪ {ϕ} and Γ ∪ {¬ϕ} are both inconsistent,
so Γ∪ {ϕ} ` ⊥ and Γ∪ {¬ϕ} ` ⊥. By Proposition 3.17(3), Γ is inconsis-
tent, a contradiction. Hence there cannot be such a sentence ϕ and, for
every ϕ, ϕ ∈ Γ or ¬ϕ ∈ Γ.

3. (ϕ ∧ ψ) ∈ Γ iff both ϕ ∈ Γ and ψ ∈ Γ:

For the forward direction, suppose (ϕ ∧ ψ) ∈ Γ. Then Γ ` ϕ ∧ ψ. By
Proposition 3.17(6), Γ ` ϕ and Γ ` ψ. By (1), ϕ ∈ Γ and ψ ∈ Γ, as
required.

For the reverse direction, let ϕ ∈ Γ and ψ ∈ Γ. Then Γ ` ϕ and Γ ` ψ.
By Proposition 3.17(7), Γ ` ϕ ∧ ψ. By (1), (ϕ ∧ ψ) ∈ Γ.

4. (ϕ ∨ ψ) ∈ Γ iff either ϕ ∈ Γ or ψ ∈ Γ.

For the contrapositive of the forward direction, suppose that ϕ /∈ Γ and
ψ /∈ Γ. We want to show that (ϕ ∨ ψ) /∈ Γ. Since Γ is maximally
consistent, Γ ∪ {ϕ} ` ⊥ and Γ ∪ {ψ} ` ⊥. By Proposition 3.17(4),
Γ ∪ {(ϕ ∨ ψ)} is inconsistent. Hence, (ϕ ∨ ψ) /∈ Γ, as required.

For the reverse direction, suppose that ϕ ∈ Γ or ψ ∈ Γ. Then Γ ` ϕ
or Γ ` ψ. By Proposition 3.17(5), Γ ` ϕ ∨ ψ. By (1), (ϕ ∨ ψ) ∈ Γ, as
required.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 55

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

5. (ϕ→ ψ) ∈ Γ iff either ϕ /∈ Γ or ψ ∈ Γ:

For the forward direction, let (ϕ→ ψ) ∈ Γ, and suppose to the contrary
that ϕ ∈ Γ and ψ /∈ Γ. On these assumptions, Γ ` ϕ → ψ and Γ ` ϕ.
By Proposition 3.17(8), Γ ` ψ. But then by (1), ψ ∈ Γ, contradicting the
assumption that ψ /∈ Γ.

For the reverse direction, first consider the case where ϕ /∈ Γ. By (2),
¬ϕ ∈ Γ and hence Γ ` ¬ϕ. By Proposition 3.17(9), Γ ` ϕ → ψ. Again
by (1), we get that (ϕ→ ψ) ∈ Γ, as required.

Now consider the case where ψ ∈ Γ. Then Γ ` ψ and by Proposi-
tion 3.17(9), Γ ` ϕ→ ψ. By (1), (ϕ→ ψ) ∈ Γ.

4.4 Henkin Expansion

Part of the challenge in proving the completeness theorem is that the model
we construct from a maximally consistent set Γ must make all the quantified
formulas in Γ true. In order to guarantee this, we use a trick due to Leon
Henkin. In essence, the trick consists in expanding the language by infinitely
many constants and adding, for each formula with one free variable ϕ(x) a
formula of the form ∃x ϕ→ ϕ(c), where c is one of the new constant symbols.
When we construct the structure satisfying Γ, this will guarantee that each
true existential sentence has a witness among the new constants.

Lemma 4.3. If Γ is consistent in L and L′ is obtained from L by adding a denumer-
able set of new constant symbols d1, d2, . . . , then Γ is consistent in L′.

Definition 4.4. A set Γ of formulas of a language L is saturated if and only if
for each formula ϕ ∈ Frm(L) and variable x there is a constant symbol c such
that ∃x ϕ→ ϕ(c) ∈ Γ.

The following definition will be used in the proof of the next theorem.

Definition 4.5. LetL′ be as in Lemma 4.3. Fix an enumeration 〈ϕ1, x1〉, 〈ϕ2, x2〉,
. . . of all formula-variable pairs of L′. We define the sentences θn by recursion
on n. Assuming that θ1, . . . , θn have already been defined, let cn+1 be the first
new constant symbol among the di that does not occur in θ1, . . . , θn, and let
θn+1 be the formula ∃xn+1 ϕn+1(xn+1) → ϕn+1(cn+1). This includes the case
where n = 0 and the list of previous θi’s is empty, i.e., θ1 is ∃x1 ϕ1 → ϕ1(c1).

Theorem 4.6. Every consistent set Γ can be extended to a saturated consistent set Γ′.

Proof. Given a consistent set of sentences Γ in a language L, expand the lan-
guage by adding a denumerable set of new constant symbols to form L′. By
the previous Lemma, Γ is still consistent in the richer language. Further, let θi

56 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

be as in the previous definition: then Γ ∪ {θ1, θ2, . . . } is saturated by construc-
tion. Let

Γ0 = Γ

Γn+1 = Γn ∪ {θn+1}

i.e., Γn = Γ ∪ {θ1, . . . , θn}, and let Γ′ =
⋃

n Γn. To show that Γ′ is consistent it
suffices to show, by induction on n, that each set Γn is consistent.

The induction basis is simply the claim that Γ0 = Γ is consistent, which
is the hypothesis of the theorem. For the induction step, suppose that Γn−1 is
consistent but Γn = Γn−1 ∪ {θn} is inconsistent. Recall that θn is ∃xn ϕn(xn)→
ϕn(cn). where ϕ(x) is a formula of L′ with only the variable xn free and not
containing any constant symbols ci where i ≥ n.

If Γn−1 ∪ {θn} is inconsistent, then Γn−1 ` ¬θn, and hence both of the fol-
lowing hold:

Γn−1 ` ∃xn ϕn(xn) Γn−1 ` ¬ϕn(cn)

Here cn does not occur in Γn−1 or ϕn(xn) (remember, it was added only with θn).
By Theorem 3.18, from Γ ` ¬ϕn(cn), we obtain Γ ` ∀xn ¬ϕn(xn). Thus we
have that both Γn−1 ` ∃xn ϕn and Γn−1 ` ∀xn ¬ϕn(xn), so Γ itself is incon-
sistent. (Note that ∀xn ¬ϕn(xn) ` ¬∃xn ϕn(xn).) Contradiction: Γn−1 was
supposed to be consistent. Hence Γn ∪ {θn} is consistent.

4.5 Lindenbaum’s Lemma

Lemma 4.7 (Lindenbaum’s Lemma). Every consistent set Γ can be extended to a
maximally consistent saturated set Γ∗.

Proof. Let Γ be consistent, and let Γ′ be as in the proof of Theorem 4.6: we
proved there that Γ ∪ Γ′ is a consistent saturated set in the richer language L′
(with the denumerable set of new constants). Let ϕ0, ϕ1, . . . be an enumera-
tion of all the formulas of L′. Define Γ0 = Γ ∪ Γ′, and

Γn+1 =

{
Γn ∪ {ϕn} if Γn ∪ {ϕn} is consistent;
Γn ∪ {¬ϕn} otherwise.

Let Γ∗ =
⋃

n≥0 Γn. Since Γ′ ⊆ Γ∗, for each formula ϕ, Γ∗ contains a formula
of the form ∃x ϕ→ ϕ(c) and thus is saturated.

Each Γn is consistent: Γ0 is consistent by definition. If Γn+1 = Γn ∪ {ϕ}, this
is because the latter is consistent. If it isn’t, Γn+1 = Γn ∪ {¬ϕ}, which must
be consistent. If it weren’t, i.e., both Γn ∪ {ϕ} and Γn ∪ {¬ϕ} are inconsistent,
then Γn ` ¬ϕ and Γn ` ϕ, so Γn would be inconsistent contrary to induction
hypothesis.

Every formula of Frm(L′) appears on the list used to define Γ∗. If ϕn /∈ Γ∗,
then that is because Γn ∪ {ϕn} was inconsistent. But that means that Γ∗ is
maximally consistent.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 57

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

4.6 Construction of a Model

We will begin by showing how to construct a structure which satisfies a max-
imally consistent, saturated set of sentences in a language L without =.

Definition 4.8. Let Γ∗ be a maximally consistent, saturated set of sentences in
a language L. The term model M(Γ∗) of Γ∗ is the structure defined as follows:

1. The domain |M(Γ∗)| is the set of all closed terms of L.

2. The interpretation of a constant symbol c is c itself: cM(Γ∗) = c.

3. The function symbol f is assigned the function

fM(Γ∗)(t1, . . . , tn) = f (ValM(Γ∗)(t1), . . . , ValM(Γ∗)(t1))

4. If R is an n-place predicate symbol, then 〈t1, . . . , tn〉 ∈ RM(Γ∗) iff R(t1, . . . , tn) ∈
Γ∗.

Lemma 4.9 (Truth Lemma). Suppose ϕ does not contain =. Then M(Γ∗) |= ϕ iff
ϕ ∈ Γ∗.

Proof. We prove both directions simultaneously, and by induction on ϕ.

1. ϕ ≡ R(t1, . . . , tn): M(Γ∗) |= R(t1, . . . , tn) iff 〈t1, . . . , tn〉 ∈ RM(Γ∗) (by
the definition of satisfaction) iff R(t1, . . . , tn) ∈ Γ∗ (the construction of
M(Γ∗).

2. ϕ ≡ ¬ψ: M(Γ∗) |= ϕ iff M(Γ∗) 6|= ψ (by definition of satisfaction).
By induction hypothesis, M(Γ∗) 6|= ψ iff ψ /∈ Γ∗. By Proposition 4.2(2),
¬ψ ∈ Γ∗ if ψ /∈ Γ∗; and ¬ψ /∈ Γ∗ if ψ ∈ Γ∗ since Γ∗ is consistent.

3. ϕ ≡ ψ ∧ χ: M(Γ∗) |= ϕ iff we have both M(Γ∗) |= ψ and M(Γ∗) |=
χ (by definition of satisfaction) iff both ψ ∈ Γ∗ and χ ∈ Γ∗ (by the
induction hypothesis). By Proposition 4.2(3), this is the case iff (ψ∧ χ) ∈
Γ∗.

4. ϕ ≡ ψ ∨ χ: M(Γ∗) |= ϕ iff at M(Γ∗) |= ψ or M(Γ∗) |= χ (by definition
of satisfaction) iff ψ ∈ Γ∗ or χ ∈ Γ∗ (by induction hypothesis). This is
the case iff (ψ ∨ χ) ∈ Γ∗ (by Proposition 4.2(4)).

5. ϕ ≡ ψ → χ: M(Γ∗) |= ϕ iff M(Γ∗ 6|= ψ or M(Γ∗) |= χ (by definition of
satisfaction) iff ψ /∈ Γ∗ or χ ∈ Γ∗ (by induction hypothesis). This is the
case iff (ψ→ χ) ∈ Γ∗ (by Proposition 4.2(5)).

6. ϕ ≡ ∀x ψ(x): Suppose that M(Γ∗) |= ϕ, then for every variable assign-
ment s, M(Γ∗), s |= ψ(x). Suppose to the contrary that ∀x ψ(x) /∈ Γ∗:
Then by Proposition 4.2(2), ¬∀x ψ(x) ∈ Γ∗. By saturation, (∃x¬ψ(x)→

58 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

¬ψ(c)) ∈ Γ∗ for some c, so by Proposition 4.2(1), ¬ψ(c) ∈ Γ∗. Since Γ∗ is
consistent, ψ(c) /∈ Γ∗. By induction hypothesis, M(Γ∗) 6|= ψ(c). There-
fore, if s′ is the variable assignment such that s(x) = c, then M(Γ∗), s′ 6|=
ψ(x), contradicting the earlier result that M(Γ∗), s |= ψ(x) for all s.
Thus, we have ϕ ∈ Γ∗.

Conversely, suppose that ∀x ψ(x) ∈ Γ∗. By Theorem 3.19 and Proposi-
tion 4.2(1), ψ(t) ∈ Γ∗ for every term t ∈ |M(Γ∗)|. By inductive hypoth-
esis, M(Γ∗) |= ψ(t) for every term t ∈ |M(Γ∗)|. Let s be the variable
assigment with s(x) = t. Then M(Γ∗), s |= ψ(x) for any such s, hence
M(Γ∗) |= ϕ.

7. ϕ ≡ ∃x ψ(x): First suppose that M(Γ∗) |= ϕ. By the definition of sat-
isfaction, for some variable assignment s, M(Γ∗), s |= ψ(x). The value
s(x) is some term t ∈ |M(Γ∗)|. Thus, M(Γ∗) |= ψ(t), and by our in-
duction hypothesis, ψ(t) ∈ Γ∗. By Theorem 3.19 we have Γ∗ ` ∃x ψ(x).
Then, by Proposition 4.2(1), we can conclude that ϕ ∈ Γ∗.

Conversely, suppose that ∃x ψ(x) ∈ Γ∗. Because Γ∗ is saturated, (∃x ψ(x)→
ψ(c)) ∈ Γ∗. By Proposition 3.17(8) and Proposition 4.2(1), ψ(c) ∈ Γ∗. By
inductive hypothesis, M(Γ∗) |= ψ(c). Now consider the variable as-
signment with s(x) = cM(Γ∗). Then M(Γ∗), s |= ψ(x). By definition of
satisfaction, M(Γ∗) |= ∃x ψ(x).

4.7 Identity

The construction of the term model given in the preceding section is enough
to establish completeness for first-order logic for sets Γ that do not contain =.
The term model satisfies every ϕ ∈ Γ∗ which does not contain = (and hence
all ϕ ∈ Γ). It does not work, however, if = is present. The reason is that Γ∗

then may contain a sentence t = t′, but in the term model the value of any
term is that term itself. Hence, if t and t′ are different terms, their values in
the term model—i.e., t and t′, respectively—are different, and so t = t′ is false.
We can fix this, however, using a construction known as “factoring.”

Definition 4.10. Let Γ∗ be a maximally consistent set of sentences in L. We
define the relation ≈ on the set of closed terms of L by

t ≈ t′ iff t = t′ ∈ Γ∗

Proposition 4.11. The relation ≈ has the following properties:

1. ≈ is reflexive.

2. ≈ is symmetric.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 59

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

3. ≈ is transitive.

4. If t ≈ t′, f is a function symbol, and t1, . . . , ti−1, ti+1, . . . , tn are terms, then

f (t1, . . . , ti−1, t, ti+1, . . . , tn) ≈ f (t1, . . . , ti−1, t′, ti+1, . . . , tn).

5. If t ≈ t′, R is a function symbol, and t1, . . . , ti−1, ti+1, . . . , tn are terms, then

R(t1, . . . , ti−1, t, ti+1, . . . , tn) ∈ Γ∗ iff R(t1, . . . , ti−1, t′, ti+1, . . . , tn) ∈ Γ∗.

Proof. Since Γ∗ is maximally consistent, t = t′ ∈ Γ∗ iff Γ∗ ` t = t′. Thus it is
enough to show the following:

1. Γ∗ ` t = t for all terms t.

2. If Γ∗ ` t = t′ then Γ∗ ` t′ = t.

3. If Γ∗ ` t = t′ and Γ∗ ` t′ = t′′, then Γ∗ ` t = t′′.

4. If Γ∗ ` t = t′, then

Γ∗ ` f (t1, . . . , ti−1, t, ti+1, , . . . , tn) = f (t1, . . . , ti−1, t′, ti+1, . . . , tn)

for every n-place function symbol f and terms t1, . . . , ti−1, ti+1, . . . , tn.

5. If Γ∗ ` t = t′ and Γ∗ ` R(t1, . . . , ti−1, t, ti+1, . . . , tn), then Γ∗ ` R(t1, . . . , ti−1, t′, ti+1, . . . , tn)
for every n-place predicate symbol R and terms t1, . . . , ti−1, ti+1, . . . , tn.

Definition 4.12. Suppose Γ∗ is a maximally consistent set in a language L, t
is a term, and ≈ as in the previous definition. Then:

[t]≈ = {t′ : t′ ∈ Trm(L), t ≈ t′}

and Trm(L)/≈ = {[t]≈ : t ∈ Trm(L)}.

Definition 4.13. Let M = M(Γ∗) be the term model for Γ∗. Then M/≈ is the
following structure:

1. |M/≈| = Trm(L)/≈.

2. cM/≈ = [c]≈

3. fM/≈([t1]≈, . . . , [tn]≈) = [f (t1, . . . , tn)]≈

4. 〈[t1]≈, . . . , [tn]≈〉 ∈ RM/≈ iff M |= R(t1, . . . , tn).

60 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Note that we have defined fM/≈ and RM/≈ for elements of Trm(L)/≈ by
referring to them as [t]≈, i.e., via representatives t ∈ [t]≈. We have to make sure
that these definitions do not depend on the choice of these representatives, i.e.,
that for some other choices t′ which determine the same equivalence classes
([t]≈ = [t′]≈), the definitions yield the same result. For instance, if R is a one-
place predicate symbol, the last clause of the definition says that [t]≈ ∈ RM/≈

iff M |= R(t). If for some other term t′ with t ≈ t′, M 6|= R(t), then the
definition would require [t′]≈ /∈ RM/≈ . If t ≈ t′, then [t]≈ = [t′]≈, but we
can’t have both [t]≈ ∈ RM/≈ and [t]≈ /∈ RM/≈ . However, Proposition 4.11
guarantees that this cannot happen.

Proposition 4.14. M/≈ is well defined, i.e., if t1, . . . , tn, t′1, . . . , t′n are terms, and
ti ≈ t′i then

1. [f (t1, . . . , tn)]≈ = [f (t′1, . . . , t′n)]≈, i.e., f (t1, . . . , tn) ≈ f (t′1, . . . , t′n) and

2. M |= R(t1, . . . , tn) iff M |= R(t′1, . . . , t′n), i.e., R(t1, . . . , tn) ∈ Γ∗ iff R(t′1, . . . , t′n) ∈
Γ∗.

Proof. Follows from Proposition 4.11.

Lemma 4.15. M/≈ |= ϕ iff ϕ ∈ Γ∗ for all sentences ϕ.

Proof. By induction on ϕ, just as in the proof of Lemma 4.9. The only case that
needs additional attention is when ϕ ≡ t = t′.

M/≈ |= t = t′ iff [t]≈ = [t′]≈ (by definition of M/≈)

iff t ≈ t′ (by definition of [t]≈)

iff t = t′ ∈ Γ∗ (by definition of ≈).

Note that while M(Γ∗) is always enumerable and infinite, M/≈ may be
finite, since it may turn out that there are only finitely many classes [t]≈. This
is to be expected, since Γ may contain sentences which require any structure
in which they are true to be finite. For instance, ∀x ∀y x = y is a consistent
sentence, but is satisfied only in structures with a domain that contains exactly
one element.

4.8 The Completeness Theorem

Theorem 4.16 (Completeness Theorem). Let Γ be a set of sentences. If Γ is con-
sistent, it is satisfiable.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 61

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. Suppose Γ is consistent. By Lemma 4.7, there is a Γ∗ ⊇ Γ which is max-
imally consistent and saturated. If Γ does not contain =, then by Lemma 4.9,
M(Γ∗) |= ϕ iff ϕ ∈ Γ∗. From this it follows in particular that for all ϕ ∈ Γ,
M(Γ∗) |= ϕ, so Γ is satisfiable. If Γ does contain =, then by Lemma 4.15,
M/≈ |= ϕ iff ϕ ∈ Γ∗ for all sentences ϕ. In particular, M/≈ |= ϕ for all ϕ ∈ Γ,
so Γ is satisfiable.

Corollary 4.17 (Completeness Theorem, Second Version). For all Γ and ϕ sen-
tences: if Γ |= ϕ then Γ ` ϕ.

Proof. Note that the Γ’s in Corollary 4.17 and Theorem 4.16 are universally
quantified. To make sure we do not confuse ourselves, let us restate Theo-
rem 4.16 using a different variable: for any set of sentences ∆, if ∆ is consistent,
it is satisfiable. By contraposition, if ∆ is not satisfiable, then ∆ is inconsistent.
We will use this to prove the corollary.

Suppose that Γ |= ϕ. Then Γ ∪ {¬ϕ} is unsatisfiable by Proposition 1.44.
Taking Γ ∪ {¬ϕ} as our ∆, the previous version of Theorem 4.16 gives us that
Γ ∪ {¬ϕ} is inconsistent. By Proposition 3.13, Γ ` ϕ.

4.9 The Compactness Theorem

Definition 4.18. A set Γ of formulas is finitely satisfiable if and only if every
finite Γ0 ⊆ Γ is satisfiable.

Theorem 4.19 (Compactness Theorem). The following hold for any sentences Γ
and ϕ:

1. Γ |= ϕ iff there is a finite Γ0 ⊆ Γ such that Γ0 |= ϕ.

2. Γ is satisfiable if and only if it is finitely satisfiable.

Proof. We prove (2). If Γ is satisfiable, then there is a structure M such that
M |= ϕ for all ϕ ∈ Γ. Of course, this M also satisfies every finite subset of Γ,
so Γ is finitely satisfiable.

Now suppose that Γ is finitely satisfiable. Then every finite subset Γ0 ⊆ Γ
is satisfiable. By soundness, every finite subset is consistent. Then Γ itself
must be consistent. For assume it is not, i.e., Γ ` ⊥. But derivations are finite,
and so already some finite subset Γ0 ⊆ Γ must be inconsistent (cf. Proposi-
tion 3.15). But we just showed they are all consistent, a contradiction. Now by
completeness, since Γ is consistent, it is satisfiable.

4.10 The Löwenheim-Skolem Theorem

Theorem 4.20. If Γ is consistent then it has a denumerable model, i.e., it is satisfiable
in a structure whose domain is either finite or infinite but enumerable.

62 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. If Γ is consistent, the structure M delivered by the proof of the com-
pleteness theorem has a domain |M| whose cardinality is bounded by that of
the set of the terms of the language L. So M is at most denumerable.

Theorem 4.21. If Γ is consistent set of sentences in the language of first-order logic
without identity, then it has a denumerable model, i.e., it is satisfiable in a structure
whose domain is infinite and enumerable.

Proof. If Γ is consistent and contains no sentences in which identity appears,
then the structure M delivered by the proof of the completness theorem has a
domain |M| whose cardinality is identical to that of the set of the terms of the
language L. So M is denumerably infinite.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 63

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 5

Beyond First-order Logic

5.1 Overview

First-order logic is not the only system of logic of interest: there are many ex-
tensions and variations of first-order logic. A logic typically consists of the
formal specification of a language, usually, but not always, a deductive sys-
tem, and usually, but not always, an intended semantics. But the technical use
of the term raises an obvious question: what do logics that are not first-order
logic have to do with the word “logic,” used in the intuitive or philosophical
sense? All of the systems described below are designed to model reasoning of
some form or another; can we say what makes them logical?

No easy answers are forthcoming. The word “logic” is used in different
ways and in different contexts, and the notion, like that of “truth,” has been
analyzed from numerous philosophical stances. For example, one might take
the goal of logical reasoning to be the determination of which statements are
necessarily true, true a priori, true independent of the interpretation of the
nonlogical terms, true by virtue of their form, or true by linguistic convention;
and each of these conceptions requires a good deal of clarification. Even if one
restricts one’s attention to the kind of logic used in mathematical, there is little
agreement as to its scope. For example, in the Principia Mathematica, Russell
and Whitehead tried to develop mathematics on the basis of logic, in the logi-
cist tradition begun by Frege. Their system of logic was a form of higher-type
logic similar to the one described below. In the end they were forced to intro-
duce axioms which, by most standards, do not seem purely logical (notably,
the axiom of infinity, and the axiom of reducibility), but one might nonetheless
hold that some forms of higher-order reasoning should be accepted as logical.
In contrast, Quine, whose ontology does not admit “propositions” as legiti-
mate objects of discourse, argues that second-order and higher-order logic are
really manifestations of set theory in sheep’s clothing; in other words, systems
involving quantification over predicates are not purely logical.

For now, it is best to leave such philosophical issues for a rainy day, and

64

simply think of the systems below as formal idealizations of various kinds of
reasoning, logical or otherwise.

5.2 Many-Sorted Logic

In first-order logic, variables and quantifiers range over a single domain. But
it is often useful to have multiple (disjoint) domains: for example, you might
want to have a domain of numbers, a domain of geometric objects, a domain
of functions from numbers to numbers, a domain of abelian groups, and so
on.

Many-sorted logic provides this kind of framework. One starts with a list
of “sorts”—the “sort” of an object indicates the “domain” it is supposed to
inhabit. One then has variables and quantifiers for each sort, and (usually)
an identity predicate for each sort. Functions and relations are also “typed”
by the sorts of objects they can take as arguments. Otherwise, one keeps the
usual rules of first-order logic, with versions of the quantifier-rules repeated
for each sort.

For example, to study international relations we might choose a language
with two sorts of objects, French citizens and German citizens. We might have
a unary relation, “drinks wine,” for objects of the first sort; another unary
relation, “eats wurst,” for objects of the second sort; and a binary relation,
“forms a multinational married couple,” which takes two arguments, where
the first argument is of the first sort and the second argument is of the second
sort. If we use variables a, b, c to range over French citizens and x, y, z to range
over German citizens, then

∀a ∀x[(Marr iedTo(a, x)→ (DrinksW ine(a) ∨ ¬EatsWurst(x))]]

asserts that if any French person is married to a German, either the French
person drinks wine or the German doesn’t eat wurst.

Many-sorted logic can be embedded in first-order logic in a natural way,
by lumping all the objects of the many-sorted domains together into one first-
order domain, using unary predicate symbols to keep track of the sorts, and
relativizing quantifiers. For example, the first-order language corresponding
to the example above would have unary predicate symbolss “German” and
“F rench,” in addition to the other relations described, with the sort require-
ments erased. A sorted quantifier ∀x ϕ, where x is a variable of the German
sort, translates to

∀x (German(x)→ ϕ).

We need to add axioms that insure that the sorts are separate—e.g., ∀x¬(German(x)∧
F rench(x))—as well as axioms that guarantee that “drinks wine” only holds
of objects satisfying the predicate F rench(x), etc. With these conventions and
axioms, it is not difficult to show that many-sorted sentences translate to first-
order sentences, and many-sorted derivations translate to first-order deriva-

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 65

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

tions. Also, many-sorted structures “translate” to corresponding first-order
structures and vice-versa, so we also have a completeness theorem for many-
sorted logic.

5.3 Second-Order logic

The language of second-order logic allows one to quantify not just over a do-
main of individuals, but over relations on that domain as well. Given a first-
order language L, for each k one adds variables R which range over k-ary
relations, and allows quantification over those variables. If R is a variable for
a k-ary relation, and t1, . . . , tk are ordinary (first-order) terms, R(t1, . . . , tk) is
an atomic formula. Otherwise, the set of formulas is defined just as in the
case of first-order logic, with additional clauses for second-order quantifica-
tion. Note that we only have the identity predicate for first-order terms: if R
and S are relation variables of the same arity k, we can define R = S to be an
abbreviation for

∀x1 . . . ∀xk (R(x1, . . . , xk)↔ S(x1, . . . , xk)).

The rules for second-order logic simply extend the quantifier rules to the
new second order variables. Here, however, one has to be a little bit careful
to explain how these variables interact with the predicate symbols of L, and
with formulas of L more generally. At the bare minimum, relation variables
count as terms, so one has inferences of the form

ϕ(R) ` ∃R ϕ(R)

But if L is the language of arithmetic with a constant relation symbol <, one
would also expect the following inference to be valid:

x < y ` ∃R R(x, y)

or for a given formula ϕ,

ϕ(x1, . . . , xk) ` ∃R R(x1, . . . , xk)

More generally, we might want to allow inferences of the form

ϕ[λ~x. ψ(~x)/R]∃R ϕ

where ϕ[λ~x. ψ(~x)/R] denotes the result of replacing every atomic formula of
the form Rt1, . . . , tk in ϕ by ψ(t1, . . . , tk). This last rule is equivalent to having
a comprehension schema, i.e., an axiom of the form

∃R ∀x1, . . . , xk (ϕ(x1, . . . , xk)↔ R(x1, . . . , xk)),

66 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

one for each formula ϕ in the second-order language, in which R is not a free
variable. (Exercise: show that if R is allowed to occur in ϕ, this schema is
inconsistent!)

When logicians refer to the “axioms of second-order logic” they usually
mean the minimal extension of first-order logic by second-order quantifier
rules together with the comprehension schema. But it is often interesting to
study weaker subsystems of these axioms and rules. For example, note that
in its full generality the axiom schema of comprehension is impredicative: it
allows one to assert the existence of a relation R(x1, . . . , xk) that is “defined”
by a formula with second-order quantifiers; and these quantifiers range over
the set of all such relations—a set which includes R itself! Around the turn of
the twentieth century, a common reaction to Russell’s paradox was to lay the
blame on such definitions, and to avoid them in developing the foundations
of mathematics. If one prohibits the use of second-order quantifiers in the
formula ϕ, one has a predicative form of comprehension, which is somewhat
weaker.

From the semantic point of view, one can think of a second-order structure
as consisting of a first-order structure for the language, coupled with a set of
relations on the domain over which the second-order quantifiers range (more
precisely, for each k there is a set of relations of arity k). Of course, if compre-
hension is included in the proof system, then we have the added requirement
that there are enough relations in the “second-order part” to satisfy the com-
prehension axioms—otherwise the proof system is not sound! One easy way
to insure that there are enough relations around is to take the second-order
part to consist of all the relations on the first-order part. Such a structure is
called full, and, in a sense, is really the “intended structure” for the language.
If we restrict our attention to full structures we have what is known as the
full second-order semantics. In that case, specifying a structure boils down
to specifying the first-order part, since the contents of the second-order part
follow from that implicitly.

To summarize, there is some ambiguity when talking about second-order
logic. In terms of the proof system, one might have in mind either

1. A “minimal” second-order proof system, together with some compre-
hension axioms.

2. The “standard” second-order proof system, with full comprehension.

In terms of the semantics, one might be interested in either

1. The “weak” semantics, where a structure consists of a first-order part,
together with a second-order part big enough to satisfy the comprehen-
sion axioms.

2. The “standard” second-order semantics, in which one considers full struc-
tures only.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 67

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

When logicians do not specify the proof system or the semantics they have
in mind, they are usually refering to the second item on each list. The ad-
vantage to using this semantics is that, as we will see, it gives us categorical
descriptions of many natural mathematical structures; at the same time, the
proof system is quite strong, and sound for this semantics. The drawback is
that the proof system is not complete for the semantics; in fact, no effectively
given proof system is complete for the full second-order semantics. On the
other hand, we will see that the proof system is complete for the weakened
semantics; this implies that if a sentence is not provable, then there is some
structure, not necessarily the full one, in which it is false.

The language of second-order logic is quite rich. One can identify unary
relations with subsets of the domain, and so in particular you can quantify
over these sets; for example, one can express induction for the natural num-
bers with a single axiom

∀R ((R() ∧ ∀x (R(x)→ R(x′)))→ ∀x R(x)).

If one takes the language of arithmetic to have symbols , ′,+,× and <, one
can add the following axioms to describe their behavior:

1. ∀x¬x′ =

2. ∀x ∀y (s(x) = s(y)→ x = y)

3. ∀x (x + 0) = x

4. ∀x ∀y (x + y′) = (x + y)′

5. ∀x (x× 0) = 0

6. ∀x ∀y (x× y′) = ((x× y) + x)

7. ∀x ∀y (x < y↔ ∃z y = (x + z′))

It is not difficult to show that these axioms, together with the axiom of induc-
tion above, provide a categorical description of the structure N, the standard
model of arithmetic, provided we are using the full second-order semantics.
Given any structure A in which these axioms are true, define a function f from
N to the domain of A using ordinary recursion on N, so that f (0) = A and
f (x + 1) = ′A(f (x)). Using ordinary induction on N and the fact that axioms
(1) and (2) hold in A, we see that f is injective. To see that f is surjective, let P
be the set of elements of |A| that are in the range of f . Since A is full, P is in
the second-order domain. By the construction of f , we know that A is in P,
and that P is closed under ′A. The fact that the induction axiom holds in A (in
particular, for P) guarantees that P is equal to the entire first-order domain of
A. This shows that f is a bijection. Showing that f is a homomorphism is no
more difficult, using ordinary induction on N repeatedly.

68 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

In set-theoretic terms, a function is just a special kind of relation; for ex-
ample, a unary function f can be identified with a binary relation R satisfying
∀x ∃y R(x, y). As a result, one can quantify over functions too. Using the full
semantics, one can then define the class of infinite structures to be the class of
structures A for which there is an injective function from the domain of A to a
proper subset of itself:

∃ f (∀x ∀y (f (x) = f (y)→ x = y) ∧ ∃y ∀x f (x) 6= y).

The negation of this sentence then defines the class of finite structures.
In addition, one can define the class of well-orderings, by adding the fol-

lowing to the definition of a linear ordering:

∀P (∃x P(x)→ ∃x (P(x) ∧ ∀y (y < x → ¬P(y)))).

This asserts that every nonempty set has a least element, modulo the iden-
tification of “set” with “one-place relation”. For another example, one can
express the notion of connectedness for graphs, by saying that there is no non-
trivial separation of the vertices into disconnected parts:

¬∃A (∃x A(x) ∧ ∃y¬A(y) ∧ ∀[w][∀z ((A(w) ∧ ¬A(z))→ ¬R(w, z))]).

For yet another example, you might try as an exercise to define the class of
finite structures whose domain has even size. More strikingly, one can pro-
vide a categorical description of the real numbers as a complete ordered field
containing the rationals.

In short, second-order logic is much more expressive than first-order logic.
That’s the good news; now for the bad. We have already mentioned that there
is no effective proof system that is complete for the full second-order seman-
tics. For better or for worse, many of the properties of first-order logic are
absent, including compactness and the Löwenheim-Skolem theorems.

On the other hand, if one is willing to give up the full second-order seman-
tics in terms of the weaker one, then the minimal second-order proof system
is complete for this semantics. In other words, if we read ` as “proves in the
minimal system” and |= as “logically implies in the weaker semantics”, we
can show that whenever Γ |= ϕ then Γ ` ϕ. If one wants to include specific
comprehension axioms in the proof system, one has to restrict the semantics
to second-order structures that satisfy these axioms: for example, if ∆ con-
sists of a set of comprehension axioms (possibly all of them), we have that if
Γ ∪ ∆ |= ϕ, then Γ ∪ ∆ ` ϕ. In particular, if ϕ is not provable using the com-
prehension axioms we are considering, then there is a model of ¬ϕ in which
these comprehension axioms nonetheless hold.

The easiest way to see that the completeness theorem holds for the weaker
semantics is to think of second-order logic as a many-sorted logic, as follows.
One sort is interpreted as the ordinary “first-order” domain, and then for each

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 69

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

k we have a domain of “relations of arity k.” We take the language to have
built-in relation symbols “truek(R, x1, . . . , xk)” which is meant to assert that
R holds of x1, . . . , xk, where R is a variable of the sort “k-ary relation” and x1,
. . . , xk are objects of the first-order sort.

With this identification, the weak second-order semantics is essentially the
usual semantics for many-sorted logic; and we have already observed that
many-sorted logic can be embedded in first-order logic. Modulo the trans-
lations back and forth, then, the weaker conception of second-order logic is
really a form of first-order logic in disguise, where the domain contains both
“objects” and “relations” governed by the appropriate axioms.

5.4 Higher-Order logic

Passing from first-order logic to second-order logic enabled us to talk about
sets of objects in the first-order domain, within the formal language. Why stop
there? For example, third-order logic should enable us to deal with sets of sets
of objects, or perhaps even sets which contain both objects and sets of objects.
And fourth-order logic will let us talk about sets of objects of that kind. As
you may have guessed, one can iterate this idea arbitrarily.

In practice, higher-order logic is often formulated in terms of functions
instead of relations. (Modulo the natural identifications, this difference is
inessential.) Given some basic “sorts” A, B, C, . . . (which we will now call
“types”), we can create new ones by stipulating

If σ and τ are finite types then so is σ→ τ.

Think of types as syntactic “labels,” which classify the objects we want in our
domain; σ→ τ describes those objects that are functions which take objects of
type σ to objects of type τ. For example, we might want to have a type Ω of
truth values, “true” and “false,” and a type N of natural numbers. In that case,
you can think of objects of type N → Ω as unary relations, or subsets of N;
objects of type N→N are functions from natural numers to natural numbers;
and objects of type (N → N) → N are “functionals,” that is, higher-type
functions that take functions to numbers.

As in the case of second-order logic, one can think of higher-order logic as
a kind of many-sorted logic, where there is a sort for each type of object we
want to consider. But it is usually clearer just to define the syntax of higher-
type logic from the ground up. For example, we can define a set of finite types
inductively, as follows:

1. N is a finite type.

2. If σ and τ are finite types, then so is σ→ τ.

3. If σ and τ are finite types, so is σ× τ.

70 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Intuitively, N denotes the type of the natural numbers, σ → τ denotes the
type of functions from σ to τ, and σ × τ denotes the type of pairs of objects,
one from σ and one from τ. We can then define a set of terms inductively, as
follows:

1. For each type σ, there is a stock of variables x, y, z, . . . of type σ

2. is a term of type N

3. S (successor) is a term of type N→N

4. If s is a term of type σ, and t is a term of type N→ (σ → σ), then Rst is
a term of type N→ σ

5. If s is a term of type τ → σ and t is a term of type τ, then s(t) is a term
of type σ

6. If s is a term of type σ and x is a variable of type τ, then λx. s is a term of
type τ → σ.

7. If s is a term of type σ and t is a term of type τ, then 〈s, t〉 is a term of
type σ× τ.

8. If s is a term of type σ × τ then p1(s) is a term of type σ and p2(s) is a
term of type τ.

Intuitively, Rst denotes the function defined recursively by

Rst(0) = s

Rst(x + 1) = t(x, Rst(x)),

〈s, t〉 denotes the pair whose first component is s and whose second compo-
nent is t, and p1(s) and p2(s) denote the first and second elements (“projec-
tions”) of s. Finally, λx. s denotes the function f defined by

f (x) = s

for any x of type σ; so item (6) gives us a form of comprehension, enabling us
to define functions using terms. Formulas are built up from identity predicate
statements s = t between terms of the same type, the usual propositional
connectives, and higher-type quantification. One can then take the axioms
of the system to be the basic equations governing the terms defined above,
together with the usual rules of logic with quantifiers and identity predicate.

If one augments the finite type system with a type Ω of truth values, one
has to include axioms which govern its use as well. In fact, if one is clever, one
can get rid of complex formulas entirely, replacing them with terms of type Ω!
The proof system can then be modified accordingly. The result is essentially
the simple theory of types set forth by Alonzo Church in the 1930s.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 71

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

As in the case of second-order logic, there are different versions of higher-
type semantics that one might want to use. In the full version, variables of
type σ → τ range over the set of all functions from the objects of type σ to
objects of type τ. As you might expect, this semantics is too strong to admit
a complete, effective proof system. But one can consider a weaker semantics,
in which a structure consists of sets of elements Tτ for each type τ, together
with appropriate operations for application, projection, etc. If the details are
carried out correctly, one can obtain completeness theorems for the kinds of
proof systems described above.

Higher-type logic is attractive because it provides a framework in which
we can embed a good deal of mathematics in a natural way: starting with N,
one can define real numbers, continuous functions, and so on. It is also partic-
ularly attractive in the context of intuitionistic logic, since the types have clear
“constructive” intepretations. In fact, one can develop constructive versions
of higher-type semantics (based on intuitionistic, rather than classical logic)
that clarify these constructive interpretations quite nicely, and are, in many
ways, more interesting than the classical counterparts.

5.5 Intuitionistic logic

In constrast to second-order and higher-order logic, intuitionistic first-order
logic represents a restriction of the classical version, intended to model a more
“constructive” kind of reasoning. The following examples may serve to illus-
trate some of the underlying motivations.

Suppose someone came up to you one day and announced that they had
determined a natural number x, with the property that if x is prime, the Rie-
mann hypothesis is true, and if x is composite, the Riemann hypothesis is
false. Great news! Whether the Riemann hypothesis is true or not is one of
the big open questions of mathematics, and here they seem to have reduced
the problem to one of calculation, that is, to the determination of whether a
specific number is prime or not.

What is the magic value of x? They describe it as follows: x is the natural
number that is equal to 7 if the Riemann hypothesis is true, and 9 otherwise.

Angrily, you demand your money back. From a classical point of view, the
description above does in fact determine a unique value of x; but what you
really want is a value of x that is given explicitly.

To take another, perhaps less contrived example, consider the following
question. We know that it is possible to raise an irrational number to a rational

power, and get a rational result. For example,
√

2
2
= 2. What is less clear

is whether or not it is possible to raise an irrational number to an irrational
power, and get a rational result. The following theorem answers this in the
affirmative:

Theorem 5.1. There are irrational numbers a and b such that ab is rational.

72 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. Consider
√

2
√

2
. If this is rational, we are done: we can let a = b =

√
2.

Otherwise, it is irrational. Then we have

(
√

2
√

2
)
√

2 =
√

2
√

2·
√

2
=
√

2
2
= 2,

which is certainly rational. So, in this case, let a be
√

2
√

2
, and let b be

√
2.

Does this constitute a valid proof? Most mathematicians feel that it does.
But again, there is something a little bit unsatisfying here: we have proved the
existence of a pair of real numbers with a certain property, without being able
to say which pair of numbers it is. It is possible to prove the same result, but in
such a way that the pair a, b is given in the proof: take a =

√
3 and b = log3 4.

Then
ab =

√
3

log3 4
= 31/2·log3 4 = (3log3 4)1/2 = 41/2 = 2,

since 3log3 x = x.
Intuitionistic logic is designed to model a kind of reasoning where moves

like the one in the first proof are disallowed. Proving the existence of an x
satisfying ϕ(x) means that you have to give a specific x, and a proof that it
satisfies ϕ, like in the second proof. Proving that ϕ or ψ holds requires that
you can prove one or the other.

Formally speaking, intuitionistic first-order logic is what you get if you
omit restrict a proof system for first-order logic in a certain way. Similarly,
there are intuitionistic versions of second-order or higher-order logic. From
the mathematical point of view, these are just formal deductive systems, but,
as already noted, they are intended to model a kind of mathematical reason-
ing. One can take this to be the kind of reasoning that is justified on a cer-
tain philosophical view of mathematics (such as Brouwer’s intuitionism); one
can take it to be a kind of mathematical reasoning which is more “concrete”
and satisfying (along the lines of Bishop’s constructivism); and one can argue
about whether or not the formal description captures the informal motiva-
tion. But whatever philosophical positions we may hold, we can study intu-
itionistic logic as a formally presented logic; and for whatever reasons, many
mathematical logicians find it interesting to do so.

There is an informal constructive interpretation of the intuitionist connec-
tives, usually known as the Brouwer-Heyting-Kolmogorov interpretation. It
runs as follows: a proof of ϕ ∧ ψ consists of a proof of ϕ paired with a proof
of ψ; a proof of ϕ ∨ ψ consists of either a proof of ϕ, or a proof of ψ, where
we have explicit information as to which is the case; a proof of ϕ → ψ con-
sists of a procedure, which transforms a proof of ϕ to a proof of ψ; a proof of
∀x ϕ(x) consists of a procedure which returns a proof of ϕ(x) for any value
of x; and a proof of ∃x ϕ(x) consists of a value of x, together with a proof that
this value satisfies ϕ. One can describe the interpretation in computational
terms known as the “Curry-Howard isomorphism” or the “formulas-as-types

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 73

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

paradigm”: think of a formula as specifying a certain kind of data type, and
proofs as computational objects of these data types that enable us to see that
the corresponding formula is true.

Intuitionistic logic is often thought of as being classical logic “minus” the
law of the excluded middle. This following theorem makes this more precise.

Theorem 5.2. Intuitionistically, the following axiom schemata are equivalent:

1. (ϕ→ ⊥)→ ¬ϕ.

2. ϕ ∨ ¬ϕ

3. ¬¬ϕ→ ϕ

Obtaining instances of one schema from either of the others is a good ex-
ercise in intuitionistic logic.

The first deductive systems for intuitionistic propositional logic, put forth
as formalizations of Brouwer’s intuitionism, are due, independently, to Kol-
mogorov, Glivenko, and Heyting. The first formalization of intuitionistic first-
order logic (and parts of intuitionist mathematics) is due to Heyting. Though
a number of classically valid schemata are not intuitionistically valid, many
are.

The double-negation translation describes an important relationship between
classical and intuitionist logic. It is defined inductively follows (think of ϕN

as the “intuitionist” translation of the classical formula ϕ):

ϕN ≡ ¬¬ϕ for atomic formulas ϕ

(ϕ ∧ ψ)N ≡ (ϕN ∧ ψN)

(ϕ ∨ ψ)N ≡ ¬¬(ϕN ∨ ψN)

(ϕ→ ψ)N ≡ (ϕN → ψN)

(∀x ϕ)N ≡ ∀x ϕN

(∃x ϕ)N ≡ ¬¬∃x ϕN

Kolmogorov and Glivenko had versions of this translation for propositional
logic; for predicate logic, it is due to Gödel and Gentzen, independently. We
have

Theorem 5.3. 1. ϕ↔ ϕN is provable classically

2. If ϕ is provable classically, then ϕN is provable intuitionistically.

We can now envision the following dialogue. Classical mathematician:
“I’ve proved ϕ!” Intuitionist mathematician: “Your proof isn’t valid. What
you’ve really proved is ϕN .” Classical mathematician: “Fine by me!” As far as

74 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

the classical mathematician is concerned, the intuitionist is just splitting hairs,
since the two are equivalent. But the intuitionist insists there is a difference.

Note that the above translation concerns pure logic only; it does not ad-
dress the question as to what the appropriate nonlogical axioms are for classi-
cal and intuitionistic mathematics, or what the relationship is between them.
But the following slight extension of the theorem above provides some useful
information:

Theorem 5.4. If Γ proves ϕ classically, ΓN proves ϕN intuitionistically.

In other words, if ϕ is provable from some hypotheses classically, then ϕN

is provable from their double-negation translations.
To show that a sentence or propositional formula is intuitionistically valid,

all you have to do is provide a proof. But how can you show that it is not
valid? For that purpose, we need a semantics that is sound, and preferrably
complete. A semantics due to Kripke nicely fits the bill.

We can play the same game we did for classical logic: define the semantics,
and prove soundness and completeness. It is worthwhile, however, to note
the following distinction. In the case of classical logic, the semantics was the
“obvious” one, in a sense implicit in the meaning of the connectives. Though
one can provide some intuitive motivation for Kripke semantics, the latter
does not offer the same feeling of inevitability. In addition, the notion of a
classical structure is a natural mathematical one, so we can either take the
notion of a structure to be a tool for studying classical first-order logic, or take
classical first-order logic to be a tool for studying mathematical structures.
In contrast, Kripke structures can only be viewed as a logical construct; they
don’t seem to have independent mathematical interest.

A Kripke structure for a propositional langauge consists of a partial order
P with a least element, and an “monotone” assignment of propositional vari-
ables to the elements of P. The intuition is that the elements of P represent
“worlds,” or “states of knowledge”; an element p ≥ q represents a “possible
future state” of q; and the propositional variables assigned to p are the propo-
sitions that are known to be true in state p. The forcing relation P, p ϕ then
extends this relationship to arbitrary formulas in the language; read P, p ϕ
as “ϕ is true in state p.” The relationship is defined inductively, as follows:

1. P, p pi iff pi is one of the propositional variables assigned to p.

2. P, p 1 ⊥.

3. P, p (ϕ ∧ ψ) iff P, p ϕ and P, p ψ.

4. P, p (ϕ ∨ ψ) iff P, p ϕ or P, p ψ.

5. P, p (ϕ→ ψ) iff, whenever q ≥ p and P, q ϕ, then P, q ψ.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 75

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

It is a good exercise to try to show that ¬(p ∧ q)→ (¬p ∨ ¬q) is not intuition-
istically valid, by cooking up a Kripke structure that provides a counterexam-
ple.

5.6 Modal Logics

Consider the following example of a conditional sentence:

If Jeremy is alone in that room, then he is drunk and naked and
dancing on the chairs.

This is an example of a conditional assertion that may be materially true but
nonetheless misleading, since it seems to suggest that there is a stronger link
between the antecedent and conclusion other than simply that either the an-
tecedent is false or the consequent true. That is, the wording suggests that the
claim is not only true in this particular world (where it may be trivially true,
because Jeremy is not alone in the room), but that, moreover, the conclusion
would have been true had the antecedent been true. In other words, one can
take the assertion to mean that the claim is true not just in this world, but in
any “possible” world; or that it is necessarily true, as opposed to just true in
this particular world.

Modal logic was designed to make sense of this kind of necessity. One ob-
tains modal propositional logic from ordinary propositional logic by adding a
box operator; which is to say, if ϕ is a formula, so is�ϕ. Intuitively,�ϕ asserts
that ϕ is necessarily true, or true in any possible world. ♦ϕ is usually taken to
be an abbreviation for ¬�¬ϕ, and can be read as asserting that ϕ is possibly
true. Of course, modality can be added to predicate logic as well.

Kripke structures can be used to provide a semantics for modal logic; in
fact, Kripke first designed this semantics with modal logic in mind. Rather
than restricting to partial orders, more generally one has a set of “possible
worlds,” P, and a binary “accessibility” relation R(x, y) between worlds. In-
tuitively, R(p, q) asserts that the world q is compatible with p; i.e., if we are
“in” world p, we have to entertain the possibility that the world could have
been like q.

Modal logic is sometimes called an “intensional” logic, as opposed to an
“extensional” one. The intended semantics for an extensional logic, like clas-
sical logic, will only refer to a single world, the “actual” one; while the seman-
tics for an “intensional” logic relies on a more elaborate ontology. In addition
to structureing necessity, one can use modality to structure other linguistic
constructions, reinterpreting � and ♦ according to the application. For exam-
ple:

1. In provability logic, �ϕ is read “ϕ is provable” and ♦ϕ is read “ϕ is
consistent.”

76 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. In epistemic logic, one might read �ϕ as “I know ϕ” or “I believe ϕ.”

3. In temporal logic, one can read�ϕ as “ϕ is always true” and ♦ϕ as “ϕ is
sometimes true.”

One would like to augment logic with rules and axioms dealing with modal-
ity. For example, the system S4 consists of the ordinary axioms and rules of
propositional logic, together with the following axioms:

�(ϕ→ ψ)→ (�ϕ→ �ψ)

�ϕ→ ϕ

�ϕ→ ��ϕ

as well as a rule, “from ϕ conclude �ϕ.” S5 adds the following axiom:

♦ϕ→ �♦ϕ

Variations of these axioms may be suitable for different applications; for ex-
ample, S5 is usually taken to characterize the notion of logical necessity. And
the nice thing is that one can usually find a semantics for which the proof
system is sound and complete by restricting the accessibility relation in the
Kripke structures in natural ways. For example, S4 corresponds to the class
of Kripke structures in which the accessibility relation is reflexive and transi-
tive. S5 corresponds to the class of Kripke structures in which the accessibility
relation is universal, which is to say that every world is accessible from every
other; so �ϕ holds if and only if ϕ holds in every world.

5.7 Other Logics

As you may have gathered by now, it is not hard to design a new logic. You
too can create your own a syntax, make up a deductive system, and fashion
a semantics to go with it. You might have to be a bit clever if you want the
proof system to be complete for the semantics, and it might take some effort to
convince the world at large that your logic is truly interesting. But, in return,
you can enjoy hours of good, clean fun, exploring your logic’s mathematical
and computational properties.

Recent decades have witnessed a veritable explosion of formal logics. Fuzzy
logic is designed to model reasoning about vague properties. Probabilistic
logic is designed to model reasoning about uncertainty. Default logics and
nonmonotonic logics are designed to model defeasible forms of reasoning,
which is to say, “reasonable” inferences that can later be overturned in the face
of new information. There are epistemic logics, designed to model reasoning
about knowledge; causal logics, designed to model reasoning about causal re-
lationships; and even “deontic” logics, which are designed to model reason-
ing about moral and ethical obligations. Depending on whether the primary

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 77

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

motivation for introducing these systems is philosophical, mathematical, or
computational, you may find such creatures studies under the rubric of math-
ematical logic, philosophical logic, artificial intelligence, cognitive science, or
elsewhere.

The list goes on and on, and the possibilities seem endless. We may never
attain Leibniz’ dream of reducing all of human reason to calculation—but that
can’t stop us from trying.

78 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Part II

Computability

79

Chapter 6

Recursive Functions

6.1 Introduction

In order to develop a mathematical theory of computability, one has to first
of all develop a model of computability. We now think of computability as the
kind of thing that computers do, and computers work with symbols. But at
the beginning of the development of theories of computability, the paradig-
matic example of computation was numerical computation. Mathematicians
were always interested in number-theoretic functions, i.e., functions f : Nn →
N that can be computed. So it is not surprising that at the beginning of the
theory of computability, it was such functions that were studied. The most
familiar examples of computable numerical functions, such as addition, mul-
tiplication, exponentiation (of natural numbers) share an interesting feature:
they can be defined recursively. It is thus quite natural to attempt a general
definition of computable function on the basis of recursive definitions. Among
the many possible ways to define number-theoretic functions recursively, one
particulalry simple pattern of definition here becomes central: so-called prim-
itive recursion.

In addition to computable functions, we might be interested in computable
sets and relations. A set is computable if we can compute the answer to
whether or not a given number is an element of the set, and a relation is com-
putable iff we can compute whether or not a tuple 〈n1, . . . , nk〉 is an element
of the relation. By considering the characteristic function of a set or relation,
discussion of computable sets and relations can be subsumed under that of
computable functions. Thus we can define primitive recursive relations as
well, e.g., the relation “n evenly divides m” is a primitive recursive relation.

Primitive recursive functions—those that can be defined using just primi-
tive recursion—are not, however, the only computable number-theoretic func-
tions. Many generalizations of primitive recursion have been considered, but
the most powerful and widely-accepted additional way of computing func-
tions is by unbounded search. This leads to the definition of partial recur-

80

sive functions, and a related definition to general recursive functions. General
recursive functions are computable and total, and the definition character-
izes exactly the partial recursive functions that happen to be total. Recursive
functions can simulate every other model of computation (Turing machines,
lambda calculus, etc.) and so represent one of the many accepted models of
computation.

6.2 Primitive Recursion

Suppose we specify that a certain function l from N to N satisfies the follow-
ing two clauses:

l(0) = 1

l(x + 1) = 2 · l(x).

It is pretty clear that there is only one function, l, that meets these two criteria.
This is an instance of a definition by primitive recursion. We can define even
more fundamental functions like addition and multiplication by

f (x, 0) = x

f (x, y + 1) = f (x, y) + 1

and

g(x, 0) = 0

g(x, y + 1) = f (g(x, y), x).

Exponentiation can also be defined recursively, by

h(x, 0) = 1

h(x, y + 1) = g(h(x, y), x).

We can also compose functions to build more complex ones; for example,

k(x) = xx + (x + 3) · x
= f (h(x, x), g(f (x, 3), x)).

Remember that the arity of a function is the number of arguments. For
convenience, we will consider a constant, like 7, to be a 0-ary function. (Send
it zero arguments, and it returns 7.) The set of primitive recursive functions is
the set of functions from N to N that you get if you start with 0 and the suc-
cessor function, S(x) = x + 1, and iterate the two operations above, primitive
recursion and composition. The idea is that primitive recursive functions are
defined in a straightforward and explicit way, so that it is intuitively clear that
each one can be computed using finite means.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 81

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 6.1. If f is a k-ary function and g0, . . . , gk−1 are l-ary functions on
the natural numbers, the composition of f with g0, . . . , gk−1 is the l-ary function
h defined by

h(x0, . . . , xl−1) = f (g0(x0, . . . , xl−1), . . . , gk−1(x0, . . . , xl−1)).

Definition 6.2. If f (z0, . . . , zk−1) is a k-ary function and g(x, y, z0, . . . , zk−1) is
a k + 2-ary function, then the function defined by primitive recursion from f and
g is the k + 1-ary function h, defined by the equations

h(0, z0, . . . , zk−1) = f (z0, . . . , zk−1)

h(x + 1, z0, . . . , zk−1) = g(x, h(x, z0, . . . , zk−1), z0, . . . , zk−1)

In addition to the constant, 0, and the successor function, S(x), we will
include among primitive recursive functions the projection functions,

Pn
i (x0, . . . , xn−1) = xi,

for each natural number n and i < n. In the end, we have the following:

Definition 6.3. The set of primitive recursive functions is the set of functions
of various arities from the set of natural numbers to the set of natural numbers,
defined inductively by the following clauses:

1. The constant, 0, is primitive recursive.

2. The successor function, S, is primitive recursive.

3. Each projection function Pn
i is primitive recursive.

4. If f is a k-ary primitive recursive function and g0, . . . , gk−1 are l-ary prim-
itive recursive functions, then the composition of f with g0, . . . , gk−1 is
primitive recursive.

5. If f is a k-ary primitive recursive function and g is a k + 2-ary primi-
tive recursive function, then the function defined by primitive recursion
from f and g is primitive recursive.

Put more concisely, the set of primitive recursive functions is the smallest
set containing the constant 0, the successor function, and projection functions,
and closed under composition and primitive recursion.

Another way of describing the set of primitive recursive functions keeps
track of the “stage” at which a function enters the set. Let S0 denote the set
of starting functions: zero, successor, and the projections. Once Si has been
defined, let Si+1 be the set of all functions you get by applying a single instance
of composition or primitive recursion to functions in Si. Then

S =
⋃

i∈N

Si

82 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

is the set of primitive recursive functions
Our definition of composition may seem too rigid, since g0, . . . , gk−1 are

all required to have the same arity, l. But adding the projection functions
provides the desired flexibility. For example, suppose f and g are ternary
functions and h is the binary function defined by

h(x, y) = f (x, g(x, x, y), y).

Then the definition of h can be rewritten with the projection functions, as

h(x, y) = f (P2
0 (x, y), g(P2

0 (x, y), P2
0 (x, y), P2

1 (x, y)), P2
1 (x, y)).

Then h is the composition of f with P2
0 , l, P2

1 , where

l(x, y) = g(P2
0 (x, y), P2

0 (x, y), P2
1 (x, y)),

i.e., l is the composition of g with P2
0 , P2

0 , P2
1 .

For another example, let us consider one of the informal examples given
above, namely, addition. This is described recursively by the following two
equations:

x + 0 = x

x + (y + 1) = S(x + y).

In other words, addition is the function g defined recursively by the equations

g(0, x) = x

g(y + 1, x) = S(g(y, x)).

But even this is not a strict primitive recursive definition; we need to put it in
the form

g(0, x) = k(x)

g(y + 1, x) = h(y, g(y, x), x)

for some 1-ary primitive recursive function k and some 3-ary primitive recur-
sive function h. We can take k to be P1

0 , and we can define h using composition,

h(y, w, x) = S(P3
1 (y, w, x)).

The function h, being the composition of basic primitive recursive functions,
is primitive recursive; and hence so is g. (Note that, strictly speaking, we
have defined the function g(y, x) meeting the recursive specification of x +
y; in other words, the variables are in a different order. Luckily, addition is
commutative, so here the difference is not important; otherwise, we could
define the function g′ by

g′(x, y) = g(P2
1 (y, x)), P2

0 (y, x)) = g(y, x),

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 83

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

using composition.)
One advantage to having the precise description of the primitive recursive

functions is that we can be systematic in describing them. For example, we can
assign a “notation” to each such function, as follows. Use symbols 0, S, and
Pn

i for zero, successor, and the projections. Now suppose f is defined by com-
position from a k-ary function h and l-ary functions g0, . . . , gk−1, and we have
assigned notations H, G0, . . . , Gk−1 to the latter functions. Then, using a new
symbol Compk,l , we can denote the function f by Compk,l [H, G0, . . . , Gk−1].
For the functions defined by primitive recursion, we can use analogous nota-
tions of the form Reck[G, H], where k denotes that arity of the function being
defined. With this setup, we can denote the addition function by

Rec2[P1
0 , Comp1,3[S, P3

1]].

Having these notations sometimes proves useful.

6.3 Primitive Recursive Functions are Computable

Suppose a function h is defined by primitive recursion

h(0,~z) = f (~z)

h(x + 1,~z) = g(x, h(x,~z),~z)

and suppose the functions f and g are computable. Then h(0,~z) can obviously
be computed, since it is just f (~z) which we assume is computable. h(1,~z) can
then also be computed, since 1 = 0 + 1 and so h(1,~z) is just

g(0, h(0,~z),~z) = g(0, f (~z),~z).

We can go on in this way and compute

h(2,~z) = g(1, g(0, f (~z),~z),~z)

h(3,~z) = g(2, g(1, g(0, f (~z),~z),~z),~z)

h(4,~z) = g(3, g(2, g(1, g(0, f (~z),~z),~z),~z),~z)
...

Thus, to compute h(x,~z) in general, successively compute h(0,~z), h(1,~z), . . . ,
until we reach h(x,~z).

Thus, primitive recursion yields a new computable function if the func-
tions f and g are computable. Composition of functions also results in a com-
putable function if the functions f and gi are computable.

Since the basic functions 0, S, and Pn
i are computable, and composition and

primitive recursion yield computable functions from computable functions,
his means that every primitive recursive function is computable.

84 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

6.4 Examples of Primitive Recursive Functions

Here are some examples of primitive recursive functions:

1. Constants: for each natural number n, n is a 0-ary primitive recursive
function, since it is equal to S(S(. . . S(0))).

2. The identity function: id(x) = x, i.e. P1
0

3. Addition, x + y

4. Multiplication, x · y

5. Exponentiation, xy (with 00 defined to be 1)

6. Factorial, x!

7. The predecessor function, pred(x), defined by

pred(0) = 0, pred(x + 1) = x

8. Truncated subtraction, x −̇ y, defined by

x −̇ 0 = x, x −̇ (y + 1) = pred(x −̇ y)

9. Maximum, max(x, y), defined by

max(x, y) = x + (y −̇ x)

10. Minimum, min(x, y)

11. Distance between x and y, |x− y|

The set of primitive recursive functions is further closed under the follow-
ing two operations:

1. Finite sums: if f (x,~z) is primitive recursive, then so is the function

g(y,~z) =
y

∑
x=0

f (x,~z).

2. Finite products: if f (x,~z) is primitive recursive, then so is the function

h(y,~z) =
y

∏
x=0

f (x,~z).

For example, finite sums are defined recursively by the equations

g(0,~z) = f (0,~z), g(y + 1,~z) = g(y,~z) + f (y + 1,~z).

We can also define boolean operations, where 1 stands for true, and 0 for false:

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 85

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. Negation, not(x) = 1 −̇ x

2. Conjunction, and(x, y) = x · y

Other classical boolean operations like or(x, y) and ifthen(x, y) can be defined
from these in the usual way.

6.5 Primitive Recursive Relations

Definition 6.4. A relation R(~x) is said to be primitive recursive if its charac-
teristic function,

χR(~x) =
{

1 if R(~x)
0 otherwise

is primitive recursive.

In other words, when one speaks of a primitive recursive relation R(~x),
one is referring to a relation of the form χR(~x) = 1, where χR is a primitive
recursive function which, on any input, returns either 1 or 0. For example, the
relation Zero(x), which holds if and only if x = 0, corresponds to the function
χZero, defined using primitive recursion by

χZero(0) = 1, χZero(x + 1) = 0.

It should be clear that one can compose relations with other primitive re-
cursive functions. So the following are also primitive recursive:

1. The equality relation, x = y, defined by Zero(|x− y|)

2. The less-than relation, x ≤ y, defined by Zero(x −̇ y)

Furthermore, the set of primitive recursive relations is closed under boolean
operations:

1. Negation, ¬P

2. Conjunction, P ∧Q

3. Disjunction, P ∨Q

4. Implication, P→ Q

are all primitive recursive, if P and Q are.
One can also define relations using bounded quantification:

1. Bounded universal quantification: if R(x,~z) is a primitive recursive re-
lation, then so is the relation

∀x < y R(x,~z)

which holds if and only if R(x,~z) holds for every x less than y.

86 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. Bounded existential quantification: if R(x,~z) is a primitive recursive re-
lation, then so is

∃x < y R(x,~z).

By convention, we take expressions of the form ∀x < 0 R(x,~z) to be true (for
the trivial reason that there are no x less than 0) and ∃x < 0 R(x,~z) to be false.
A universal quantifier functions just like a finite product; it can also be defined
directly by

g(0,~z) = 1, g(y + 1,~z) = χand(g(y,~z), χR(y,~z)).

Bounded existential quantification can similarly be defined using or. Alter-
natively, it can be defined from bounded universal quantification, using the
equivalence, ∃x < y ϕ(x) ↔ ¬∀x < y¬ϕ(x). Note that, for example, a
bounded quantifier of the form ∃x ≤ y is equivalent to ∃x < y + 1.

Another useful primitive recursive function is:

1. The conditional function, cond(x, y, z), defined by

cond(x, y, z) =
{

y if x = 0
z otherwise

This is defined recursively by

cond(0, y, z) = y, cond(x + 1, y, z) = z.

One can use this to justify:

1. Definition by cases: if g0(~x), . . . , gm(~x) are functions, and R1(~x), . . . , Rm−1(~x)
are relations, then the function f defined by

f (~x) =

g0(~x) if R0(~x)
g1(~x) if R1(~x) and not R0(~x)
...
gm−1(~x) if Rm−1(~x) and none of the previous hold
gm(~x) otherwise

is also primitive recursive.

When m = 1, this is just the function defined by

f (~x) = cond(χ¬R0(~x), g0(~x), g1(~x)).

For m greater than 1, one can just compose definitions of this form.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 87

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

6.6 Bounded Minimization

Proposition 6.5. If R(x,~z) is primitive recursive, so is the function mR(y,~z) which
returns the least x less than y such that R(x,~z) holds, if there is one, and 0 otherwise.
We will write the function mR as

min x < y R(x,~z),

Proof. Note than there can be no x < 0 such that R(x,~z) since there is no x < 0
at all. So mR(x, 0) = 0.

In case the bound is y + 1 we have three cases: (a) There is an x < y such
that R(x,~z), in which case mR(y + 1,~z) = mR(y,~z). (b) There is no such x
but R(y,~z) holds, then mR(y + 1,~z) = y. (c) There is no x < y + 1 such that
R(x,~z), then mR(y + 1,~z) = 0. So,

mR(0,~z) = 0

mR(y + 1,~z) =

mR(y,~z) if ∃x < y R(x,~z)
y otherwise, provided R(y,~z)
0 otherwise.

The choice of “0 otherwise” is somewhat arbitrary. It is in fact even easier
to recursively define the function m′R which returns the least x less than y such
that R(x,~z) holds, and y + 1 otherwise. When we use min, however, we will
always know that the least x such that R(x,~z) exists and is less than y. Thus,
in practice, we will not have to worry about the possibility that if min x <
y R(x,~z) = 0 we do not know if that value indicates that R(0,~z) or that for
no x < y, R(x,~z). As with bounded quantification, min x ≤ y . . . can be
understood as min x < y + 1

All this provides us with a good deal of machinery to show that natural
functions and relations are primitive recursive. For example, the following
are all primitive recursive:

1. The relation “x divides y”, written x | y, defined by

x | y⇔ ∃z ≤ y (x · z) = y.

2. The relation Prime(x), which holds iff x is prime, defined by

Prime(x)⇔ (x ≥ 2∧ ∀y ≤ x (y | x → y = 1∨ y = x)).

3. The function nextPrime(x), which returns the first prime number larger
than x, defined by

nextPrime(x) = min y ≤ x! + 1 (y > x ∧ Prime(y))

88 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Here we are relying on Euclid’s proof of the fact that there is always a
prime number between x and x! + 1.

4. The function p(x), returning the xth prime, defined by p(0) = 2, p(x +
1) = nextPrime(p(x)). For convenience we will write this as px (starting
with 0; i.e. p0 = 2).

6.7 Sequences

The set of primitive recursive functions is remarkably robust. But we will be
able to do even more once we have developed an adequate means of handling
sequences. We will identify finite sequences of natural numbers with natural
numbers in the following way: the sequence 〈a0, a1, a2, . . . , ak〉 corresponds to
the number

pa0+1
0 · pa1+1

1 · pa2+1
2 · · · · · pak+1

k .

We add one to the exponents to guarantee that, for example, the sequences
〈2, 7, 3〉 and 〈2, 7, 3, 0, 0〉 have distinct numeric codes. We will take both 0 and
1 to code the empty sequence; for concreteness, let ∅ denote 0.

Let us define the following functions:

1. len(s), which returns the length of the sequence s:

len(s) =

{
0 if s = 0 or s = 1
min i < s (pi | s ∧ ∀j < s (j > i→ pj 6| s)) + 1 otherwise

Note that we need to bound the search on i; clearly s provides an accept-
able bound.

2. append(s, a), which returns the result of appending a to the sequence s:

append(s, a) =

{
2a+1 if s = 0 or s = 1
s · pa+1

len(s) otherwise

3. element(s, i), which returns the ith element of s (where the initial ele-
ment is called the 0th), or 0 if i is greater than or equal to the length of
s:

element(s, i) =

{
0 if i ≥ len(s)
min j < s (pj+2

i 6 |s)− 1 otherwise

Instead of using the official names for the functions defined above, we in-
troduce a more compact notation. We will use (s)i instead of element(s, i), and
〈s0, . . . , sk〉 to abbreviate append(append(. . . append(∅, s0) . . .), sk). Note that
if s has length k, the elements of s are (s)0, . . . , (s)k−1.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 89

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

It will be useful for us to be able to bound the numeric code of a sequence
in terms of its length and its largest element. Suppose s is a sequence of length
k, each element of which is less than equal to some number x. Then s has at
most k prime factors, each at most pk−1, and each raised to at most x + 1 in the
prime factorization of s. In other words, if we define

sequenceBound(x, k) = pk·(x+1)
k−1 ,

then the numeric code of the sequence s described above is at most sequenceBound(x, k).
Having such a bound on sequences gives us a way of defining new func-

tions using bounded search. For example, suppose we want to define the
function concat(s, t), which concatenates two sequences. One first option is to
define a “helper” function hconcat(s, t, n) which concatenates the first n sym-
bols of t to s. This function can be defined by primitive recursion, as follows:

1. hconcat(s, t, 0) = s

2. hconcat(s, t, n + 1) = append(hconcat(s, t, n), (t)n)

Then we can define concat by

concat(s, t) = hconcat(s, t, len(t)).

But using bounded search, we can be lazy. All we need to do is write down a
primitive recursive specification of the object (number) we are looking for, and
a bound on how far to look. The following works:

concat(s, t) = min v < sequenceBound(s + t, len(s) + len(t))

(len(v) = len(s) + len(t)∧
∀i < len(s) ((v)i = (s)i) ∧ ∀j < len(t) ((v)len(s)+j = (t)j))

We will write s _ t instead of concat(s, t).

6.8 Other Recursions

Using pairing and sequencing, we can justify more exotic (and useful) forms
of primitive recursion. For example, it is often useful to define two functions
simultaneously, such as in the following definition:

f0(0,~z) = k0(~z)

f1(0,~z) = k1(~z)

f0(x + 1,~z) = h0(x, f0(x,~z), f1(x,~z),~z)

f1(x + 1,~z) = h1(x, f0(x,~z), f1(x,~z),~z)

90 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

This is an instance of simultaneous recursion. Another useful way of defining
functions is to give the value of f (x + 1,~z) in terms of all the values f (0,~z),
. . . , f (x,~z), as in the following definition:

f (0,~z) = g(~z)

f (x + 1,~z) = h(x, 〈 f (0,~z), . . . , f (x,~z)〉,~z).
The following schema captures this idea more succinctly:

f (x,~z) = h(x, 〈 f (0,~z), . . . , f (x− 1,~z)〉)
with the understanding that the second argument to h is just the empty se-
quence when x is 0. In either formulation, the idea is that in computing the
“successor step,” the function f can make use of the entire sequence of values
computed so far. This is known as a course-of-values recursion. For a particular
example, it can be used to justify the following type of definition:

f (x,~z) =

{
h(x, f (k(x,~z),~z),~z) if k(x,~z) < x
g(x,~z) otherwise

In other words, the value of f at x can be computed in terms of the value of f
at any previous value, given by k.

You should think about how to obtain these functions using ordinary prim-
itive recursion. One final version of primitive recursion is more flexible in that
one is allowed to change the parameters (side values) along the way:

f (0,~z) = g(~z)

f (x + 1,~z) = h(x, f (x, k(~z)),~z)

This, too, can be simulated with ordinary primitive recursion. (Doing so is
tricky. For a hint, try unwinding the computation by hand.)

Finally, notice that we can always extend our “universe” by defining addi-
tional objects in terms of the natural numbers, and defining primitive recur-
sive functions that operate on them. For example, we can take an integer to
be given by a pair 〈m, n〉 of natural numbers, which, intuitively, represents the
integer m− n. In other words, we say

Integer(x)⇔ length(x) = 2

and then we define the following:

1. iequal(x, y)

2. iplus(x, y)

3. iminus(x, y)

4. itimes(x, y)

Similarly, we can define a rational number to be a pair 〈x, y〉 of integers with
y 6= 0, representing the value x/y. And we can define qequal, qplus, qminus,
qtimes, qdivides, and so on.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 91

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

6.9 Non-Primitive Recursive Functions

The primitive recursive functions do not exhaust the intuitively computable
functions. It should be intuitively clear that we can make a list of all the unary
primitive recursive functions, f0, f1, f2, . . . such that we can effectively com-
pute the value of fx on input y; in other words, the function g(x, y), defined
by

g(x, y) = fx(y)

is computable. But then so is the function

h(x) = g(x, x) + 1

= fx(x) + 1.

For each primitive recursive function fi, the value of h and fi differ at i. So h
is computable, but not primitive recursive; and one can say the same about g.
This is a an “effective” version of Cantor’s diagonalization argument.

One can provide more explicit examples of computable functions that are
not primitive recursive. For example, let the notation gn(x) denote g(g(. . . g(x))),
with n g’s in all; and define a sequence g0, g1, . . . of functions by

g0(x) = x + 1

gn+1(x) = gx
n(x)

You can confirm that each function gn is primitive recursive. Each successive
function grows much faster than the one before; g1(x) is equal to 2x, g2(x)
is equal to 2x · x, and g3(x) grows roughly like an exponential stack of x 2’s.
Ackermann’s function is essentially the function G(x) = gx(x), and one can
show that this grows faster than any primitive recursive function.

Let us return to the issue of enumerating the primitive recursive functions.
Remember that we have assigned symbolic notations to each primitive recur-
sive function; so it suffices to enumerate notations. We can assign a natural
number #(F) to each notation F, recursively, as follows:

#(0) = 〈0〉
#(S) = 〈1〉

#(Pn
i) = 〈2, n, i〉

#(Compk,l [H, G0, . . . , Gk−1]) = 〈3, k, l, #(H), #(G0), . . . , #(Gk−1)〉
#(Recl [G, H]) = 〈4, l, #(G), #(H)〉

Here I am using the fact that every sequence of numbers can be viewed as
a natural number, using the codes from the last section. The upshot is that
every code is assigned a natural number. Of course, some sequences (and
hence some numbers) do not correspond to notations; but we can let fi be the
unary primitive recursive function with notation coded as i, if i codes such a

92 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

notation; and the constant 0 function otherwise. The net result is that we have
an explicit way of enumerating the unary primitive recursive functions.

(In fact, some functions, like the constant zero function, will appear more
than once on the list. This is not just an artifact of our coding, but also a result
of the fact that the constant zero function has more than one notation. We will
later see that one can not computably avoid these repetitions; for example,
there is no computable function that decides whether or not a given notation
represents the constant zero function.)

We can now take the function g(x, y) to be given by fx(y), where fx refers
to the enumeration we have just described. How do we know that g(x, y) is
computable? Intuitively, this is clear: to compute g(x, y), first “unpack” x,
and see if it a notation for a unary function; if it is, compute the value of that
function on input y.

You may already be convinced that (with some work!) one can write
a program (say, in Java or C++) that does this; and now we can appeal to
the Church-Turing thesis, which says that anything that, intuitively, is com-
putable can be computed by a Turing machine.

Of course, a more direct way to show that g(x, y) is computable is to de-
scribe a Turing machine that computes it, explicitly. This would, in partic-
ular, avoid the Church-Turing thesis and appeals to intuition. But, as noted
above, working with Turing machines directly is unpleasant. Soon we will
have built up enough machinery to show that g(x, y) is computable, appeal-
ing to a model of computation that can be simulated on a Turing machine:
namely, the recursive functions.

6.10 Partial Recursive Functions

To motivate the definition of the recursive functions, note that our proof that
there are computable functions that are not primitive recursive actually estab-
lishes much more. The argument was simple: all we used was the fact was
that it is possible to enumerate functions f0, f1, . . . such that, as a function of
x and y, fx(y) is computable. So the argument applies to any class of functions
that can be enumerated in such a way. This puts us in a bind: we would like to
describe the computable functions explicitly; but any explicit description of a
collection of computable functions cannot be exhaustive!

The way out is to allow partial functions to come into play. We will see
that it is possible to enumerate the partial computable functions. In fact, we
already pretty much know that this is the case, since it is possible to enumerate
Turing machines in a systematic way. We will come back to our diagonal
argument later, and explore why it does not go through when partial functions
are included.

The question is now this: what do we need to add to the primitive recur-
sive functions to obtain all the partial recursive functions? We need to do two

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 93

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

things:

1. Modify our definition of the primitive recursive functions to allow for
partial functions as well.

2. Add something to the definition, so that some new partial functions are
included.

The first is easy. As before, we will start with zero, successor, and projec-
tions, and close under composition and primitive recursion. The only differ-
ence is that we have to modify the definitions of composition and primitive
recursion to allow for the possibility that some of the terms in the definition
are not defined. If f and g are partial functions, we will write f (x) ↓ to mean
that f is defined at x, i.e., x is in the domain of f ; and f (x) ↑ to mean the
opposite, i.e., that f is not defined at x. We will use f (x) ' g(x) to mean that
either f (x) and g(x) are both undefined, or they are both defined and equal.
We will use these notations for more complicated terms as well. We will adopt
the convention that if h and g0, . . . , gk all are partial functions, then

h(g0(~x), . . . , gk(~x))

is defined if and only if each gi is defined at ~x, and h is defined at g0(~x),
. . . , gk(~x). With this understanding, the definitions of composition and prim-
itive recursion for partial functions is just as above, except that we have to
replace “=” by “'”.

What we will add to the definition of the primitive recursive functions to
obtain partial functions is the unbounded search operator. If f (x,~z) is any partial
function on the natural numbers, define µx f (x,~z) to be

the least x such that f (0,~z), f (1,~z), . . . , f (x,~z) are all defined, and
f (x,~z) = 0, if such an x exists

with the understanding that µx f (x,~z) is undefined otherwise. This defines
µx f (x,~z) uniquely.

Note that our definition makes no reference to Turing machines, or algo-
rithms, or any specific computational model. But like composition and prim-
itive recursion, there is an operational, computational intuition behind un-
bounded search. When it comes to the computability of a partial function,
arguments where the function is undefined correspond to inputs for which
the computation does not halt. The procedure for computing µx f (x,~z) will
amount to this: compute f (0,~z), f (1,~z), f (2,~z) until a value of 0 is returned. If
any of the intermediate computations do not halt, however, neither does the
computation of µx f (x,~z).

If R(x,~z) is any relation, µx R(x,~z) is defined to be µx (1 −̇ χR(x,~z)). In
other words, µx R(x,~z) returns the least value of x such that R(x,~z) holds. So,
if f (x,~z) is a total function, µx f (x,~z) is the same as µx (f (x,~z) = 0). But note

94 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

that our original definition is more general, since it allows for the possibility
that f (x,~z) is not everywhere defined (whereas, in contrast, the characteristic
function of a relation is always total).

Definition 6.6. The set of partial recursive functions is the smallest set of partial
functions from the natural numbers to the natural numbers (of various arities)
containing zero, successor, and projections, and closed under composition,
primitive recursion, and unbounded search.

Of course, some of the partial recursive functions will happen to be total,
i.e., defined for every argument.

Definition 6.7. The set of recursive functions is the set of partial recursive func-
tions that are total.

A recursive function is sometimes called “total recursive” to emphasize
that it is defined everywhere.

6.11 The Normal Form Theorem

Theorem 6.8 (Kleene’s Normal Form Theorem). There is a primitive recursive re-
lation T(e, x, s) and a primitive recursive function U(s), with the following property:
if f is any partial recursive function, then for some e,

f (x) ' U(µs T(e, x, s))

for every x.

The proof of the normal form theorem is involved, but the basic idea is
simple. Every partial recursive function has an index e, intuitively, a number
coding its program or definition. If f (x) ↓, the computation can be recorded
systematically and coded by some number s, and that s codes the computation
of f on input x can be checked primitive recursively using only x and the
definition e. This means that T is primitive recursive. Given the full record of
the computation s, the “upshot” of s is the value of f (x), and it can be obtained
from s primitive recursively as well.

The normal form theorem shows that only a single unbounded search is
required for the definition of any partial recursive function. We can use the
numbers e as “names” of partial recursive functions, and write ϕe for the func-
tion f defined by the equation in the theorem. Note that any partial recursive
function can have more than one index—in fact, every partial recursive func-
tion has infinitely many indices.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 95

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

6.12 The Halting Problem

The halting problem in general is the problem of deciding, given the specifica-
tion e (e.g., program) of a computable function and a number n, whether the
computation of the function on input n halts, i.e., produces a result. Famously,
Alan Turing proved that this problem itself cannot be solved by a computable
function, i.e., the function

h(e, n) =

{
1 if computation e halts on input n
0 otherwise,

is not computable.
In the context of partial recursive functions, the role of the specification

of a program may be played by the index e given in Kleene’s normal form
theorem. If f is a partial recursive function, any e for which the equation in
the normal form theorem holds, is an index of f . Given a number e, the normal
form theorem states that

ϕe(x) ' U(µs T(e, x, s))

is partial recursive, and for every partial recursive f : N → N, there is an
e ∈ N such that ϕe(x) ' f (x) for all x ∈ N. In fact, for each such f there is
not just one, but infinitely many such e. The halting function h is defined by

h(e, x) =

{
1 if ϕe(x) ↓
0 otherwise.

Note that h(e, x) = 0 if ϕe(x) ↑, but also when e is not the index of a partial
recursive function at all.

Theorem 6.9. The halting function h is not partial recursive.

Proof. If h were partial recursive, we could define

d(y) =

{
1 if h(y, y) = 0
µx x 6= x otherwise.

From this definition it follows that

1. d(y) ↓ iff ϕy(y) ↑ or y is not the index of a partial recursive function.

2. d(y) ↑ iff ϕy(y) ↓.

If h were partial recursive, then d would be partial recursive as well. Thus,
by the Kleene normal form theorem, it has an index ed. Consider the value of
h(ed, ed). There are two possible cases, 0 and 1.

96 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. If h(ed, ed) = 1 then ϕed(ed) ↓. But ϕed ' d, and d(ed) is defined iff
h(ed, ed) = 0. So h(ed, ed) 6= 1.

2. If h(ed, ed) = 0 then either ed is not the index of a partial recursive func-
tion, or it is and ϕed(ed) ↑. But again, ϕed ' d, and d(ed) is undefined iff
ϕed(ed) ↓.

The upshot is that ed cannot, after all, be the index of a partial recursive func-
tion. But if h were partial recursive, d would be too, and so our definition of
ed as an index of it would be admissible. We must conclude that h cannot be
partial recursive.

6.13 General Recursive Functions

There is another way to obtain a set of total functions. Say a total function
f (x,~z) is regular if for every sequence of natural numbers~z, there is an x such
that f (x,~z) = 0. In other words, the regular functions are exactly those func-
tions to which one can apply unbounded search, and end up with a total func-
tion. One can, conservatively, restrict unbounded search to regular functions:

Definition 6.10. The set of general recursive functions is the smallest set of func-
tions from the natural numbers to the natural numbers (of various arities)
containing zero, successor, and projections, and closed under composition,
primitive recursion, and unbounded search applied to regular functions.

Clearly every general recursive function is total. The difference between
Definition 6.10 and Definition 6.7 is that in the latter one is allowed to use
partial recursive functions along the way; the only requirement is that the
function you end up with at the end is total. So the word “general,” a historic
relic, is a misnomer; on the surface, Definition 6.10 is less general than Defi-
nition 6.7. But, fortunately, the difference is illusory; though the definitions
are different, the set of general recursive functions and the set of recursive
functions are one and the same.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 97

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 7

The Lambda Calculus

7.1 Introduction

The lambda calculus was originally designed by Alonzo Church in the early
1930s as a basis for constructive logic, and not as a model of the computable
functions. But soon after the Turing computable functions, the recursive func-
tions, and the general recursive functions were shown to be equivalent, lambda
computability was added to the list. The fact that this initially came as a small
surprise makes the characterization all the more interesting.

Lambda notiation is a convenient way of referring to a function directly
by a symbolic expression which defines it, instead of defining a name for it.
Instead of saying “let f be the function defined by f (x) = x + 3,” one can
say, “let f be the function λx. (x + 3).” In other words, λx. (x + 3) is just a
name for the function that adds three to its argument. In this expression, x
is a dummy variable, or a placeholder: the same function can just as well
be denoted by λy. (y + 3). The notation works even with other parameters
around. For example, suppose g(x, y) is a function of two variables, and k is a
natural number. Then λx. g(x, k) is the function which maps any x to g(x, k).

This way of defining a function from a symbolic expression is known as
lambda abstraction. The flip side of lambda abstraction is application: assuming
one has a function f (say, defined on the natural numbers), one can apply it to
any value, like 2. In conventional notation, of course, we write f (2) for the
result.

What happens when you combine lambda abstraction with application?
Then the resulting expression can be simplified, by “plugging” the applicand
in for the abstracted variable. For example,

(λx. (x + 3))(2)

can be simplified to 2 + 3.
Up to this point, we have done nothing but introduce new notations for

98

conventional notions. The lambda calculus, however, represents a more radi-
cal departure from the set-theoretic viewpoint. In this framework:

1. Everything denotes a function.

2. Functions can be defined using lambda abstraction.

3. Anything can be applied to anything else.

For example, if F is a term in the lambda calculus, F(F) is always assumed
to be meaningful. This liberal framework is known as the untyped lambda
calculus, where “untyped” means “no restriction on what can be applied to
what.”

There is also a typed lambda calculus, which is an important variation on
the untyped version. Although in many ways the typed lambda calculus is
similar to the untyped one, it is much easier to reconcile with a classical set-
theoretic framework, and has some very different properties.

Research on the lambda calculus has proved to be central in theoretical
computer science, and in the design of programming languages. LISP, de-
signed by John McCarthy in the 1950s, is an early example of a language that
was influenced by these ideas.

7.2 The Syntax of the Lambda Calculus

One starts with a sequence of variables x, y, z, . . . and some constant symbols
a, b, c, The set of terms is defined inductively, as follows:

1. Each variable is a term.

2. Each constant is a term.

3. If M and N are terms, so is (MN).

4. If M is a term and x is a variable, then (λx. M) is a term.

The system without any constants at all is called the pure lambda calculus.
We will follow a few notational conventions:

1. When parentheses are left out, application takes place from left to right.
For example, if M, N, P, and Q are terms, then MNPQ abbreviates
(((MN)P)Q).

2. Again, when parentheses are left out, lambda abstraction is to be given
the widest scope possible. From example, λx. MNP is read λx. (MNP).

3. A lambda can be used to abstract multiple variables. For example, λxyz. M
is short for λx. λy. λz. M.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 99

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

For example,
λxy. xxyxλz. xz

abbreviates
λx. λy. ((((xx)y)x)λz. (xz)).

You should memorize these conventions. They will drive you crazy at first,
but you will get used to them, and after a while they will drive you less crazy
than having to deal with a morass of parentheses.

Two terms that differ only in the names of the bound variables are called α-
equivalent; for example, λx. x and λy. y. It will be convenient to think of these
as being the “same” term; in other words, when we say that M and N are the
same, we also mean “up to renamings of the bound variables.” Variables that
are in the scope of a λ are called “bound”, while others are called “free.” There
are no free variables in the previous example; but in

(λz. yz)x

y and x are free, and z is bound.

7.3 Reduction of Lambda Terms

What can one do with lambda terms? Simplify them. If M and N are any
lambda terms and x is any variable, we can use M[N/x] to denote the result
of substituting N for x in M, after renaming any bound variables of M that
would interfere with the free variables of N after the substitution. For exam-
ple,

(λw. xxw)[yyz/x] = λw. (yyz)(yyz)w.

Alternative notations for substitution are [N/x]M, M[N/x], and also M[x/N].
Beware!

Intuitively, (λx. M)N and M[N/x] have the same meaning; the act of re-
placing the first term by the second is called β-conversion. More generally,
if it is possible convert a term P to P′ by β-conversion of some subterm, one
says P β-reduces to P′ in one step. If P can be converted to P′ with any num-
ber of one-step reductions (possibly none), then P β-reduces to P′. A term that
cannot be β-reduced any further is called β-irreducible, or β-normal. I will say
“reduces” instead of “β-reduces,” etc., when the context is clear.

Let us consider some examples.

1. We have

(λx. xxy)λz. z .1 (λz. z)(λz. z)y

.1 (λz. z)y

.1 y

100 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. “Simplifying” a term can make it more complex:

(λx. xxy)(λx. xxy) .1 (λx. xxy)(λx. xxy)y

.1 (λx. xxy)(λx. xxy)yy

.1 . . .

3. It can also leave a term unchanged:

(λx. xx)(λx. xx) .1 (λx. xx)(λx. xx)

4. Also, some terms can be reduced in more than one way; for example,

(λx. (λy. yx)z)v .1 (λy. yv)z

by contracting the outermost application; and

(λx. (λy. yx)z)v .1 (λx. zx)v

by contracting the innermost one. Note, in this case, however, that both
terms further reduce to the same term, zv.

The final outcome in the last example is not a coincidence, but rather il-
lustrates a deep and important property of the lambda calculus, known as the
“Church-Rosser property.”

7.4 The Church-Rosser Property

Theorem 7.1. Let M, N1, and N2 be terms, such that M . N1 and M . N2. Then
there is a term P such that N1 . P and N2 . P.

Corollary 7.2. Suppose M can be reduced to normal form. Then this normal form is
unique.

Proof. If M . N1 and M . N2, by the previous theorem there is a term P such
that N1 and N2 both reduce to P. If N1 and N2 are both in normal form, this
can only happen if N1 = P = N2.

Finally, we will say that two terms M and N are β-equivalent, or just equiv-
alent, if they reduce to a common term; in other words, if there is some P such
that M . P and N . P. This is written M ≡ N. Using Theorem 7.1, you can
check that ≡ is an equivalence relation, with the additional property that for
every M and N, if M . N or N . M, then M ≡ N. (In fact, one can show that
≡ is the smallest equivalence relation having this property.)

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 101

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

7.5 Representability by Lambda Terms

How can the lambda calculus serve as a model of computation? At first, it is
not even clear how to make sense of this statement. To talk about computabil-
ity on the natural numbers, we need to find a suitable representation for such
numbers. Here is one that works surprisingly well.

Definition 7.3. For each natural number n, define the numeral n to be the
lambda term λx. λy. (x(x(x(. . . x(y))))), where there are n x’s in all.

The terms n are “iterators”: on input f , n returns the function mapping y
to f n(y). Note that each numeral is normal. We can now say what it means
for a lambda term to “compute” a function on the natural numbers.

Definition 7.4. Let f (x0, . . . , xn−1) be an n-ary partial function from N to N.
We say a lambda term X represents f if for every sequence of natural numbers
m0, . . . , mn−1,

Xm0m1 . . . mn−1 . f (m0, m1, . . . , mn−1)

if f (m0, . . . , mn−1) is defined, and Xm0m1 . . . mn−1 has no normal form other-
wise.

Theorem 7.5. A function f is a partial computable function if and only if it is rep-
resented by a lambda term.

This theorem is somewhat striking. As a model of computation, the lambda
calculus is a rather simple calculus; the only operations are lambda abstrac-
tion and application! From these meager resources, however, it is possible to
implement any computational procedure.

7.6 Lambda Representable Functions are Computable

Theorem 7.6. If a partial function f is represented by a lambda term, it is com-
putable.

Proof. Suppose a function f , is represented by a lambda term X. Let us de-
scribe an informal procedure to compute f . On input m0, . . . , mn−1, write
down the term Xm0 . . . mn−1. Build a tree, first writing down all the one-step
reductions of the original term; below that, write all the one-step reductions
of those (i.e., the two-step reductions of the original term); and keep going. If
you ever reach a numeral, return that as the answer; otherwise, the function
is undefined.

An appeal to Church’s thesis tells us that this function is computable. A
better way to prove the theorem would be to give a recursive description of
this search procedure. For example, one could define a sequence primitive re-
cursive functions and relations, “IsASubterm,” “Substitute,” “ReducesToInOneStep,”

102 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

“ReductionSequence,” “Numeral,” etc. The partial recursive procedure for
computing f (m0, . . . , mn−1) is then to search for a sequence of one-step reduc-
tions starting with Xm0 . . . mn−1 and ending with a numeral, and return the
number corresponding to that numeral. The details are long and tedious but
otherwise routine.

7.7 Computable Functions are Lambda Representable

Theorem 7.7. Every computable partial function if representable by a lambda term.

Proof. Wwe need to show that every partial computable function f is rep-
resented by a lambda term f . By Kleene’s normal form theorem, it suffices
to show that every primitive recursive function is represented by a lambda
term, and then that the functions so represented are closed under suitable
compositions and unbounded search. To show that every primitive recursive
function is represented by a lambda term, it suffices to show that the initial
functions are represented, and that the partial functions that are represented
by lambda terms are closed under composition, primitive recursion, and un-
bounded search.

We will use a more conventional notation to make the rest of the proof
more readable. For example, we will write M(x, y, z) instead of Mxyz. While
this is suggestive, you should remember that terms in the untyped lambda
calculus do not have associated arities; so, for the same term M, it makes just
as much sense to write M(x, y) and M(x, y, z, w). But using this notation indi-
cates that we are treating M as a function of three variables, and helps make
the intentions behind the definitions clearer. In a similar way, we will say
“define M by M(x, y, z) = . . . ” instead of “define M by M = λx. λy. λz.”

7.8 The Basic Primitive Recursive Functions are Lambda
Representable

Lemma 7.8. The functions 0, S, and Pn
i are lambda representable.

Proof. Zero, 0, is just λx. λy. y.
The successor function S, is defined by S(u) = λx. λy. x(uxy). You should

think about why this works; for each numeral n, thought of as an iterator, and
each function f , S(n, f) is a function that, on input y, applies f n times starting
with y, and then applies it once more.

There is nothing to say about projections: Pn
i (x0, . . . , xn−1) = xi. In other

words, by our conventions, Pn
i is the lambda term λx0. . . . λxn−1. xi.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 103

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

7.9 Lambda Representable Functions Closed under
Composition

Lemma 7.9. The lambda representable functions are closed under composition.

Proof. Suppose f is defined by composition from h, g0, . . . , gk−1. Assuming h,
g0, . . . , gk−1 are represented by h, g0, . . . , gk−1, respectively, we need to find a
term f representing f . But we can simply define f by

f (x0, . . . , xl−1) = h(g0(x0, . . . , xl−1), . . . , gk−1(x0, . . . , xl−1)).

In other words, the language of the lambda calculus is well suited to represent
composition.

7.10 Lambda Representable Functions Closed under
Primitive Recursion

When it comes to primitive recursion, we finally need to do some work. We
will have to proceed in stages. As before, on the assumption that we already
have terms g and h representing functions g and h, respectively, we want a
term f representing the function f defined by

f (0,~z) = g(~z)

f (x + 1,~z) = h(z, f (x,~z),~z).

So, in general, given lambda terms G′ and H′, it suffices to find a term F such
that

F(0,~z) ≡ G′(~z)

F(n + 1,~z) ≡ H′(n, F(n,~z),~z)

for every natural number n; the fact that G′ and H′ represent g and h means
that whenever we plug in numerals ~m for~z, F(n + 1, ~m) will normalize to the
right answer.

But for this, it suffices to find a term F satisfying

F(0) ≡ G

F(n + 1) ≡ H(n, F(n))

for every natural number n, where

G = λ~z. G′(~z) and

H(u, v) = λ~z. H′(u, v(u,~z),~z).

104 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

In other words, with lambda trickery, we can avoid having to worry about the
extra parameters~z—they just get absorbed in the lambda notation.

Before we define the term F, we need a mechanism for handling ordered
pairs. This is provided by the next lemma.

Lemma 7.10. There is a lambda term D such that for each pair of lambda terms M
and N, D(M, N)(0) . M and D(M, N)(1) . N.

Proof. First, define the lambda term K by

K(y) = λx. y.

In other words, K is the term λy. λx. y. Looking at it differently, for every M,
K(M) is a constant function that returns M on any input.

Now define D(x, y, z) by D(x, y, z) = z(K(y))x. Then we have

D(M, N, 0) . 0(K(N))M . M and

D(M, N, 1) . 1(K(N))M . K(N)M . N,

as required.

The idea is that D(M, N) represents the pair 〈M, N〉, and if P is assumed
to represent such a pair, P(0) and P(1) represent the left and right projections,
(P)0 and (P)1. We will use the latter notations.

Lemma 7.11. The lambda representable functions are closed under primitive recur-
sion.

Proof. We need to show that given any terms, G and H, we can find a term F
such that

F(0) ≡ G

F(n + 1) ≡ H(n, F(n))

for every natural number n. The idea is roughly to compute sequences of pairs

〈0, F(0)〉, 〈1, F(1)〉, . . . ,

using numerals as iterators. Notice that the first pair is just 〈0, G〉. Given a
pair 〈n, F(n)〉, the next pair, 〈n + 1, F(n + 1)〉 is supposed to be equivalent to
〈n + 1, H(n, F(n))〉. We will design a lambda term T that makes this one-step
transition.

The details are as follows. Define T(u) by

T(u) = 〈S((u)0), H((u)0, (u)1)〉.

Now it is easy to verify that for any number n,

T(〈n, M〉) . 〈n + 1, H(n, M)〉.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 105

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

As suggested above, given G and H, define F(u) by

F(u) = (u(T, 〈0, G〉))1.

In other words, on input n, F iterates T n times on 〈0, G〉, and then returns the
second component. To start with, we have

1. 0(T, 〈0, G〉) ≡ 〈0, G〉

2. F(0) ≡ G

By induction on n, we can show that for each natural number one has the
following:

1. n + 1(T, 〈0, G〉) ≡ 〈n + 1, F(n + 1)〉

2. F(n + 1) ≡ H(n, F(n))

For the second clause, we have

F(n + 1) . (n + 1(T, 〈0, G〉))1

≡ (T(n(T, 〈0, G〉)))1

≡ (T(〈n, F(n)〉))1

≡ (〈n + 1, H(n, F(n))〉)1

≡ H(n, F(n)).

Here we have used the induction hypothesis on the second-to-last line. For
the first clause, we have

n + 1(T, 〈0, G〉) ≡ T(n(T, 〈0, G〉))
≡ T(〈n, F(n)〉)
≡ 〈n + 1, H(n, F(n))〉
≡ 〈n + 1, F(n + 1)〉.

Here we have used the second clause in the last line. So we have shown
F(0) ≡ G and, for every n, F(n + 1) ≡ H(n, F(n)), which is exactly what
we needed.

7.11 Fixed-Point Combinators

Suppose you have a lambda term g, and you want another term k with the
property that k is β-equivalent to gk. Define terms

diag(x) = xx

and
l(x) = g(diag(x))

106 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

using our notational conventions; in other words, l is the term λx. g(xx). Let
k be the term ll. Then we have

k = (λx. g(xx))(λx. g(xx))

. g((λx. g(xx))(λx. g(xx)))

= gk.

If one takes
Y = λg. ((λx. g(xx))(λx. g(xx)))

then Yg and g(Yg) reduce to a common term; so Yg ≡β g(Yg). This is known
as “Curry’s combinator.” If instead one takes

Y = (λxg. g(xxg))(λxg. g(xxg))

then in fact Yg reduces to g(Yg), which is a stronger statement. This latter
version of Y is known as “Turing’s combinator.”

7.12 Lambda Representable Functions Closed under
Minimization

Lemma 7.12. Suppose f (x, y) is primitive recursive. Let g be defined by

g(x) ' µy f (x, y).

Then g is represented by a lambda term.

Proof. The idea is roughly as follows. Given x, we will use the fixed-point
lambda term Y to define a function hx(n) which searches for a y starting at n;
then g(x) is just hx(0). The function hx can be expressed as the solution of a
fixed-point equation:

hx(n) '
{

n if f (x, n) = 0
hx(n + 1) otherwise.

Here are the details. Since f is primitive recursive, it is represented by
some term F. Remember that we also have a lambda term D, such that D(M, N, 0̄) .
M and D(M, N, 1̄) . N. Fixing x for the moment, to represent hx we want to
find a term H (depending on x) satisfying

H(n) ≡ D(n, H(S(n)), F(x, n)).

We can do this using the fixed-point term Y. First, let U be the term

λh. λz. D(z, (h(Sz)), F(x, z)),

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 107

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

and then let H be the term YU. Notice that the only free variable in H is x. Let
us show that H satisfies the equation above.

By the definition of Y, we have

H = YU ≡ U(YU) = U(H).

In particular, for each natural number n, we have

H(n) ≡ U(H, n)

. D(n, H(S(n)), F(x, n)),

as required. Notice that if you substitute a numeral m for x in the last line, the
expression reduces to n if F(m, n) reduces to 0, and it reduces to H(S(n)) if
F(m, n) reduces to any other numeral.

To finish off the proof, let G be λx. H(0). Then G represents g; in other
words, for every m, G(m) reduces to reduces to g(m), if g(m) is defined, and
has no normal form otherwise.

108 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 8

Computability Theory

8.1 Introduction

The branch of logic known as Computability Theory deals with issues having to
do with the computability, or relative computability, of functions and sets. It is
a evidence of Kleene’s influence that the subject used to be known as Recursion
Theory, and today, both names are commonly used.

Let us call a function f : N 7→ N partial computable if it can be computed
in some model of computation. If f is total we will simply say that f is com-
putable. A relation R with computable characteristic function χR is also called
computable. If f and g are partial functions, we will write f (x) ↓ to mean that
f is defined at x, i.e., x is in the domain of f ; and f (x) ↑ to mean the opposite,
i.e., that f is not defined at x. We will use f (x) ' g(x) to mean that either f (x)
and g(x) are both undefined, or they are both defined and equal.

One can explore the subject without having to refer to a specific model
of computation. To do this, one shows that there is a universal partial com-
putable function, Un(k, x). This allows us to enumerate the partial computable
functions. We will adopt the notation ϕk to denote the k-th unary partial com-
putable function, defined by ϕk(x) ' Un(k, x). (Kleene used {k} for this pur-
pose, but this notation has not been used as much recently.) Slightly more
generally, we can uniformly enumerate the partial computable functions of
arbitrary arities, and we will use ϕn

k to denote the k-th n-ary partial recursive
function.

Recall that if f (~x, y) is a total or partial function, then µy f (~x, y) is the
function of ~x that returns the least y such that f (~x, y) = 0, assuming that all of
f (~x, 0), . . . , f (~x, y− 1) are defined; if there is no such y, µy f (~x, y) is undefined.
If R(~x, y) is a relation, µy R(~x, y) is defined to be the least y such that R(~x, y) is
true; in other words, the least y such that one minus the characteristic function
of R is equal to zero at ~x, y.

To show that a function is computable, there are two ways one can pro-
ceed:

109

1. Rigorously: describe a Turing machine or partial recursive function ex-
plicitly, and show that it computes the function you have in mind;

2. Informally: describe an algorithm that computes it, and appeal to Church’s
thesis.

There is no fine line between the two; a detailed description of an algorithm
should provide enough information so that it is relatively clear how one could,
in principle, design the right Turing machine or sequence of partial recursive
definitions. Fully rigorous definitions are unlikely to be informative, and we
will try to find a happy medium between these two approaches; in short, we
will try to find intuitive yet rigorous proofs that the precise definitions could
be obtained.

8.2 Coding Computations

In every model of computation, it is possible to do the following:

1. Describe the definitions of computable functions in a systematic way. For
instance, you can think of Turing machine specifications, recursive def-
initions, or programs in a programming language as providing these
definitions.

2. Describe the complete record of the computation of a function given by
some definition for a given input. For instance, a Turing machine com-
putation can be described by the sequence of configurations (state of the
machine, contents of the tape) for each step of computation.

3. Test whether a putative record of a computation is in fact the record of
how a computable function with a given definition would be computed
for a given input.

4. Extract from such a description of the complete record of a computation
the value of the function for a given input. For instance, the contents of
the tape in the very last step of a halting Turing machine computation is
the value.

Using coding, it is possible to assign to each description of a computable
function a numerical index in such a way that the instructions can be recovered
from the index in a computable way. Similarly, the complete record of a com-
putation can be coded by a single number as well. The resulting arithmetical
relation “s codes the record of computation of the function with index e for
input x” and the function “output of computation sequence with code s” are
then computable; in fact, they are primitive recursive.

This fundamental fact is very powerful, and allows us to prove a number
of striking and important results about computability, independently of the
model of computation chosen.

110 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

8.3 The Normal Form Theorem

Theorem 8.1 (Kleene’s Normal Form Theorem). There are a primitive recursive
relation T(k, x, s) and a primitive recursive function U(s), with the following prop-
erty: if f is any partial computable function, then for some k,

f (x) ' U(µs T(k, x, s))

for every x.

Proof Sketch. For any model of computation one can rigorously define a de-
scription of the computable function f and code such description using a nat-
ural number k. One can also rigorously define a notion of “computation se-
quence” which records the process of computing the function with index k for
input x. These computation sequences can likewise be coded as numbers s.
This can be done in such a way that (a) it is decidable whether a number s
codes the computation sequence of the function with index k on input x and
(b) what the end result of the computation sequence coded by s is. In fact, the
relation in (a) and the function in (b) are primitive recursive.

In order to give a rigorous proof of the Normal Form Theorem, we would
have to fix a model of computation and carry out the coding of descriptions of
computable functions and of computation sequences in detail, and verify that
the relation T and function U are primitive recursive. For most applications,
it suffices that T and U are computable and that U is total.

It is probably best to remember the proof of the normal form theorem in
slogan form: µs T(k, x, s) searches for a computation sequence of the function
with index k on input x, and U returns the output of the computation sequence
if one can be found.

T and U can be used to define the enumeration ϕ0, ϕ1, ϕ2, From now
on, we will assume that we have fixed a suitable choice of T and U, and take
the equation

ϕe(x) ' U(µs T(e, x, s))

to be the definition of ϕe.
Here is another useful fact:

Theorem 8.2. Every partial computable function has infinitely many indices.

Again, this is intuitively clear. Given any (description of) a computable
function, one can come up with a different description which computes the
same function (input-output pair) but does so, e.g., by first doing something
that has no effect on the computation (say, test if 0 = 0, or count to 5, etc.). The
index of the altered description will always be different from the original in-
dex. Both are indices of the same function, just computed slightly differently.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 111

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

8.4 The s-m-n Theorem

The next theorem is known as the “s-m-n theorem,” for a reason that will be
clear in a moment. The hard part is understanding just what the theorem says;
once you understand the statement, it will seem fairly obvious.

Theorem 8.3. For each pair of natural numbers n and m, there is a primitive re-
cursive function sm

n such that for every sequence x, a0, . . . , am−1, y0 ,. . . , yn−1, we
have

ϕn
sm

n (x,a0,...,am−1)
(y0, . . . , yn−1) ' ϕm+n

x (a0, . . . , am−1, y0, . . . , yn−1).

It is helpful to think of sm
n as acting on programs. That is, sm

n takes a pro-
gram, x, for an (m + n)-ary function, as well as fixed inputs a0, . . . , am−1; and
it returns a program, sm

n (x, a0, . . . , am−1), for the n-ary function of the remain-
ing arguments. It you think of x as the description of a Turing machine, then
sm

n (x, a0, . . . , am−1) is the Turing machine that, on input y0, . . . , yn−1, prepends
a0, . . . , am−1 to the input string, and runs x. Each sm

n is then just a primitive
recursive function that finds a code for the appropriate Turing machine.

8.5 The Universal Partial Computable Function

Theorem 8.4. There is a universal partial computable function Un(k, x). In other
words, there is a function Un(k, x) such that:

1. Un(k, x) is partial computable.

2. If f (x) is any partial computable function, then there is a natural number k
such that f (x) ' Un(k, x) for every x.

Proof. Let Un(k, x) ' U(µs T(k, x, s)) in Kleene’s normal form theorem.

This is just a precise way of saying that we have an effective enumeration
of the partial computable functions; the idea is that if we write fk for the func-
tion defined by fk(x) = Un(k, x), then the sequence f0, f1, f2, . . . includes all
the partial computable functions, with the property that fk(x) can be com-
puted “uniformly” in k and x. For simplicity, we am using a binary func-
tion that is universal for unary functions, but by coding sequences of num-
bers we can easily generalize this to more arguments. For example, note that
if f (x, y, z) is a 3-place partial recursive function, then the function g(x) '
f ((x)0, (x)1, (x)2) is a unary recursive function.

8.6 No Universal Computable Function

Theorem 8.5. There is no universal computable function. In other words, the uni-
versal function Un′(k, x) = ϕk(x) is not computable.

112 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. This theorem says that there is no total computable function that is uni-
versal for the total computable functions. The proof is a simple diagonaliza-
tion: if Un′(k, x) were total and computable, then

d(x) = Un′(x, x) + 1

would also be total and computable. However, for every k, d(k) is not equal
to Un′(k, k).

Theorem Theorem 8.4 above shows that we can get around this diagonal-
ization argument, but only at the expense of allowing partial functions. It is
worth trying to understand what goes wrong with the diagonalization argu-
ment, when we try to apply it in the partial case. In particular, the function
h(x) = Un(x, x) + 1 is partial recursive. Suppose h is the k-th function in the
enumeration; what can we say about h(k)?

8.7 The Halting Problem

Since, in our construction, Un(k, x) is defined if and only if the computation
of the function coded by k produces a value for input x, it is natural to ask if
we can decide whether this is the case. And in fact, it is not. For the Turing
machine model of computation, this means that whether a given Turing ma-
chine halts on a given input is computationally undecidable. The following
theorem is therefore known as the “undecidability of the halting problem.” I
will provide two proofs below. The first continues the thread of our previous
discussion, while the second is more direct.

Theorem 8.6. Let

h(k, x) =

{
1 if Un(k, x) is defined
0 otherwise.

Then h is not computable.

Proof. If h were computable, we would have a universal computable function,
as follows. Suppose h is computable, and define

Un′(k, x) =

{
f nUn(k, x) if h(k, x) = 1
0 otherwise.

But now Un′(k, x) is a total function, and is computable if h is. For instance,
we could define g using primitive recursion, by

g(0, k, x) ' 0

g(y + 1, k, x) ' Un(k, x);

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 113

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

then
Un′(k, x) ' g(h(k, x), k, x).

And since Un′(k, x) agrees with Un(k, x) wherever the latter is defined, Un′ is
universal for those partial computable functions that happen to be total. But
this contradicts Theorem 8.5.

Proof. Suppose h(k, x) were computable. Define the function g by

g(x) =

{
0 if h(x, x) = 0
undefined otherwise.

The function g is partial computable; for example, one can define it as µy h(x, x) =
0. So, for some k, g(x) ' Un(k, x) for every x. Is g defined at k? If it is, then, by
the definition of g, h(k, k) = 0. By the definition of f , this means that Un(k, k)
is undefined; but by our assumption that g(k) ' Un(k, x) for every x, this
means that g(k) is undefined, a contradiction. On the other hand, if g(k) is
undefined, then h(k, k) 6= 0, and so h(k, k) = 1. But this means that Un(k, k) is
defined, i.e., that g(k) is defined.

We can describe this argument in terms of Turing machines. Suppose there
were a Turing machine H that took as input a description of a Turing machine
K and an input x, and decided whether or not K halts on input x. Then we
could build another Turing machine G which takes a single input x, calls H to
decide if machine x halts on input x, and does the opposite. In other words, if
H reports that x halts on input x, G goes into an infinite loop, and if H reports
that x doesn’t halt on input x, then G just halts. Does G halt on input G? The
argument above shows that it does if and only if it doesn’t—a contradiction.
So our supposition that there is a such Turing machine H, is false.

8.8 Comparison with Russell’s Paradox

It is instructive to compare and contrast the arguments in this section with
Russell’s paradox:

1. Russell’s paradox: let S = {x : x /∈ x}. Then x ∈ S if and only if x /∈ S, a
contradiction.

Conclusion: There is no such set S. Assuming the existence of a “set of
all sets” is inconsistent with the other axioms of set theory.

2. A modification of Russell’s paradox: let F be the “function” from the set
of all functions to {0, 1}, defined by

F(f) =

{
1 if f is in the domain of f , and f (f) = 0
0 otherwise

114 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

A similar argument shows that F(F) = 0 if and only if F(F) = 1, a
contradiction.

Conclusion: F is not a function. The “set of all functions” is too big to be
the domain of a function.

3. The diagonalization argument: let f0, f1, . . . be the enumeration of the
partial computable functions, and let G : N→ {0, 1} be defined by

G(x) =

{
1 if fx(x) ↓= 0
0 otherwise

If G is computable, then it is the function fk for some k. But then G(k) =
1 if and only if G(k) = 0, a contradiction.

Conclusion: G is not computable. Note that according to the axioms of set
theory, G is still a function; there is no paradox here, just a clarification.

That talk of partial functions, computable functions, partial computable
functions, and so on can be confusing. The set of all partial functions from N

to N is a big collection of objects. Some of them are total, some of them are
computable, some are both total and computable, and some are neither. Keep
in mind that when we say “function,” by default, we mean a total function.
Thus we have:

1. computable functions

2. partial computable functions that are not total

3. functions that are not computable

4. partial functions that are neither total nor computable

To sort this out, it might help to draw a big square representing all the partial
functions from N to N, and then mark off two overlapping regions, corre-
sponding to the total functions and the computable partial functions, respec-
tively. It is a good exercise to see if you can describe an object in each of the
resulting regions in the diagram.

8.9 Computable Sets

We can extend the notion of computability from computable functions to com-
putable sets:

Definition 8.7. Let S be a set of natural numbers. Then S is computable iff its
characteristic function is. In other words, S is computable iff the function

χS(x) =

{
1 if x ∈ S
0 otherwise

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 115

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

is computable. Similarly, a relation R(x0, . . . , xk−1) is computable if and only
if its characteristic function is.

Computable sets are also called decidable.
Notice that we now have a number of notions of computability: for partial

functions, for functions, and for sets. Do not get them confused! The Turing
machine computing a partial function returns the output of the function, for
input values at which the function is defined; the Turing machine computing
a set returns either 1 or 0, after deciding whether or not the input value is in
the set or not.

8.10 Computably Enumerable Sets

Definition 8.8. A set is computably enumerable if it is empty or the range of a
computable function.

Computably enumarable sets are also called recursively enumerable instead.
This is the original terminology, and today both are commonly used, as well
as the abbreviations “c.e.” and “r.e.”

You should think about what the definition means, and why the termi-
nology is appropriate. The idea is that if S is the range of the computable
function f , then

S = { f (0), f (1), f (2), . . . },

and so f can be seen as “enumerating” the elements of S. Note that according
to the definition, f need not be an increasing function, i.e., the enumeration
need not be in increasing order. In fact, f need not even be injective, so that
the constant function f (x) = 0 enumerates the set {0}.

Any computable set is computably enumerable. To see this, suppose S is
computable. If S is empty, then by definition it is computably enumerable.
Otherwise, let a be any element of S. Define f by

f (x) =

{
x if χS(x) = 1
a otherwise.

Then f is a computable function, and S is the range of f .

8.11 Equivalent Defininitions of Computably Enumerable
Sets

The following gives a number of important equivalent statements of what it
means to be computably enumerable.

Theorem 8.9. Let S be a set of natural numbers. Then the following are equivalent:

116 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. S is computably enumerable.

2. S is the range of a partial computable function.

3. S is empty or the range of a primitive recursive function.

4. S is the domain of a partial computable function.

The first three clauses say that we can equivalently take any nonempty
computably enumerable set to be enumerated by either a computable func-
tion, a partial computable function, or a primitive recursive function. The
fourth clause tells us that if S is computably enumerable, then for some index
e,

S = {x : ϕe(x) ↓}.

In other words, S is the set of inputs on for which the computation of ϕe
halts. For that reason, computably enumerable sets are sometimes called semi-
decidable: if a number is in the set, you eventually get a “yes,” but if it isn’t,
you never get a “no”!

Proof. Since every primitive recursive function is computable and every com-
putable function is partial computable, (3) implies (1) and (1) implies (2).
(Note that if S is empty, S is the range of the partial computable function that
is nowhere defined.) If we show that (2) implies (3), we will have shown the
first three clauses equivalent.

So, suppose S is the range of the partial computable function ϕe. If S is
empty, we are done. Otherwise, let a be any element of S. By Kleene’s normal
form theorem, we can write

ϕe(x) = U(µs T(e, x, s)).

In particular, ϕe(x) ↓ and = y if and only if there is an s such that T(e, x, s)
and U(s) = y. Define f (z) by

f (z) =

{
U((z)1) if T(e, (z)0, (z)1)

a otherwise.

Then f is primitive recursive, because T and U are. Expressed in terms of Tur-
ing machines, if z codes a pair 〈(z)0, (z)1〉 such that (z)1 is a halting computa-
tion of machine e on input (z)0, then f returns the output of the computation;
otherwise, it returns a.We need to show that S is the range of f , i.e., for any
natural number y, y ∈ S if and only if it is in the range of f . In the forwards
direction, suppose y ∈ S. Then y is in the range of ϕe, so for some x and s,
T(e, x, s) and U(s) = y; but then y = f (〈x, s〉). Conversely, suppose y is in the
range of f . Then either y = a, or for some z, T(e, (z)0, (z)1) and U((z)1) = y.
Since, in the latter case, ϕe(x) ↓= y, either way, y is in S.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 117

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

(The notation ϕe(x) ↓= y means “ϕe(x) is defined and equal to y.” We
could just as well use ϕe(x) = y, but the extra arrow is sometimes helpful in
reminding us that we are dealing with a partial function.)

To finish up the proof of Theorem 8.9, it suffices to show that (1) and (4)
are equivalent. First, let us show that (1) implies (4). Suppose S is the range of
a computable function f , i.e.,

S = {y : for some x, f (x) = y}.

Let
g(y) = µx f (x) = y.

Then g is a partial computable function, and g(y) is defined if and only if for
some x, f (x) = y. In other words, the domain of g is the range of f . Expressed
in terms of Turing machines: given a Turing machine F that enumerates the
elements of S, let G be the Turing machine that semi-decides S by searching
through the outputs of F to see if a given element is in the set.

Finally, to show (4) implies (1), suppose that S is the domain of the partial
computable function ϕe, i.e.,

S = {x : ϕe(x) ↓}.

If S is empty, we are done; otherwise, let a be any element of S. Define f by

f (z) =

{
(z)0 if T(e, (z)0, (z)1)

a otherwise.

Then, as above, a number x is in the range of f if and only if ϕe(x) ↓, i.e., if and
only if x ∈ S. Expressed in terms of Turing machines: given a machine Me that
semi-decides S, enumerate the elements of S by running through all possible
Turing machine computations, and returning the inputs that correspond to
halting computations.

The fourth clause of Theorem 8.9 provides us with a convenient way of
enumerating the computably enumerable sets: for each e, let We denote the
domain of ϕe. Then if A is any computably enumerable set, A = We, for some
e.

The following provides yet another characterization of the computably
enumerable sets.

Theorem 8.10. A set S is computably enumerable if and only if there is a computable
relation R(x, y) such that

S = {x : ∃y R(x, y)}.

Proof. In the forward direction, suppose S is computably enumerable. Then
for some e, S = We. For this value of e we can write S as

S = {x : ∃y T(e, x, y)}.

118 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

In the reverse direction, suppose S = {x : ∃y R(x, y)}. Define f by

f (x) ' µy AtomRx, y.

Then f is partial computable, and S is the domain of f .

8.12 Computably Enumerable Sets are Closed under Union
and Intersection

The following theorem gives some closure properties on the set of computably
enumerable sets.

Theorem 8.11. Suppose A and B are computably enumerable. Then so are A ∩ B
and A ∪ B.

Proof. Theorem 8.9 allows us to use various characterizations of the com-
putably enumerable sets. By way of illustration, we will provide a few dif-
ferent proofs.

For the first proof, suppose A is enumerated by a computable function f ,
and B is enumerated by a computable function g. Let

h(x) = µy (f (y) = x ∨ g(y) = x) and

j(x) = µy (f ((y)0) = x ∧ g((y)1) = x).

Then A ∪ B is the domain of h, and A ∩ B is the domain of j.
Here is what is going on, in computational terms: given procedures that

enumerate A and B, we can semi-decide if an element x is in A∪ B by looking
for x in either enumeration; and we can semi-decide if an element x is in A∩ B
for looking for x in both enumerations at the same time.

For the second proof, suppose again that A is enumerated by f and B is
enumerated by g. Let

k(x) =

{
f (x/2) if x is even
g((x− 1)/2) if x is odd.

Then k enumerates A∪ B; the idea is that k just alternates between the enumer-
ations offered by f and g. Enumerating A ∩ B is tricker. If A ∩ B is empty, it
is trivially computably enumerable. Otherwise, let c be any element of A ∩ B,
and define l by

l(x) =

{
f ((x)0) if f ((x)0) = g((x)1)

c otherwise.

In computational terms, l runs through pairs of elements in the enumerations
of f and g, and outputs every match it finds; otherwise, it just stalls by out-
putting c.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 119

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

For the last proof, suppose A is the domain of the partial function m(x) and
B is the domain of the partial function n(x). Then A ∩ B is the domain of the
partial function m(x) + n(x).

In computational terms, if A is the set of values for which m halts and B
is the set of values for which n halts, A ∩ B is the set of values for which both
procedures halt.

Expressing A ∪ B as a set of halting values is more difficult, because one
has to simulate m and n in parallel. Let d be an index for m and let e be an
index for n; in other words, m = ϕd and n = ϕe. Then A ∪ B is the domain of
the function

p(x) = µy (T(d, x, y) ∨ T(e, x, y)).

In computational terms, on input x, p searches for either a halting compu-
tation for m or a halting computation for n, and halts if it finds either one.

8.13 Computably Enumerable Sets not Closed under
Complement

Suppose A is computably enumerable. Is the complement of A, A = N \
A, necessarily computably enumerable as well? The following theorem and
corollary show that the answer is “no.”

Theorem 8.12. Let A be any set of natural numbers. Then A is computable if and
only if both A and A are computably enumerable.

Proof. The forwards direction is easy: if A is computable, then A is com-
putable as well (χA = 1 −̇ χA), and so both are computably enumerable.

In the other direction, suppose A and A are both computably enumerable.
Let A be the domain of ϕd, and let A be the domain of ϕe. Define h by

h(x) = µs (T(d, x, s) ∨ T(e, x, s)).

In other words, on input x, h searches for either a halting computation of ϕd
or a halting computation of ϕe. Now, if x ∈ A, it will succeed in the first case,
and if x ∈ A, it will succeed in the second case. So, h is a total computable
function. But now we have that for every x, x ∈ A if and only if T(e, x, h(x)),
i.e., if ϕe is the one that is defined. Since T(e, x, h(x)) is a computable relation,
A is computable.

It is easier to understand what is going on in informal computational terms:
to decide A, on input x search for halting computations of ϕe and ϕ f . One of
them is bound to halt; if it is ϕe, then x is in A, and otherwise, x is in A.

Corollary 8.13. K0 is not computably enumerable.

120 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. We know that K0 is computably enumerable, but not computable. If
K0 were computably enumerable, then K0 would be computable by Theo-
rem 8.12.

8.14 Reducibility

We now know that there is at least one set, K0, that is computably enumerable
but not computable. It should be clear that there are others. The method of
reducibility provides a powerful method of showing that other sets have these
properties, without constantly having to return to first principles.

Generally speaking, a “reduction” of a set A to a set B is a method of
transforming answers to whether or not elements are in B into answers as
to whether or not elements are in A. We will focus on a notion called “many-
one reducibility,” but there are many other notions of reducibility available,
with varying properties. Notions of reducibility are also central to the study
of computational complexity, where efficiency issues have to be considered as
well. For example, a set is said to be “NP-complete” if it is in NP and every
NP problem can be reduced to it, using a notion of reduction that is similar to
the one described below, only with the added requirement that the reduction
can be computed in polynomial time.

We have already used this notion implicitly. Define the set K by

K = {x : ϕx(x) ↓},

i.e., K = {x : x ∈ Wx}. Our proof that the halting problem in unsolvable,
Theorem 8.6, shows most directly that K is not computable. Recall that K0 is
the set

K0 = {〈e, x〉 : ϕe(x) ↓}.
i.e. K0 = {〈x, e〉 : x ∈ We}. It is easy to extend any proof of the uncom-
putability of K to the uncomputability of K0: if K0 were computable, we could
decide whether or not an element x is in K simply by asking whether or not
the pair 〈x, x〉 is in K0. The function f which maps x to 〈x, x〉 is an example of
a reduction of K to K0.

Definition 8.14. Let A and B be sets. Then A is said to be many-one reducible
to B, written A ≤m B, if there is a computable function f such that for every
natural number x,

x ∈ A if and only if f (x) ∈ B.

If A is many-one reducible to B and vice-versa, then A and B are said to be
many-one equivalent, written A ≡m B.

If the function f in the definition above happens to be injective, A is said
to be one-one reducible to B. Most of the reductions described below meet this
stronger requirement, but we will not use this fact.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 121

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

It is true, but by no means obvious, that one-one reducibility really is a
stronger requirement than many-one reducibility. In other words, there are
infinite sets A and B such that A is many-one reducible to B but not one-one
reducible to B.

8.15 Properties of Reducibility

The intuition behind writing A ≤m B is that A is “no harder than” B. The
following two propositions support this intuition.

Proposition 8.15. If A ≤m B and B ≤m C, then A ≤m C.

Proof. Composing a reduction of A to B with a reduction of B to C yields a
reduction of A to C. (You should check the details!)

Proposition 8.16. Let A and B be any sets, and suppose A is many-one reducible
to B.

1. If B is computably enumerable, so is A.

2. If B is computable, so is A.

Proof. Let f be a many-one reduction from A to B. For the first claim, just
check that if B is the domain of a partial function g, then A is the domain
of g ◦ f :

x ∈ Aiff f (x) ∈ B

iff g(f (x)) ↓ .

For the second claim, remember that if B is computable then B and B are
computably enumerable. It is not hard to check that f is also a many-one
reduction of A to B, so, by the first part of this proof, A and A are computably
enumerable. So A is computable as well. (Alternatively, you can check that
χA = χB ◦ f ; so if χB is computable, then so is χA.)

A more general notion of reducibility called Turing reducibility is useful
in other contexts, especially for proving undecidability results. Note that by
Corollary 8.13, the complement of K0 is not reducible to K0, since it is not com-
putably enumerable. But, intuitively, if you knew the answers to questions
about K0, you would know the answer to questions about its complement as
well. A set A is said to be Turing reducible to B if one can determine an-
swers to questions in A using a computable procedure that can ask questions
about B. This is more liberal than many-one reducibility, in which (1) you are
only allowed to ask one question about B, and (2) a “yes” answer has to trans-
late to a “yes” answer to the question about A, and similarly for “no.” It is
still the case that if A is Turing reducible to B and B is computable then A is

122 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

computable as well (though, as we have seen, the analogous statement does
not hold for computable enumerability).

You should think about the various notions of reducibility we have dis-
cussed, and understand the distinctions between them. We will, however,
only deal with many-one reducibility in this chapter. Incidentally, both types
of reducibility discussed in the last paragraph have analogues in computa-
tional complexity, with the added requirement that the Turing machines run in
polynomial time: the complexity version of many-one reducibility is known as
Karp reducibility, while the complexity version of Turing reducibility is known
as Cook reducibility.

8.16 Complete Computably Enumerable Sets

Definition 8.17. A set A is a complete computably enumerable set (under many-
one reducibility) if

1. A is computably enumerable, and

2. for any other computably enumerable set B, B ≤m A.

In other words, complete computably enumerable sets are the “hardest”
computably enumerable sets possible; they allow one to answer questions
about any computably enumerable set.

Theorem 8.18. K, K0, and K1 are all complete computably enumerable sets.

Proof. To see that K0 is complete, let B be any computably enumerable set.
Then for some index e,

B = We = {x : ϕe(x) ↓}.

Let f be the function f (x) = 〈e, x〉. Then for every natural number x, x ∈ B if
and only if f (x) ∈ K0. In other words, f reduces B to K0.

To see that K1 is complete, note that in the proof of Proposition 8.19 we
reduced K0 to it. So, by Proposition 8.15, any computably enumerable set can
be reduced to K1 as well.

K can be reduced to K0 in much the same way.

So, it turns out that all the examples of computably enumerable sets that
we have considered so far are either computable, or complete. This should
seem strange! Are there any examples of computably enumerable sets that
are neither computable nor complete? The answer is yes, but it wasn’t until
the middle of the 1950s that this was established by Friedberg and Muchnik,
independently.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 123

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

8.17 An Example of Reducibility

Let us consider an application of Proposition 8.16.

Proposition 8.19. Let
K1 = {e : ϕe(0) ↓}.

Then K1 is computably enumerable but not computable.

Proof. Since K1 = {e : ∃s T(e, 0, s)}, K1 is computably enumerable by Theo-
rem 8.10.

To show that K1 is not computable, let us show that K0 is reducible to it.
This is a little bit tricky, since using K1 we can only ask questions about

computations that start with a particular input, 0. Suppose you have a smart
friend who can answer questions of this type (friends like this are known as
“oracles”). Then suppose someone comes up to you and asks you whether
or not 〈e, x〉 is in K0, that is, whether or not machine e halts on input x. One
thing you can do is build another machine, ex, that, for any input, ignores that
input and instead runs e on input x. Then clearly the question as to whether
machine e halts on input x is equivalent to the question as to whether machine
ex halts on input 0 (or any other input). So, then you ask your friend whether
this new machine, ex, halts on input 0; your friend’s answer to the modified
question provides the answer to the original one. This provides the desired
reduction of K0 to K1.

Using the universal partial computable function, let f be the 3-ary function
defined by

f (x, y, z) ' ϕx(y).

Note that f ignores its third input entirely. Pick an index e such that f = ϕ3
e ;

so we have
ϕ3

e (x, y, z) ' ϕx(y).

By the s-m-n theorem, there is a function s(e, x, y) such that, for every z,

ϕs(e,x,y)(z) ' ϕ3
e (x, y, z)

' ϕx(y).

In terms of the informal argument above, s(e, x, y) is an index for the ma-
chine that, for any input z, ignores that input and computes ϕx(y).

In particular, we have

ϕs(e,x,y)(0) ↓ if and only if ϕx(y) ↓ .

In other words, 〈x, y〉 ∈ K0 if and only if s(e, x, y) ∈ K1. So the function g
defined by

g(w) = s(e, (w)0, (w)1)

is a reduction of K0 to K1.

124 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

8.18 Totality is Undecidable

Let us consider one more example of using the s-m-n theorem to show that
something is noncomputable. Let Tot be the set of indices of total computable
functions, i.e.

Tot = {x : for every y, ϕx(y) ↓}.

Proposition 8.20. Tot is not computable.

Proof. To see that Tot is not computable, it suffices to show that K is reducible
to it. Let h(x, y) be defined by

h(x, y) '
{

0 if x ∈ K
undefined otherwise

Note that h(x, y) does not depend on y at all. It should not be hard to see that
h is partial computable: on input x, y, the we compute h by first simulating the
function ϕx on input x; if this computation halts, h(x, y) outputs 0 and halts.
So h(x, y) is just Z(µs T(x, x, s)), where Z is the constant zero function.

Using the s-m-n theorem, there is a primitive recursive function k(x) such
that for every x and y,

ϕk(x)(y) =

{
0 if x ∈ K
undefined otherwise

So ϕk(x) is total if x ∈ K, and undefined otherwise. Thus, k is a reduction of K
to Tot.

It turns out that Tot is not even computably enumerable—its complexity
lies further up on the “arithmetic hierarchy.” But we will not worry about this
strengthening here.

8.19 Rice’s Theorem

If you think about it, you will see that the specifics of Tot do not play into the
proof of Proposition 8.20. We designed h(x, y) to act like the constant function
j(y) = 0 exactly when x is in K; but we could just as well have made it act
like any other partial computable function under those circumstances. This
observation lets us state a more general theorem, which says, roughly, that no
nontrivial property of computable functions is decidable.

Keep in mind that ϕ0, ϕ1, ϕ2, . . . is our standard enumeration of the partial
computable functions.

Theorem 8.21 (Rice’s Theorem). Let C be any set of partial computable functions,
and let A = {n : ϕn ∈ C}. If A is computable, then either C is ∅ or C is the set of
all the partial computable functions.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 125

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

An index set is a set A with the property that if n and m are indices which
“compute” the same function, then either both n and m are in A, or neither is.
It is not hard to see that the set A in the theorem has this property. Conversely,
if A is an index set and C is the set of functions computed by these indices,
then A = {n : ϕn ∈ C}.

With this terminology, Rice’s theorem is equivalent to saying that no non-
trivial index set is decidable. To understand what the theorem says, it is
helpful to emphasize the distinction between programs (say, in your favorite
programming language) and the functions they compute. There are certainly
questions about programs (indices), which are syntactic objects, that are com-
putable: does this program have more than 150 symbols? Does it have more
than 22 lines? Does it have a “while” statement? Does the string “hello world”
every appear in the argument to a “print” statement? Rice’s theorem says that
no nontrivial question about the program’s behavior is computable. This in-
cludes questions like these: does the program halt on input 0? Does it ever
halt? Does it ever output an even number?

Proof of Rice’s theorem. Suppose C is neither ∅ nor the set of all the partial com-
putable functions, and let A be the set of indices of functions in C. We will
show that if A were computable, we could solve the halting problem; so A is
not computable.

Without loss of generality, we can assume that the function f which is
nowhere defined is not in C (otherwise, switch C and its complement in the
argument below). Let g be any function in C. The idea is that if we could
decide A, we could tell the difference between indices computing f , and in-
dices computing g; and then we could use that capability to solve the halting
problem.

Here’s how. Using the universal computation predicate, we can define a
function

h(x, y) '
{

undefined if ϕx(x) ↑
g(y) otherwise.

To compute h, first we try to compute ϕx(x); if that computation halts, we go
on to compute g(y); and if that computation halts, we return the output. More
formally, we can write

h(x, y) ' P2
0 (g(y), Un(x, x)).

where P2
0 (z0, z1) = z0 is the 2-place projection function returning the 0-th ar-

gument, which is computable.
Then h is a composition of partial computable functions, and the right side

is defined and equal to g(y) just when Un(x, x) and g(y) are both defined.
Notice that for a fixed x, if ϕx(x) is undefined, then h(x, y) is undefined for

every y; and if ϕx(x) is defined, then h(x, y) ' g(y). So, for any fixed value
of x, either h(x, y) acts just like f or it acts just like g, and deciding whether or

126 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

not ϕx(x) is defined amounts to deciding which of these two cases holds. But
this amounts to deciding whether or not hx(y) ' h(x, y) is in C or not, and if
A were computable, we could do just that.

More formally, since h is partial computable, it is equal to the function ϕk
for some index k. By the s-m-n theorem there is a primitive recursive function
s such that for each x, ϕs(k,x)(y) = hx(y). Now we have that for each x, if
ϕx(x) ↓, then ϕs(k,x) is the same function as g, and so s(k, x) is in A. On the
other hand, if ϕx(x) ↑, then ϕs(k,x) is the same function as f , and so s(k, x)
is not in A. In other words we have that for every x, x ∈ K if and only if
s(k, x) ∈ A. If A were computable, K would be also, which is a contradiction.
So A is not computable.

Rice’s theorem is very powerful. The following immediate corollary shows
some sample applications.

Corollary 8.22. The following sets are undecidable.

1. {x : 17 is in the range of ϕx}

2. {x : ϕx is constant}

3. {x : ϕx is total}

4. {x : whenever y < y′, ϕx(y) ↓, and if ϕx(y′) ↓, then ϕx(y) < ϕx(y′)}

Proof. These are all nontrivial index sets.

8.20 The Fixed-Point Theorem

Let’s consider the halting problem again. As temporary notation, let us write
pϕx(y)q for 〈x, y〉; think of this as representing a “name” for the value ϕx(y).
With this notation, we can reword one of our proofs that the halting problem
is undecidable.

Question: is there a computable function h, with the following property?
For every x and y,

h(pϕx(y)q) =

{
1 if ϕx(y) ↓
0 otherwise.

Answer: No; otherwise, the partial function

g(x) '
{

0 if h(pϕx(x)q) = 0
undefined otherwise

would be computable, and so have some index e. But then we have

ϕe(e) '
{

0 if h(pϕe(e)q) = 0
undefined otherwise,

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 127

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

in which case ϕe(e) is defined if and only if it isn’t, a contradiction.
Now, take a look at the equation with ϕe. There is an instance of self-

reference there, in a sense: we have arranged for the value of ϕe(e) to depend
on pϕe(e)q, in a certain way. The fixed-point theorem says that we can do this,
in general—not just for the sake of proving contradictions.

Lemma 8.23 gives two equivalent ways of stating the fixed-point theorem.
Logically speaking, the fact that the statements are equivalent follows from
the fact that they are both true; but what we really mean is that each one fol-
lows straightforwardly from the other, so that they can be taken as alternative
statements of the same theorem.

Lemma 8.23. The following statements are equivalent:

1. For every partial computable function g(x, y), there is an index e such that for
every y,

ϕe(y) ' g(e, y).

2. For every computable function f (x), there is an index e such that for every y,

ϕe(y) ' ϕ f (e)(y).

Proof. (1)⇒ (2): Given f , define g by g(x, y) ' Un(f (x), y). Use (1) to get an
index e such that for every y,

ϕe(y) = Un(f (e), y)

= ϕ f (e)(y).

(2) ⇒ (1): Given g, use the s-m-n theorem to get f such that for every x
and y, ϕ f (x)(y) ' g(x, y). Use (2) to get an index e such that

ϕe(y) = ϕ f (e)(y)

= g(e, y).

This concludes the proof.

Before showing that statement (1) is true (and hence (2) as well), consider
how bizarre it is. Think of e as being a computer program; statement (1) says
that given any partial computable g(x, y), you can find a computer program
e that computes ge(y) ' g(e, y). In other words, you can find a computer
program that computes a function that references the program itself.

Theorem 8.24. The two statements in Lemma 8.23 are true. Specifically, for every
partial computable function g(x, y), there is an index e such that for every y,

ϕe(y) ' g(e, y).

128 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. The ingredients are already implicit in the discussion of the halting
problem above. Let diag(x) be a computable function which for each x re-
turns an index for the function fx(y) ' ϕx(x, y), i.e.

ϕdiag(x)(y) ' ϕx(x, y).

Think of diag as a function that transforms a program for a 2-ary function into
a program for a 1-ary function, obtained by fixing the original program as its
first argument. The function diag can be defined formally as follows: first
define s by

s(x, y) ' Un2(x, x, y),

where Un2 is a 3-ary function that is universal for partial computable 2-ary
functions. Then, by the s-m-n theorem, we can find a primitive recursive func-
tion diag satisfying

ϕdiag(x)(y) ' s(x, y).

Now, define the function l by

l(x, y) ' g(diag(x), y).

and let plq be an index for l. Finally, let e = diag(plq). Then for every y, we
have

ϕe(y) ' ϕdiag(plq)(y)

' ϕplq(plq, y)

' l(plq, y)

' g(diag(plq), y)

' g(e, y),

as required.

What’s going on? Suppose you are given the task of writing a computer
program that prints itself out. Suppose further, however, that you are working
with a programming language with a rich and bizarre library of string func-
tions. In particular, suppose your programming language has a function diag
which works as follows: given an input string s, diag locates each instance of
the symbol ‘x’ occuring in s, and replaces it by a quoted version of the original
string. For example, given the string

hello x world

as input, the function returns

hello ’hello x world’ world

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 129

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

as output. In that case, it is easy to write the desired program; you can check
that

print(diag(’print(diag(x))’))

does the trick. For more common programming languages like C++ and Java,
the same idea (with a more involved implementation) still works.

We are only a couple of steps away from the proof of the fixed-point theo-
rem. Suppose a variant of the print function print(x, y) accepts a string x and
another numeric argument y, and prints the string x repeatedly, y times. Then
the “program”

getinput(y); print(diag(’getinput(y); print(diag(x), y)’), y)

prints itself out y times, on input y. Replacing the getinput—print—diag
skeleton by an arbitrary funtion g(x, y) yields

g(diag(’g(diag(x), y)’), y)

which is a program that, on input y, runs g on the program itself and y. Think-
ing of “quoting” with “using an index for,” we have the proof above.

For now, it is o.k. if you want to think of the proof as formal trickery, or
black magic. But you should be able to reconstruct the details of the argument
given above. When we prove the incompleteness theorems (and the related
“fixed-point theorem”) we will discuss other ways of understanding why it
works.

The same idea can be used to get a “fixed point” combinator. Suppose you
have a lambda term g, and you want another term k with the property that k
is β-equivalent to gk. Define terms

diag(x) = xx

and
l(x) = g(diag(x))

using our notational conventions; in other words, l is the term λx. g(xx). Let
k be the term ll. Then we have

k = (λx. g(xx))(λx. g(xx))

. g((λx. g(xx))(λx. g(xx)))

= gk.

If one takes
Y = λg. ((λx. g(xx))(λx. g(xx)))

then Yg and g(Yg) reduce to a common term; so Yg ≡β g(Yg). This is known
as “Curry’s combinator.” If instead one takes

Y = (λxg. g(xxg))(λxg. g(xxg))

130 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

then in fact Yg reduces to g(Yg), which is a stronger statement. This latter
version of Y is known as “Turing’s combinator.”

8.21 Applying the Fixed-Point Theorem

The fixed-point theorem essentially lets us define partial computable func-
tions in terms of their indices. For example, we can find an index e such that
for every y,

ϕe(y) = e + y.

As another example, one can use the proof of the fixed-point theorem to de-
sign a program in Java or C++ that prints itself out.

Remember that if for each e, we let We be the domain of ϕe, then the se-
quence W0, W1, W2, . . . enumerates the computably enumerable sets. Some of
these sets are computable. One can ask if there is an algorithm which takes as
input a value x, and, if Wx happens to be computable, returns an index for its
characteristic function. The answer is “no,” there is no such algorithm:

Theorem 8.25. There is no partial computable function f with the following prop-
erty: whenever We is computable, then f (e) is defined and ϕ f (e) is its characteristic
function.

Proof. Let f be any computable function; we will construct an e such that We
is computable, but ϕ f (e) is not its characteristic function. Using the fixed point
theorem, we can find an index e such that

ϕe(y) '
{

0 if y = 0 and ϕ f (e)(0) ↓= 0
undefined otherwise.

That is, e is obtained by applying the fixed-point theorem to the function de-
fined by

g(x, y) '
{

0 if y = 0 and ϕ f (x)(0) ↓= 0
undefined otherwise.

Informally, we can see that g is partial computable, as follows: on input x and
y, the algorithm first checks to see if y is equal to 0. If it is, the algorithm
computes f (x), and then uses the universal machine to compute ϕ f (x)(0). If
this last computation halts and returns 0, the algorithm returns 0; otherwise,
the algorithm doesn’t halt.

But now notice that if ϕ f (e)(0) is defined and equal to 0, then ϕe(y) is de-
fined exactly when y is equal to 0, so We = {0}. If ϕ f (e)(0) is not defined,
or is defined but not equal to 0, then We = ∅. Either way, ϕ f (e) is not the
characteristic function of We, since it gives the wrong answer on input 0.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 131

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

8.22 Defining Functions using Self-Reference

It is generally useful to be able to define functions in terms of themselves.
For example, given computable functions k, l, and m, the fixed-point lemma
tells us that there is a partial computable function f satisfying the following
equation for every y:

f (y) '
{

k(y) if l(y) = 0
f (m(y)) otherwise.

Again, more specifically, f is obtained by letting

g(x, y) '
{

k(y) if l(y) = 0
ϕx(m(y)) otherwise

and then using the fixed-point lemma to find an index e such that ϕe(y) =
g(e, y).

For a concrete example, the “greatest common divisor” function gcd(u, v)
can be defined by

gcd(u, v) '
{

v if 0 = 0
gcd(mod(v, u), u) otherwise

where mod(v, u) denotes the remainder of dividing v by u. An appeal to the
fixed-point lemma shows that gcd is partial computable. (In fact, this can be
put in the format above, letting y code the pair 〈u, v〉.) A subsequent induction
on u then shows that, in fact, gcd is total.

Of course, one can cook up self-referential definitions that are much fancier
than the examples just discussed. Most programming languages support def-
initions of functions in terms of themselves, one way or another. Note that
this is a little bit less dramatic than being able to define a function in terms
of an index for an algorithm computing the functions, which is what, in full
generality, the fixed-point theorem lets you do.

8.23 Minimization with Lambda Terms

When it comes to the lambda calculus, we’ve shown the following:

1. Every primitive recursive function is represented by a lambda term.

2. There is a lambda term Y such that for any lambda term G, YG . G(YG).

To show that every partial computable function is represented by some lambda
term, we only need to show the following.

132 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Lemma 8.26. Suppose f (x, y) is primitive recursive. Let g be defined by

g(x) ' µy f (x, y) = 0.

Then g is represented by a lambda term.

Proof. The idea is roughly as follows. Given x, we will use the fixed-point
lambda term Y to define a function hx(n) which searches for a y starting at n;
then g(x) is just hx(0). The function hx can be expressed as the solution of a
fixed-point equation:

hx(n) '
{

n if f (x, n) = 0
hx(n + 1) otherwise.

Here are the details. Since f is primitive recursive, it is represented by
some term F. Remember that we also have a lambda term D such that D(M, N, 0) .
M and D(M, N, 1) . N. Fixing x for the moment, to represent hx we want to
find a term H (depending on x) satisfying

H(n) ≡ D(n, H(S(n)), F(x, n)).

We can do this using the fixed-point term Y. First, let U be the term

λh. λz. D(z, (h(Sz)), F(x, z)),

and then let H be the term YU. Notice that the only free variable in H is x. Let
us show that H satisfies the equation above.

By the definition of Y, we have

H = YU ≡ U(YU) = U(H).

In particular, for each natural number n, we have

H(n) ≡ U(H, n)

. D(n, H(S(n)), F(x, n)),

as required. Notice that if you substitute a numeral m for x in the last line, the
expression reduces to n if F(m, n) reduces to 0, and it reduces to H(S(n)) if
F(m, n) reduces to any other numeral.

To finish off the proof, let G be λx. H(0). Then G represents g; in other
words, for every m, G(m) reduces to reduces to g(m), if g(m) is defined, and
has no normal form otherwise.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 133

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Part III

Turing Machines

134

Chapter 9

Turing Machine Computations

9.1 Introduction

Even though the term “Turing machine” evokes the image of a physical ma-
chine with moving parts, strictly speaking a Turing machine is a purely math-
ematical construct. It is perhaps best to think of a Turing machine as a pro-
gram for a special kind of imaginary mechanism. This mechanism consists
of a tape and a read-write head. In our version of Turing machines, the tape
is infinite in one direction (to the right), and it is divided into squares, each of
which may contain a symbol from a finite alphabet. Such alphabets can contain
any number of different symbols, but we will mainly make do with three: .,
, and |. When he mechanism is started, the tape is empty (i.e., each square

contains the symbol) except for the leftmost square, which contains ., and a
finite number of squares which contain the input. At any time, the mechanism
is in one of a finite number of states. At the outset, the head scans the leftmost
square and in a specified initial state. At each step of the mechanism’s run, the
content of the square currently scanned together with the state the mechanism
is in and the Turing machine program determine what happens next. The Tur-
ing machine program consists of a list of 5-tuples 〈qi, σ, qj, σ′, D〉. Whenever
the mechanism is in state qi and reads symbol σ, it replaces the symbol on
the current square with σ′, the head moves left, right, or stays put according
to whether D is L, R, or N, and the mechanism goes into state qj. When the
mechanism enters state h we say it halts, and the contents of the tape at that
point is its output.

9.2 Turing Machines

The formal definition of what constitutes a Turing machine looks abstract,
but is actually simple: it merely packs into one mathematical structure all
the information needed to specify the workings of a Turing machine. This
includes (1) which states the machine can be in, (2) which symbols are allowed

135

to be on the tape, (3) which state the machine should start in, and (4) what the
instruction set of the machine is.

Definition 9.1. A Turing machine T = 〈Q, Σ, s, I〉 consists of

1. a finite set of states Q which includes the halting state h,

2. a finite alphabet Σ which includes . and ,

3. an initial state s ∈ Q,

4. a finite instruction set I ⊆ Q× Σ×Q× Σ× {L, R, N}.

We assume that the tape is infinite in one direction only. For this reason
it is useful to designate a special symbol . as a marker for the left end of the
tape. This makes it easier for Turing machne programs to tell when they’re
“in danger” of running off the tape. Other definitions of Turing machines are
possible, including one where the tape is infinite in both directions. In that
case, marker for the left end of the tape is not necessary.

9.3 Configurations and Computations

The imaginary mechanism consisting of tape, read/write head, and Turing
machine program is really just in intuitive way of visualizing what a Turing
machine computation is. Formally, we can define the computation of a Turing
machine on a given input as a sequence of configurations—and a configuration
in turn is a sequence of symbols (corresponding to the contents of the tape
at a given point in the computation), a number indicating the position of the
read/write head, and a state. Using these, we can define what the Turing
machine M computes on a given input.

Definition 9.2. A configuration of Turing machine M = 〈Q, Σ, s, I〉 is a triple
〈C, n, q〉 where

1. C ∈ Σ∗ is a finite sequence of symbols from Σ,

2. n ∈N is a number ≤ len(C), and

3. q ∈ Q

The potential input for a Turing machine is a sequence of symbols, usually
a sequence that encodes a number in some form. The initial configuration of
the Turing machine is that configuration in which we start the Turing machine
to work on that input: the tape contains the tape end marker immediately
followed by the input written on the squares to the right, the read/write head
is scanning the leftmost square of the tape (i.e., the left end marker), and the
mechanism is in the designated start state s.

136 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 9.3. The initial configuration of M for input I ∈ Σ∗ is

〈. _ I, 0, s〉

Definition 9.4. We say that a configuration 〈C, n, q〉 yields 〈C′, n′, q′〉 in one step
(according to M), iff

1. the n-th symbol of C is σ,

2. the instruction set of M contains a tuple 〈q, σ, q′, σ′, D〉,

3. the n-th symbol of C′ is sigma′,

4. a) D = L and n′ = n− 1, or

b) D = R and n′ = n, or

c) D = N and n′ = n,

5. for all i 6= n, C′(i) = C(i),

6. if n′ > len(C), then len(C′) = len(C) + 1 and the n′-th symbol of C′ is .

Definition 9.5. A run of M on input I is a sequence Ci of configurations of M,
where C0 is the initial configuration of M for input I, and each Ci yields Ci+1
in one step.

We say that M halts on input I after k steps if Ck = 〈. _ O, n, h〉. In that case
the output of M for input I is O.

9.4 Unary Representation of Numbers

Turing machines work on sequences of symbols written on their tape. De-
pending on the alphabet a Turing machine uses, these sequences of symbols
can represent various inputs and outputs. Of particular interest, of course, are
Turing machines which compute arithmetical functions, i.e., functions of natu-
ral numbers. A simple way to represent positive integers is by coding them as
sequences of a single symbol |.

Definition 9.6. A Turing machine M computes the function f : Nn → N iff M
halts on input

|k1 |k2 . . . |kn

with output | f (k1,...,kn).

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 137

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 10

Undecidability

10.1 Decision Problems

We have a number of important logical notions, such as those of satisfiabil-
ity, validity, and consequence, which are properties of (sets) formulas or rela-
tions between them. The definitions of these logical notions provide criteria
for when, say, a sentence is valid. (In this case, it is valid iff it is satisfied in
every first-order structure.) These criteria, however, do not in general provide
a method for deciding if a sentence or set of sentences has the property in ques-
tion. The question of whether there is such a method for a given notion and
class of formulas or sentences is called a decision problem.

Example 10.1. The decision problem for validity of sentences in a first-order lan-
guage is the question of whether there is a procedure for deciding, given a
sentence in a first-order language, if it is valid or not.

Example 10.2. The decision problem for satisfiability of sentences in a first-order
language is the question of whether there is a procedure for deciding, given a
sentence in a first-order language, if it is satisfiable or not.

We say that a decision problem is solvable if there is such a procedure, and
unsolvable otherwise.

To show that a decision problem is solvable, you typically simply write
down the procedure that solves it (and prove that it in fact solves it correctly
in every case). Proving that a decision problem is unsolvable is a lot harder:
you have to show that there can in principle be no procedure whatsoever that
solves it. This can only be done rigorously if there is a precise definition of
what a “procedure” is.

One such precise definition is provided by the notion of a Turing machine. A
decision problem is solvable by a Turing machine if there is a Turing machine
which, when started on the description of an instance of the decision problem
as input, eventually halts with simply “1” or “0” on the tape, representing

138

“yes” or “no”, respectively. To show that a decision problem is not solvable it
suffices to show that no such Turing machine exists.

There are decision problems that can relatively easily be shown to be un-
solvable by Turing machines, such as the Halting problem. To show logical
decision problems undecidable, you show that a known unsolvable problem
can be “reduced” to it. A decision problem A can be reduced to a decision
problem B iff the answer to an instance of A can be obtained by an answer
to an instance of B. For instance, the problem of validity of a sentence can be
reduced to that of satisfiability: Given a sentence ϕ, form the sentence ¬ϕ:
the former is valid iff the latter is not satisfiable. So the decision problem for
validity can be solved by taking an instance, transforming that instance into
its negation by putting “¬” in front of it, obtaining the answer to “Is ¬ϕ sat-
isfiable?,” and switching the answer. This shows that the problem of validity
can be reduced to the problem of satisfiability.

A reduction of a decision problem A to a decision problem B shows two
things:

1. If B is solvable, then A is solvable.

2. If A is unsolvable, then B is unsolvable.

A decision problem can therefore be shown to be unsolvable by reducing
a known unsolvable problem, such as the Halting Problem, to it.

10.2 Representing Turing Machines

In order to represent Turing machines and their behavior by a sentence of
first-order logic, we have to define a suitable language. The language consists
of two parts: predicates for describing configurations of the machine, and
expressions for counting execution steps (“moments”) and positions on the
tape. The latter require an initial moment, , a “successor” function which is
traditionally written as a postfix ′, and an ordering x<y of “before.”

Definition 10.3. Given a Turing machine M = 〈Q, Σ, δ, s〉, the language LM
consists of:

1. A two-place predicate Qq(x, y) for every state q ∈ Q.

2. A two-place predicate Sσ(x, y) for every symbol σ ∈ Σ

3. A constant

4. A one-place function ′

5. A two-place predicate <

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 139

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

For each number n there is a canonical term n, the numeral for n, which
represents it in LM. 0 is , 1 is ′, 2 is ′′, and so on. More formally:

0 =

n + 1 = n′

The sentences describing the operation of the Turing machine M on input
w are the following:

I Axioms describing numbers:

a) A sentence that says that the successor function is injective:

∀x∀y (x ′ = y ′ → x = y)

b) A sentence that says that every number is less than its successor:

∀x(x < x ′)

c) A sentence that ensures that < is transitive:

∀x∀y∀z((x < y ∧ y < z)→ x < z)

II. Axioms describing the input configuration:

a) M is in the inital state s at time 0, scanning square 0:

Qs(,)

b) The first n squares contain the symbols ., σi1 , . . . , σin :

S.(,) ∧ Si1(1,) ∧ · · · ∧ Sin(n,)

c) Otherwise, the tape is empty:

∀x(n < x → S (x ,)

III. Axioms describing the transition from one configuration to the next:

For the following, let A(x, y) be the conjunction of all sentences of the
form

∀z((z < x ∨ x < z ∧ Sσ(z , y))→ Sσ(z , y ′))

where σ ∈ Σ.

1. For every instruction 〈qi, σ, qj, σ′, L〉, the sentence:

∀x∀y ((Qqi (x
′, y) ∧ Sσ(x , y))→ (Qqj(x , y) ∧ Sσ′(x , y) ∧ A(x , y)))

140 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. For every instruction 〈qi, σ, qj, σ′, R〉, the sentence:

∀x∀y ((Qqi (x , y) ∧ Sσ(x , y))→ (Qqj(x
′, y) ∧ Sσ′(x , y) ∧ A(x , y)))

(Probably also need axioms saying every square as exactly one symbol on it at
all times, machine always in exactly one state.)

Let T(M, w) be the conjunction of all the above sentences for Turing ma-
chine M and input w

The sentence H(M, w):
∃x∃y Qh(x , y)

expresses that the Turing machine M halts on input w.

10.3 Verifying the Representation

In order to verify that our representation works, we first have to make sure
that if M halts on input w, then T(m, w) → H(M, w) is valid. We can do this
simly by proving that T(m, w) implies a descriptin of the configuration of M
for each step of the execution of M on input w. If M halts on input w, then
for some n, M will be in a halting configuration at step n (and be scanning
square m, for some m). Hence, T(M, w) implies Qh(m, n).

Definition 10.4. Let C(M, w, n) be the sentence

Qq(m, n) ∧ Sσ0(0, n) ∧ · · · ∧ Sσk (k, n)

where q is the state of M at time n, M is scanning sqare m at time n, square i
contains symbol σi at time n for 0 ≤ i ≤ k and k is the right-most non-blank
square of the tape at time m.

Lemma 10.5. For each n, T(M, w) implies C(M, w, n).

Proof. By induction on n.
If n = 0, then C(M, w, n) is a conjunct of T(M, w), so implied by it.
Suppose n > 0 and at time n, M started on w is in state q scanning square

m, and the content of the tape is σ0, . . . , σk.
. . . to be completed

To complete the verification of our clam, we also have to establish the re-
verse direction: if T(M, w)→ H(M, w) is valid, then M does in fact halt when
started on input m.

Lemma 10.6. If T(M, w) entails H(M, w), then M halts on input w.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 141

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. Consider the LM-structure M with domain N which inerprets as 0, ′

as the successor function, and < as the lest-than relation, and the predicates
Qq and Sσ as follows:

QM
q = {(m, n) : after n steps, M started on w is in state q scanning square m}

SMσ = {(m, n) : after n steps, M started on w has symbol σ on square m}

Clearly, M |= T(M, w). If T(M, w) implies H(M, w), then M |= H(M, w), i.e.,

M |= ∃x∃y Qh(x , y).

As |M| = N, there must be m, n ∈N so that M |= Qh(n, m). By the definition
of M, this means that M started on input w is in state h after m steps, i.e., has
halted.

142 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Part IV

Incompleteness

143

Chapter 11

Arithmetization of Syntax

11.1 Introduction

In order to connect computability and logic, we need a way to talk about the
objects of logic (symbols, terms, formulas, derivations), operations on them,
and their properties and relations, in a way amenable to computational treat-
ment. We can do this directly, by considering computable functions and re-
lations on symbols, sequences of symbols, and other objects built from them.
Since the objects of logical syntax are all finite and built from an enumerable
sets of symbols, this is possible for some models of computation. But other
models of computation are restricted to numbers, their relations and func-
tions. Moreover, ultimately we also want to deal with syntax in certain theo-
ries, specifically, in theories formulated in the language of arithmetic. In these
cases it is necessary to arithmetize syntax, i.e., to represent syntactic objects,
operations, and relations as numbers, arithmetical functions, and arithmetical
relations, respectively. This is done by assigning numbers to symbols as their
“codes.” Since we can deal with sequences of numbers purely arithmetically
by the powers-of-primes coding, we can extend this coding of individual sym-
bols to coding of sequences of symbols (such as terms and formulas) and also
arrangements of such sequences (such as derivations). This extended coding
is called “Gödel numbering.” Because the sequences of interest (terms, for-
mulas, derivations) are inductively defined, and the operations and relations
on them are computable, the corresponding sets, operations, and relations are
in fact all computable, and almost all of them are in fact primitive recursive.

11.2 Coding Symbols

The basic language L of first order logic makes use of the symbols

¬,∨,∧,→, ∀, ∃,=, (,)

144

together with enumerable sets of variables and constant symbols, and enu-
merable sets of function symbols and predicate symbols of arbitrary arity. We
can assign codes to each of these symbols in such a way that every symbol is
assigned a unique number as its code, and no two different symbols are as-
signed the same number. We know that this is possible since the set of all
symbols is enumerable and so there is a bijection between it and the set of nat-
ural numbers. But we want to make sure that we can recover the symbol (as
well as some information about it, e.g., the arity of a function symbol) from
its code in a computable way. There are many possible ways of doing this,
of course. Here is one such way, which uses primitive recursive functions.
(Recall that 〈n0, . . . , nk〉 is the number coding the sequence of numbers n0, . . . ,
nk.)

Definition 11.1. If s is a symbol of L, let the symbol code c(s) be defined as
follows:

1. If s is among the logical symbols, c(s) is given by the following table:

¬ ∨ ∧ → ∀ ∃ = () ,
〈0, 0〉 〈0, 1〉 〈0, 2〉 〈0, 3〉 〈0, 4〉 〈0, 5〉 〈0, 6〉 〈0, 7〉 〈0, 8〉 〈0, 9〉

2. If s is the i-th variable xi, then c(s) = 〈1, i〉.

3. If s is the i-th constant symbol cn
i , then c(s) = 〈2, i〉.

4. If s is the i-th n-ary function symbol f n
i , then c(s) = 〈3, n, i〉.

5. If s is the i-th n-ary predicate symbol P n
i , then c(s) = 〈4, n, i〉.

Proposition 11.2. The following relations are primitive recursive:

1. Fn(x, n) iff x is the code of f n
i for some i, i.e., x is the code of an n-ary function

symbol.

2. Pred(x, n) iff x is the code of P n
i for some i or x is the code of = and n = 2,

i.e., x is the code of an n-ary predicate symbol.

Definition 11.3. If s0, . . . , sn is a sequence of symbols, its Gödel number is 〈c(s0), . . . , c(sn)〉.

11.3 Coding Terms

A term is simply a certain kind of sequence of symbols: it is built up induc-
tively from constants and variables according to the formation rules for terms.
Since sequences of symbols can be coded as numbers—using a coding scheme
for the symbols plus a way to code sequences of numbers—assigning Gödel
numbers to terms is not difficult. The challenge is rather to show that the
property a number has if it is the Gödel number of a correctly formed term is
computable, or in fact primitive recursive.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 145

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proposition 11.4. The relation Term(x) which holds iff x is the Gödel number of a
term, is primitive recursive.

Proof. A sequence of symbols s is a term iff there is a sequence s0, . . . , sk−1 = s
of terms which records how the term s was formed from constant symbols
and variables according to the formation rules for terms. To express that such
a putative formation sequence follows the formation rules it has to be the case
that, for each i < k, either

1. si is a variable vj, or

2. si is a constant symbol cj, or

3. si is built from n terms t1, . . . , tn occurring prior to place i using an n-
place function symbol f n

j .

To show that the corresponding relation on Gödel numbers is primitive re-
cursive, we have to express this condition primitive recursively, i.e., using
primitive recursive functions, relations, and bounded quantification.

Suppose y is the number that codes the sequence s0, . . . , sk−1, i.e., y =
〈#(s0), . . . , #(sk)〉. It codes a formation sequence for the term with Gödel num-
ber x iff for all i < k:

1. there is a j such that (y)i = #(vj), or

2. there is a j such that (y)i = #(cj), or

3. there is an n and a number z = 〈z1, . . . , zn〉 such that each zl is equal to
some (y)i′ for i′ < i and

(y)i = #(f n
j () _ flatten(z) _ #()),

and moreover (y)k−1 = x. The function flatten(z) turns the sequence 〈#(t1), . . . , #(tn)〉
into #(t1, . . . , tn) and is primitive recursive.

The indices j, n, the Gödel numbers zl of the terms tl , and the code z of the
sequence 〈z1, . . . , zn〉, in (3) are all less than y. We can replace k above with
len(y). Hence we can express “y is the code of a formation sequence of the
term with Gödel number x” in a way that shows that this relation is primitive
recursive.

We now just have to convince ourselves that there is a primitive recursive
bound on y. But if x is the Gödel number of a term, it must have a forma-
tion sequence with at most len(x) terms (since every term in the formation
sequence of s must start at some place in s, and no two subterms can start at
the same place). The Gödel number of each subterm of s is of course ≤ x.
Hence, there always is a formation sequence with code ≤ xlen(x).

146 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

11.4 Coding Formulas

Proposition 11.5. The relation Atom(x) which holds iff x is the Gödel number of
an atomic formula, is primitive recursive.

Proof. The number x is the Gödel number of an atomic formula iff one of the
following holds:

1. There are n, j < x, and z < x such that for each i < n, Term((z)i) and

x = #(P n
j () _ flatten(z) _ #()).

2. There are z1, z2 < x such that Term(z1), Term(z2), and

x = z1 _ #(=) _ z2.

3. x = #(⊥).

4. x = #(>).

Proposition 11.6. The relation Frm(x) which holds iff x is the Gödel number of
a formula is primitive recursive.

Proof. A sequence of symbols s is a formula iff there is formation sequence s0,
. . . , sk−1 = s of formula which records how s was formed from atomic formu-
las according to the formation rules. The code for each si (and indeed of the
code of the sequence 〈s0, . . . , sk−1〉 is less than the code x of s.

11.5 Substitution

Proposition 11.7. There is a primitive recursive function Subst(x, y, z) with the
property that

Subst(#(ϕ), #(t), #(x)) = #(ϕ[t/x])

Proof. Let us suppose that the predicate FreeOcc(x, z, i), which holds if the i-
th symbols of the formula with Gödel number x is a free occurrence of the
variable with Gödel number z, is primitive recursive. We can then define a
function Subst′ by primitive recursion as follows:

Subst′(0, x, y, z) = ∅

Subst′(i + 1, x, y, z) =

{
Subst′(i, x, y, z) _ y if FreeOcc(x, z, i + 1)
append(Subst′(i, x, y, z), (x)i+1) otherwise.

Subst(x, y, z) can now be defined as Subst′(len(x), x, y, z).

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 147

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

11.6 Proofs in LK

Definition 11.8. If Γ is a finite set of sentences, Γ = {ϕ1, . . . , ϕn}, then #(Γ) =
〈#(ϕ1), . . . , #(ϕn)〉.

If Γ ⇒ ∆ is a sequent, then a Gödel number of Γ ⇒ ∆ is

#(Γ ⇒ ∆) = 〈#(Γ), #(∆)〉

If Π is a derivation in LK, then #(Π) is

1. 〈0, #(Γ ⇒ ∆)〉 if Π consists only of the initial sequent Γ ⇒ ∆.

2. 〈1, #(Γ ⇒ ∆), k, #(Π′)〉 if Π ends in an inference with one premise, k is
given by the following table according to which rule was used in the
last inference, and Π′ is the immediate subproof ending in the premise
of the last inference.

Rule: Contr ¬ left ¬ right ∧ left ∨ right → right
k: 1 2 3 4 5 6

Rule: ∀ left ∀ right ∃ left ∃ right =
k: 7 8 9 10 11

3. 〈2, #(Γ ⇒ ∆), k, #(Π′), #(Π′′)〉 if Π ends in an inference with two premises,
k is given by the following table according to which rule was used in the
last inference, and Π′, Π′′ are the immediate subproof ending in the left
and right premise of the last inference, respectively.

Rule: Cut ∧ right ∨ left → left
k: 1 2 3 4

Proposition 11.9. The following relations are primitive recursive:

1. ϕ ∈ Γ.

2. Γ ⊆ ∆.

3. Γ ⇒ ∆ is an initial sequent.

4. Γ ⇒ ∆ follows from Γ′ ⇒ ∆′ (and Γ′′ ⇒ ∆′′) by a rule of LK.

5. Π is a correct LK-derivation.

Proof. We have to show that the corresponding relations between Gödel num-
bers of formulas, sequences of Gödel numbers of formulas (which code sets
of formulas), and Gödel numbers of sequents, are primitive recursive.

1. ϕ ∈ Γ iff #(ϕ) occurs in the sequence #(Γ), i.e, IsIn(x, g) ⇔ ∃i <
len(g) (g)i = x. We’ll abbreviate this as x ∈ g.

148 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. Γ ⊆ ∆ iff every element of #(Γ) is also an an element of #(∆), i.e.,
SubSet(g, d)⇔ ∀i < len(g) (g)i ∈ d. We’ll abbreviate this as g ⊆ d.

3. Γ ⇒ ∆ is an initial sequent if either there is a sentence ϕ such that Γ ⇒ ∆
is ϕ ⇒ ϕ, or there is a term t such that Γ ⇒ ∆ is ∅ ⇒ t = t. In terms of
Gödel numbers,

InitSeq(s)⇔∃x < s (Sent(x) ∧ s = 〈〈x〉, 〈x〉〉) ∨
∃t < s (Term(t) ∧ s = 〈0, t _ #(=) _ t〉).

4. Here we have to show that for each rule of inference R the relation
FollowsByR(s, s′) which holds if s and s′ are the Gödel numbers of con-
clusion and premise of a correct application of R is primitive recursive.
If R has two premises, FollowsByR of course has three arguments.

For instance, Γ ⇒ ∆ follows correctly from Γ′ ⇒ ∆′ by ∃right iff Γ =
Γ′ and there is a formula ϕ, a variable x and a closed term t such that
ϕ[t/x] ∈ ∆′ and ∃x ϕ ∈ ∆, for every ψ ∈ ∆, either ψ = ∃x ϕ or ψ ∈ ∆′,
and for every ψ ∈ ∆′, ψ = ϕ[t/x] or ψ ∈ ∆. We just have to translate this
into Gödel numbers. If s = #(Γ ⇒ ∆) then (s)0 = #(Γ) and (s)1 = #(∆).
So:

FollowsBy∃right(s, s′)⇔ (s)0 ⊆ (s′)0 ∧ (s′)0 ⊆ (s)0 ∧

∃ f < s ∃x < s ∃t < s′ (Frm(f) ∧Var(x) ∧ Term(t) ∧
Subst(f , t, x) ∈ (s′)1 ∧ #(∃) _ x _ f ∈ (s)1 ∧
∀i < len((s)1) (((s)1)i = #(∃) _ x _ f ∨ ((s)1)i ∈ (s′)1) ∧
∀i < len((s′)1) (((s)′1)i = Subst(f , t, x) ∨ ((s′)1)i ∈ (s)1))

The individual lines express, respectively, “Γ ⊆ Γ′ ∧ Γ′ ⊆ Γ,” “there is
a formula with Gödel number f , a variable with Gödel number x, and a
term with Gödel number t,” “ϕ[t/x] ∈ ∆′ ∧ ∃x ϕ ∈ ∆,” “for all ψ ∈ ∆,
either ψ = ∃x ϕ or ψ ∈ ∆′,” “for all ψ ∈ ∆′, either ψ = ϕ[t/x] or ψ ∈ ∆.
Note that in the last two lines, we quantify over the elements ψ of ∆ and
∆′ not directly, but via their place i in the Gödel numbers of ∆ and ∆′.
(Remember that #(∆) is the number of a sequence of Gödel numbers of
formulas in ∆.)

5. We first define a helper relation hDeriv(s, n) which holds if s codes a cor-
rect derivation at least to n inferences up from the end sequent. If n = 0
we let the relation be satisfied by default. Otherwise, hDeriv(s, n + 1) iff
either s consists just of an initial sequent, or it ends in a correct inference

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 149

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

and the codes of the immediate subderivations satisfy nDeriv(s, n).

nDeriv(s, 0)⇔ 1

nDeriv(s, n + 1)⇔ ((s)0 = 0∧ InitialSeq((s)1)) ∨
((s)0 = 1∧
((s)2 = 1∧ FollowsByContr((s)1, ((s)3)1)) ∨

...

((s)2 = 11∧ FollowsBy=((s)1, ((s)3)1)) ∧
nDeriv((s)3, n)) ∨

((s)0 = 2∧
((s)2 = 1∧ FollowsByCut((s)1, ((s)3)1), ((s)4)1)) ∨

...

((s)2 = 4∧ FollowsBy→left((s)1, ((s)3)1), ((s)4)1)) ∧
nDeriv((s)3, n) ∧ nDeriv((s)4, n))

This is a primitive recursive definition. If the number n is large enough,
e.g., larger than the maximum number of inferences between an initial
sequent and the end sequent in s, it holds of s iff s is the Gödel number
of a correct derivation. The number s itself is larger than that maximum
number of inferences. So we can now define Deriv(s) by nDeriv(s, s).

Proposition 11.10. Suppose Γ is a primitive recursive set of sentences. Then the
relation PrΓ(x, y) expressing “x is the code of a derivation Π of Γ0 ⇒ ϕ for some
finite Γ0 ⊆ Γ and x is the Gödel number of ϕ” is primitive recursive.

Proof. Suppose “y ∈ Γ” is given by the primitive recursive predicate RΓ(y).
We have to show that PrΓ(x, y) which holds iff y is the Gödel number of a
sentence ϕ and x is the code of an LK-derivation with end sequent Γ0 ⇒ ϕ is
primitive recursive.

By the previous proposition, the property Deriv() which holds iff x is the
code of a correct derivation Π in LK is primitive recursive. If x is such a code,
then (x)1 is the code of the end sequent of Π, and so ((x)1)0 is the code of the
left side of the end sequent and ((x)1)1 the right side. So we can express “the
right side of the end sequent of Π is ϕ” as len(((x)1)1) = 1 ∧ (((x)1)1)0 = x.
The left side of the end sequent of Π is of course automatically finite, we just
have to express that every sentence in it is in Γ. Thus we can define PrΓ(x, y)

150 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

by

PrΓ(x, y)⇔ Sent(y) ∧Deriv(x) ∧
∀i < len(((x)1)0) (((x)1)0)i ∈ Γ ∧
len(((x)1)1) = 1∧ (((x)1)1)0 = x

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 151

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 12

Representability in Q

12.1 Introduction

We will describe a very minimal such theory called “Q” (or, sometimes, “Robin-
son’s Q,” after Raphael Robinson). We will say what it means for a function
to be representable in Q, and then we will prove the following:

A function is representable in Q if and only if it is computable.

For one thing, this provides us with another model of computability. But we
will also use it to show that the set {ϕ : Q ` ϕ} is not decidable, by reducing
the halting problem to it. By the time we are done, we will have proved much
stronger things than this.

The language of Q is the language of arithmetic; Q consists of the fol-
lowing axioms (to be used in conjunction with the other axioms and rules of
first-order logic with identity predicate):

1. ∀x ∀y x′ = y′ → x = y

2. ∀x 0 6= x′

3. ∀x x 6= 0→ ∃y x = y′

4. ∀x (x + 0) = x

5. ∀x ∀y (x + y′) = (x + y)′

6. ∀x (x× 0) = 0

7. ∀x ∀y (x× y′) = ((x× y) + x)

8. ∀x ∀y x < y↔ ∃z (z′ + x) = y

152

For each natural number n, define the numeral n̄ to be the term 0
′′ ...′ where

there are n tick marks in all.
As a theory of arithmetic, Q is extremely weak; for example, you can’t even

prove very simple facts like ∀x x 6= x′ or ∀x ∀y (x + y) = (y + x). But we will
see that much of the reason that Q is so interesting is because it is so weak, in
fact, just barely strong enough for the incompleteness theorem to hold; and
also because it has a finite set of axioms.

A stronger theory than Q called Peano arithmetic PA, is obtained by adding
a schema of induction to Q:

(ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x′)))→ ∀x ϕ(x)

where ϕ(x) is any formula, possibly with free variables other than x. Using
induction, one can do much better; in fact, it takes a good deal of work to find
“natural” statements about the natural numbers that can’t be proved in Peano
arithmetic!

Definition 12.1. A function f (x0, . . . , xk) from the natural numbers to the nat-
ural numbers is said to be representable in Q if there is a formula ϕ f (x0, . . . , xk, y)
such that whenever f (n0, . . . , nk) = m, Q proves

1. ϕ f (n̄0, . . . , n̄k, m̄)

2. ∀y (ϕ f (n̄0, . . . , n̄k, y)→ m̄ = y).

There are other ways of stating the definition; for example, we could equiv-
alently require that Q proves ∀y (ϕ f (n̄0, . . . , n̄k, y)↔ m̄ = y).

Theorem 12.2. A function is representable in Q if and only if it is computable.

There are two directions to proving the theorem. One of them is fairly
straightforward once arithmetization of syntax is in place. The other direction
requires more work.

12.2 Functions Representable in Q are Computable

Lemma 12.3. Every function that is representable in Q is computable.

Proof. All we need to know is that we can code terms, formulas, and proofs in
such a way that the relation “d is a proof of ϕ in the theory Q” is computable,
as well as the function SubNumeral(ϕ, n, v) which returns (a numerical code
of) the result of substituting the numeral corresponding to n for the variable
(coded by) v in the formula (coded by) ϕ. Assuming this, suppose the function
f is represented by ϕ f (x0, . . . , xk, y). Then the algorithm for computing f is as
follows: on input n0, . . . , nk, search for a number m and a proof of the formula
ϕ f (n̄0, . . . , n̄k, m̄); when you find one, output m. In other words,

f (n0, . . . , nk) = (µs(“(s)0 is a proof of ϕ(n̄0, . . . , n̄k, ¯(s)1) in Q”))1.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 153

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

This completes the proof, modulo the (involved but routine) details of coding
and defining the function and relation above.

12.3 Computable Functions are Representable in Q

Lemma 12.4. Every computable function is representable in Q.

1. We will define a set of (total) functions, C.

2. We will show that C is the set of computable functions, i.e. our definition
provides another characterization of computability.

3. Then we will show that every function in C can be represented in Q.

12.4 The Functions C

Let C be the smallest set of functions containing

1. 0,

2. successor,

3. addition,

4. multiplication,

5. projections, and

6. the characteristic function for equality, χ=;

and closed under

1. composition, and

2. unbounded search, applied to regular functions.

Remember this last restriction means simply that you can only use the µ op-
eration when the result is total. Compare this to the definition of the general
recursive functions: here we have added plus, times, and χ=, but we have
dropped primitive recursion.

Clearly everything in C is recursive, since plus, times, and χ= are. We will
show that the converse is also true; this amounts to saying that with the other
stuff in C we can carry out primitive recursion.

154 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

12.5 The Beta Function Lemma

In order to show that C can carry out primitive recursion, we need to develop
functions that handle sequences. (If we had exponentiation as well, our task
would be easier.) When we had primitive recursion, we could define things
like the “nth prime,” and pick a fairly straightforward coding. But here we do
not have primitive recursion, so we need to be more clever.

Lemma 12.5. There is a function β(d, i) in C such that for every sequence a0, . . . , an
there is a number d, such that for every i less than or equal to n, β(d, i) = ai.

Think of d as coding the sequence 〈a0, . . . , an〉, and β(d, i) returning the ith
element. The lemma is fairly minimal; it doesn’t say we can concatenate se-
quences or append elements with functions in C, or even that we can compute
d from a0, . . . , an using functions in C. All it says is that there is a “decoding”
function such that every sequence is “coded.”

The use of the notation β is Gödel’s. To repeat, the hard part of proving the
lemma is defining a suitable β using the seemingly restricted resources in the
definition of C. There are various ways to prove this lemma, but one of the
cleanest is still Gödel’s original method, which used a number-theoretic fact
called the Chinese Remainder theorem.

Definition 12.6. Two natural numbers a and b are relatively prime if their great-
est common divisor is 1; in other words, they have no other divisors in com-
mon.

Definition 12.7. a ≡ b mod c means c | (a − b), i.e. a and b have the same
remainder when divided by c.

Here is the Chinese Remainder theorem:

Theorem 12.8. Suppose x0, . . . , xn are (pairwise) relatively prime. Let y0, . . . , yn be
any numbers. Then there is a number z such that

z ≡ y0 mod x0

z ≡ y1 mod x1

...

z ≡ yn mod xn.

Here is how we will use the Chinese Remainder theorem: if x0, . . . , xn are
bigger than y0, . . . , yn respectively, then we can take z to code the sequence
〈y0, . . . , yn〉. To recover yi, we need only divide z by xi and take the remainder.
To use this coding, we will need to find suitable values for x0, . . . , xn.

A couple of observations will help us in this regard. Given y0, . . . , yn, let

j = max(n, y0, . . . , yn) + 1,

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 155

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

and let

x0 = 1 + j!

x1 = 1 + 2 · j!
x2 = 1 + 3 · j!

...

xn = 1 + (n + 1) · j!

Then two things are true:

1. x0, . . . , xn are relatively prime.

2. For each i, yi < xi.

To see that clause 1 is true, note that if p is a prime number and p | xi and
p | xk, then p | 1 + (i + 1)j! and p | 1 + (k + 1)j!. But then p divides their
difference,

(1 + (i + 1)j!)− (1 + (k + 1)j!) = (i− k)j!.

Since p divides 1 + (1 + 1)j!, it can’t divide j! as well (otherwise, the first divi-
sion would leave a remainder of 1). So p divides i− k. But |i− k| is at most n,
and we have chosen j > n, so this implies that p | j!, again a contradiction. So
there is no prime number dividing both xi and xk. Clause 2 is easy: we have
yi < j < j! < xi.

Now let us prove the β function lemma. Remember that C is the small-
est set containing 0, successor, plus, times, χ=, projections, and closed under
composition and µ applied to regular functions. As usual, say a relation is
in C if its characteristic function is. As before we can show that the relations
in C are closed under boolean combinations and bounded quantification; for
example:

1. not(x) = χ=(x, 0)

2. µx ≤ z R(x, y) = µx (R(x, y) ∨ x = z)

3. ∃x ≤ z R(x, y)⇔ R(µx ≤ z R(x, y), y)

We can then show that all of the following are in C:

1. The pairing function, J(x, y) = 1
2 [(x + y)(x + y + 1)] + x

2. Projections
K(z) = µx ≤ q (∃y ≤ z [z = J(x, y)])

and
L(z) = µy ≤ q (∃x ≤ z [z = J(x, y)]).

3. x < y

156 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

4. x | y

5. The function rem(x, y) which returns the remainder when y is divided
by x

Now define
β∗(d0, d1, i) = rem(1 + (i + 1)d1, d0)

and
β(d, i) = β∗(K(d), L(d), i).

This is the function we need. Given a0, . . . , an, as above, let

j = max(n, a0, . . . , an) + 1,

and let d1 = j!. By the observations above, we know that 1+ d1, 1+ 2d1, . . . , 1+
(n+ 1)d1 are relatively prime and all are bigger than a0, . . . , an. By the Chinese
Remainder theorem there is a value d0 such that for each i,

d0 ≡ ai mod (1 + (i + 1)d1)

and so (because d1 is greater than ai),

ai = rem(1 + (i + 1)d1, d0).

Let d = J(d0, d1). Then for each i from 0 to n, we have

β(d, i) = β∗(d0, d1, i)

= rem(1 + (i + 1)d1, d0)

= ai

which is what we need. This completes the proof of the β-function lemma.

12.6 Primitive Recursion in C

Now we can show that C is closed under primitive recursion. Suppose f (~z)
and g(u, v,~z) are both in C. Let h(x,~z) be the function defined by

h(0,~z) = f (~z)

h(x + 1,~z) = g(x, h(x,~z),~z).

We need to show that h is in C.
First, define an auxiliary function ĥ(x,~z) which returns the least number d

such that d codes a sequence satisfying

1. (d)0 = f (~z), and

2. for each i < x, (d)i+1 = g(i, (d)i,~z),

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 157

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

where now (d)i is short for β(d, i). In other words, ĥ returns a sequence that
begins 〈h(0,~z), h(1,~z), . . . , h(x,~z)〉. ĥ is in C, because we can write it as

ĥ(x, z) = µd (β(d, 0) = f (~z) ∧ ∀i < x β(d, i + 1) = g(i, β(d, i),~z)).

But then we have
h(x,~z) = β(ĥ(x,~z), x),

so h is in C as well.

12.7 Functions in C are Representable in Q

We have to show that every function in C is representable in Q. In the end,
we need to show how to assign to each k-ary function f (x0, . . . , xk−1) in C a
formula ϕ f (x0, . . . , xk−1, y) that represents it.

Lemma 12.9. Given natural numbers n and m, if n 6= m, then Q ` n 6= m.

Proof. Use induction on n to show that for every m, if n 6= m, then Q ` n 6= m.
In the base case, n = 0. If m is not equal to 0, then m = k + 1 for some

natural number k. We have an axiom that says ∀x 0 6= x′. By a quantifier
axiom, replacing x by k, we can conclude 0 6= k

′
. But k

′
is just m.

In the induction step, we can assume the claim is true for n, and consider
n + 1. Let m be any natural number. There are two possibilities: either m = 0
or for some k we have m = k + 1. The first case is handled as above. In the
second case, suppose n + 1 6= k + 1. Then n 6= k. By the induction hypothesis
for n we have Q ` n 6= k. We have an axiom that says ∀x ∀y x′ = y′ → x = y.
Using a quantifier axiom, we have n′ = k

′ → n = k. Using propositional
logic, we can conclude, in Q, n 6= k → n′ 6= k

′
. Using modus ponens, we can

conclude n′ 6= k
′
, which is what we want, since k

′
is m.

Note that the lemma does not say much: in essence it says that Q can
prove that different numerals denote different objects. For example, Q proves
0′′ 6= 0′′′. But showing that this holds in general requires some care. Note also
that although we are using induction, it is induction outside of Q.

We will be able to represent zero, successor, plus, times, the characteristic
function for equality, and projections. In each case, the appropriate represent-
ing function is entirely straightforward; for example, zero is represented by
the formula

y = 0,

successor is represented by the formula

x′0 = y,

158 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

and plus is represented by the formula

x0 + x1 = y.

The work involves showing that Q can prove the relevant statements; for ex-
ample, saying that plus is represented by the formula above involves showing
that for every pair of natural numbers m and n, Q proves

n + m = n + m

and
∀y ((n + m) = y→ y = n + m).

What about composition? Suppose h is defined by

h(x0, . . . , xl−1) = f (g0(x0, . . . , xl−1), . . . , gk−1(x0, . . . , xl−1)).

where we have already found formulas ϕ f , ϕg0 , . . . , ϕgk−1 representing the func-
tions f , g0, . . . , gk−1, respectively. Then we can define a formula ϕh represent-
ing h, by defining ϕh(x0, . . . , xl−1, y) to be

∃z0, . . . ∃zk−1 (ϕg0(x0, . . . , xl−1, z0) ∧ · · · ∧ ϕgk−1(x0, . . . , xl−1, zk−1)∧
ϕ f (z0, . . . , zk−1, y)).

Finally, let us consider unbounded search. Suppose g(x,~z) is regular and
representable in Q, say by the formula ϕg(x,~z, y). Let f be defined by f (~z) =
µx g(x,~z). We would like to find a formula ϕ f (~z, y) representing f . Here is a
natural choice:

ϕ f (~z, y) ≡ ϕg(y,~z, 0) ∧ ∀w (w < y→ ¬ϕg(w,~z, 0)).

It can be shown that this works using some additional lemmas, e.g.,

Lemma 12.10. For every variable x and every natural number n, Q proves (x′ +
n) = (x + n)′.

It is again worth mentioning that this is weaker than saying that Q proves
∀x ∀y (x′ + y) = (x + y)′ (which is false).

Proof. The proof is, as usual, by induction on n. In the base case, n = 0, we
need to show that Q proves (x′ + 0) = (x + 0)′. But we have:

(x′ + 0) = x′ from axiom 4

(x + 0) = x from axiom 4

(x + 0)′ = x′ by line 2

(x′ + 0) = (x + 0)′ lines 1 and 3

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 159

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

In the induction step, we can assume that we have derived (x′+ n) = (x + n)′

in Q. Since n + 1 is n′, we need to show that Q proves (x′ + n′) = (x + n′)′.
The following chain of equalities can be derived in Q:

(x′ + n′) = (x′ + n)′ axiom 5

= (x + n′)′ from the inductive hypothesis

Lemma 12.11. 1. Q proves ¬(x < 0).

2. For every natural number n, Q proves

x < n + 1→ (x = 0∨ · · · ∨ x = n).

Proof. Let us do 1 and part of 2, informally (i.e., only giving hints as to how to
construct the formal derivation).

For part 1, by the definition of <, we need to prove ¬∃y (y′ + x) = 0
in Q, which is equivalent (using the axioms and rules of first-order logic) to
∀y (y′ + x) 6= 0. Here is the idea: suppose (y′ + x) = 0. If x is 0, we have
(y′ + 0) = 0. But by axiom 4 of Q, we have (y′ + 0) = y′, and by axiom 2 we
have y′ 6= 0, a contradiction. So ∀y (y′ + x) 6= 0. If x is not 0, by axiom 3 there
is a z such that x = z′. But then we have (y′ + z′) = 0. By axiom 5, we have
(y′ + z)′ = 0, again contradicting axiom 2.

For part 2, use induction on n. Let us consider the base case, when n = 0.
In that case, we need to show x < 1 → x = 0. Suppose x < 1. Then by the
defining axiom for <, we have ∃y (y′ + x) = 0′. Suppose y has that property;
so we have y′ + x = 0′.

We need to show x = 0. By axiom 3, if x is not 0, it is equal to z′ for some z.
Then we have (y′+ z′) = 0′. By axiom 5 of Q, we have (y′+ z)′ = 0′. By axiom
1, we have (y′ + z) = 0. But this means, by definition, z < 0, contradicting
part 1.

We have shown that the set of computable functions can be characterized
as the set of functions representable in Q. In fact, the proof is more general.
From the definition of representability, it is not hard to see that any theory
extending Q (or in which one can interpret Q) can represent the computable
functions; but, conversely, in any proof system in which the notion of proof is
computable, every representable function is computable. So, for example, the
set of computable functions can be characterized as the set of functions rep-
resented in Peano arithmetic, or even Zermelo Fraenkel set theory. As Gödel
noted, this is somewhat surprising. We will see that when it comes to prov-
ability, questions are very sensitive to which theory you consider; roughly,
the stronger the axioms, the more you can prove. But across a wide range
of axiomatic theories, the representable functions are exactly the computable
ones.

160 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

12.8 Representing Relations

Let us say what it means for a relation to be representable.

Definition 12.12. A relation R(x0, . . . , xk) on the natural numbers is repre-
sentable in Q if there is a formula ϕR(x0, . . . , xk) such that whenever R(n0, . . . , nk)
is true, Q proves ϕR(n0, . . . , nk), and whenever R(n0, . . . , nk) is false, Q proves
¬ϕR(n0, . . . , nk).

Theorem 12.13. A relation is representable in Q if and only if it is computable.

Proof. For the forwards direction, suppose R(x0, . . . , xk) is represented by the
formula ϕR(x0, . . . , xk). Here is an algorithm for computing R: on input n0, . . . , nk,
simultaneously search for a proof of ϕR(n0, . . . , nk) and a proof of¬ϕR(n0, . . . , nk).
By our hypothesis, the search is bound to find one of the other; if it is the first,
report “yes,” and otherwise, report “no.”

In the other direction, suppose R(x0, . . . , xk) is computable. By definition,
this means that the function χR(x0, . . . , xk) is computable. By Theorem 12.2,
χR is represented by a formula, say ϕχR(x0, . . . , xk, y). Let ϕR(x0, . . . , xk) be
the formula ϕχR(x0, . . . , xk, 1). Then for any n0, . . . , nk, if R(n0, . . . , nk) is true,
then χR(n0, . . . , nk) = 1, in which case Q proves ϕχR(n0, . . . , nk, 1), and so
Q proves ϕR(n0, . . . , nk). On the other hand if R(n0, . . . , nk) is false, then
χR(n0, . . . , nk) = 0. This means that Q proves ϕχR(n0, . . . , nk, y) → y = 0.
Since Q proves ¬(0 = 1), Q proves ¬ϕχR(n0, . . . , nk, 1), and so it proves
¬ϕR(n0, . . . , nk).

12.9 Undecidability

We call a theory T undecidable if there is no computational procedure which, af-
ter finitely many steps and unfailingly, provides a correct answer to the ques-
tion “does T prove ϕ?” for any sentence ϕ in the language of T. So Q would
be decidable iff there were a computational procedure which decides, given a
sentence ϕ in the language of arithmetic, whether Q ` ϕ or not. We can make
this more precise by asking: Is the relation ProvQ(y), which holds of y iff y is
the Gödel number of a sentence provable in Q, recursive? The answer is: no.

Theorem 12.14. Q is undecidable, i.e., the relation

ProvQ(y)⇔ Sent(y) ∧ ∃x PrQ(x, y)

is not recursive.

Proof. Suppose it were. Then we could solve the halting problem as follows:
Given e and n, we know that ϕe(n) ↓ iff there is an s such that T(e, n, s), where
T is Kleene’s predicate from Theorem 6.8. Since T is primitive recursive it is
representable in Q by a formula ψT , that is, Q ` ψT(e, n, s) iff T(e, n, s). If

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 161

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Q ` ψT(e, n, s) then also Q ` ∃y ψT(e, n, y). If no such s exists, then Q `
¬ψT(e, n, s) for every s. But Q is ω-consistent, i.e., if Q ` ¬ϕ(n) for every n ∈
N, then Q 6` ∃y ϕ(y). We know this because the axioms of Q are true in the
standard model N. So, Q 6` ∃y ψT(e, n, y). In other words, Q ` ∃y ψT(e, n, y)
iff there is an s such that T(e, n, s), i.e., iff ϕe(n) ↓. From e and n we can
compute #(∃y ψT(e, n, y)), let g(e, n) be the primitive recursive function which
does that. So

h(e, n) =

{
1 if PrQ(g(e, n))
0 otherwise.

This would show that h is recursive if PrQ is. But h is not recursive, by Theo-
rem 6.9, so PrQ cannot be either.

Corollary 12.15. First-order logic is undecidable.

Proof. If first-order logic were decidable, provability in Q would be as well,
since Q ` ϕ iff ` ω → ϕ, where ω is the conjunction of the axioms of Q.

162 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 13

Theories and Computability

13.1 Introduction

We have the following:

1. A definition of what it means for a function to be representable in Q
(Definition 12.1)

2. a definition of what it means for a relation to be representable in Q (Def-
inition 12.12)

3. a theorem asserting that the representable functions of Q are exactly the
computable ones (Theorem 12.2)

4. a theorem asserting that the representable relations of Q are exactly the
computable ones Theorem 12.13)

A theory is a set of sentences that is deductively closed, that is, with the
property that whenever T proves ϕ then ϕ is in T. It is probably best to think
of a theory as being a collection of sentences, together with all the things that
these sentences imply. From now on, I will use Q to refer to the theory con-
sisting of the set of sentences derivable from the eight axioms in section 12.1.
Remember that we can code formula of Q as numbers; if ϕ is such a formula,
let #(ϕ) denote the number coding ϕ. Modulo this coding, we can now ask
whether various sets of formulas are computable or not.

13.2 Q is c.e.-complete

Theorem 13.1. Q is c.e. but not decidable. In fact, it is a complete c.e. set.

Proof. It is not hard to see that Q is c.e., since it is the set of (codes for) sen-
tences y such that there is a proof x of y in Q:

Q = {y : ∃x PrQ(x, y)}.

163

But we know that PrQ(x, y) is computable (in fact, primitive recursive), and
any set that can be written in the above form is c.e.

Saying that it is a complete c.e. set is equivalent to saying that K ≤m Q,
where K = {x : ϕx(x) ↓}. So let us show that K is reducible to Q. Since
Kleene’s predicate T(e, x, s) is primitive recursive, it is representable in Q, say,
by ϕT . Then for every x, we have

x ∈ K → ∃s T(x, x, s)

→ ∃s (Q ` ϕT(x, x, s))

→ Q ` ∃s ϕT(x, x, s).

Conversely, if Q ` ∃s ϕT(x, x, s), then, in fact, for some natural number n the
formula ϕT(x, x, n) must be true. Now, if T(x, x, n) were false, Q would prove
¬ϕT(x, x, n), since ϕT represents T. But then Q proves a false formula, which
is a contradiction. So T(x, x, n) must be true, which implies ϕx(x) ↓.

In short, we have that for every x, x is in K if and only if Q proves ∃s T(x, x, s).
So the function f which takes x to (a code for) the sentence ∃s T(x, x, s) is a re-
duction of K to Q.

13.3 ω-Consistent Extensions of Q are Undecidable

The proof that Q is c.e.-complete relied on the fact that any sentence prov-
able in Q is “true” of the natural numbers. The next definition and theorem
strengthen this theorem, by pinpointing just those aspects of “truth” that were
needed in the proof above. Don’t dwell on this theorem too long, though, be-
cause we will soon strengthen it even further. We include it mainly for histori-
cal purposes: Gödel’s original paper used the notion of ω-consistency, but his
result was strengthened by replacing ω-consistency with ordinary consistency
soon after.

Definition 13.2. A theory T is ω-consistent if the following holds: if ∃x ϕ(x)
is any sentence and T proves ¬ϕ(0), ¬ϕ(1), ¬ϕ(2), . . . then T does not prove
∃x ϕ(x).

Theorem 13.3. Let T be any ω-consistent theory that includes Q. Then T is not
decidable.

Proof. If T includes Q, then T represents the computable functions and rela-
tions. We need only modify the previous proof. As above, if x ∈ K, then
T proves ∃s ϕT(x, x, s). Conversely, suppose T proves ∃s ϕT(x, x, s). Then x
must be in K: otherwise, there is no halting computation of machine x on input
x; since ϕT represents Kleene’s T relation, T proves ¬ϕT(x, x, 0), ¬ϕT(x, x, 1),
. . . , making T ω-inconsistent.

164 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

13.4 Consistent Extensions of Q are Undecidable

Remember that a theory is consistent if it does not prove ϕ and ¬ϕ for any
formula ϕ. Since anything follows from a contradiction, an inconsistent theory
is trivial: every sentence is provable. Clearly, if a theory if ω-consistent, then
it is consistent. But being consistent is a weaker requirement (i.e., there are
theories that are consistent but not ω-consistent — we will see an example
soon). We can weaken the assumption in Definition 13.2 to simple consistency
to obatin a stronger theorem.

Lemma 13.4. There is no “universal computable relation.” That is, there is no binary
computable relation R(x, y), with the following property: whenever S(y) is a unary
computable relation, there is some k such that for every y, S(y) is true if and only if
R(k, y) is true.

Proof. Suppose R(x, y) is a universal computable relation. Let S(y) be the
relation ¬R(y, y). Since S(y) is computable, for some k, S(y) is equivalent to
R(k, y). But then we have that S(k) is equivalent to both R(k, k) and ¬R(k, k),
which is a contradiction.

Theorem 13.5. Let T be any consistent theory that includes Q. Then T is not decid-
able.

Proof. Suppose T is a consistent, decidable extension of Q. We will obtain a
contradiction by using T to define a universal computable relation.

Let R(x, y) hold if and only if

x codes a formula θ(u), and T proves θ(y).

Since we are assuming that T is decidable, R is computable. Let us show that
R is universal. If S(y) is any computable relation, then it is representable in Q
(and hence T) by a formula θS(u). Then for every n, we have

S(n) → T ` θS(n)

→ R(#(θS(u)), n)

and

¬S(n) → T ` ¬θS(n)

→ T 6` θS(n) (since T is consistent)

→ ¬R(#(θS(u)), n).

That is, for every y, S(y) is true if and only if R(#(θS(u)), y) is. So R is univer-
sal, and we have the contradiction we were looking for.

Let “true arithmetic” be the theory {ϕ : N |= ϕ}, that is, the set of sen-
tences in the language of arithmetic that are true in the standard interpreta-
tion.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 165

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Corollary 13.6. True arithmetic is not decidable.

13.5 Computably Axiomatizable Theories

A theory T is said to be computably axiomatizable if it has a computable set
of axioms A. (Saying that A is a set of axioms for T means T = {ϕ : A `
ϕ}.) Any “reasonable” axiomatization of the natural numbers will have this
property. In particular, any theory with a finite set of axioms is computably
axiomatizable. The phrase “effectively axiomatizable” is also commonly used.

Lemma 13.7. Suppose T is computably axiomatizable. Then T is computably enu-
merable.

Proof. Suppose A is a computable set of axioms for T. To determine if ϕ ∈ T,
just search for a proof of ϕ from the axioms.

Put slightly differently, ϕ is in T if and only if there is a finite list of axioms
ψ1, . . . , ψk in A and a proof of (ψ1 ∧ · · · ∧ ψk) → ϕ in first-order logic. But we
already know that any set with a definition of the form “there exists . . . such
that . . . ” is c.e., provided the second “. . . ” is computable.

13.6 Computably Axiomatizable Complete Theories are
Decidable

A theory is said to be complete if for every sentence ϕ, either ϕ or ¬ϕ is prov-
able.

Lemma 13.8. Suppose a theory T is complete and computably axiomatizable. Then
T is decidable.

Proof. Suppose T is complete and A is a computable set of axioms. If T is
inconsistent, it is clearly computable. (Algorithm: “just say yes.”) So we can
assume that T is also consistent.

To decide whether or not a sentence ϕ is in T, simultaneously search for a
proof of ϕ from A and a proof of ¬ϕ. Since T is complete, you are bound to
find one or another; and since T is consistent, if you find a proof of ¬ϕ, there
is no proof of ϕ.

Put in different terms, we already know that T is c.e.; so by a theorem
we proved before, it suffices to show that the complement of T is c.e. But a
formula ϕ is in T if and only if ¬ϕ is in T; so T ≤m T.

13.7 Q has no Complete, Consistent, Computably
Axiomatized Extensions

Theorem 13.9. There is no complete, consistent, computably axiomatized extension
of Q.

166 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. We already know that there is no consistent, decidable extension of Q.
But if T is complete and computably axiomatized, then it is decidable.

This theorems is not that far from Gödel’s original 1931 formulation of
the First Incompleteness Theorem. Aside from the more modern terminology,
the key differences are this: Gödel has “ω-consistent” instead of “consistent”;
and he could not say “computably axiomatized” in full generality, since the
formal notion of computability was not in place yet. (The formal models of
computability were developed over the following decade, in large part by
Gödel, and in large part to be able to characterize the kinds of theories that
are susceptible to the Gödel phenomenon.)

The theorem says you can’t have it all, namely, completeness, consistency,
and computable axiomatizability. If you give up any one of these, though, you
can have the other two: Q is consistent and computably axiomatized, but not
complete; the inconsistent theory is complete, and computably axiomatized
(say, by {0 6= 0}), but not consistent; and the set of true sentence of arithmetic
is complete and consistent, but it is not computably axiomatized.

13.8 Sentences Provable and Refutable in Q are Computably
Inseparable

Let Q̄ be the set of sentences whose negations are provable in Q, i.e., Q̄ = {ϕ :
Q ` ¬ϕ}. Remember that disjoint sets A and B are said to be computably
inseparable if there is no computable set C such that A ⊆ C and B ⊆ C.

Lemma 13.10. Q and Q̄ are computably inseparable.

Proof. Suppose C is a computable set such that Q ⊆ C and Q̄ ⊆ C. Let R(x, y)
be the relation

x codes a formula θ(u) and θ(y) is in C.

We will show that R(x, y) is a universal computable relation, yielding a con-
tradiction.

Suppose S(y) is computable, represented by θS(u) in Q. Then

S(n) → Q ` θS(n)

→ θS(n) ∈ C

and

¬S(n) → Q ` ¬θS(n)

→ θS(n) ∈ Q̄

→ θS(n) 6∈ C

So S(y) is equivalent to R(#(θS(u)), y).

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 167

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

13.9 Theories Consistent with Q are Undecidable

The following theorem says that not only is Q undecidable, but, in fact, any
theory that does not disagree with Q is undecidable.

Theorem 13.11. Let T be any theory in the language of arithmetic that is consistent
with Q (i.e., T ∪Q is consistent). Then T is undecidable.

Proof. Remember that Q has a finite set of axioms, ϕ1, . . . , ϕ8. We can even
replace these by a single axiom, α = ϕ1 ∧ · · · ∧ ϕ8.

Suppose T is a decidable theory consistent with Q. Let

C = {ϕ : T ` α→ ϕ}.

We show that C would be a computable separation of Q and Q̄, a contra-
diction. First, if ϕ is in Q, then ϕ is provable from the axioms of Q; by the
deduction theorem, there is a proof of α→ ϕ in first-order logic. So ϕ is in C.

On the other hand, if ϕ is in Q̄, then there is a proof of α → ¬ϕ in first-
order logic. If T also proves α → ϕ, then T proves ¬α, in which case T ∪Q
is inconsistent. But we are assuming T ∪Q is consistent, so T does not prove
α→ ϕ, and so ϕ is not in C.

We’ve shown that if ϕ is in Q, then it is in C, and if ϕ is in Q′, then it is in C.
So C is a computable separation, which is the contradiction we were looking
for.

This theorem is very powerful. For example, it implies:

Corollary 13.12. First-order logic for the language of arithmetic (that is, the set
{ϕ : ϕ is provable in first-order logic}) is undecidable.

Proof. First-order logic is the set of consequences of ∅, which is consistent
with Q.

13.10 Theories In Which Q is Intepretable are Undecidable

We can strengthen these results even more. Informally, an interpretation of a
language L1 in another language L2 involves defining the universe, relation
symbols, and function symbols of L1 with formulas in L2. Though we won’t
take the time to do this, one can make this definition precise.

Theorem 13.13. Suppose T is a theory in a language in which one can interpret the
language of arithmetic, in such a way that T is consistent with the interpretation of
Q. Then T is undecidable. If T proves the interpretation of the axioms of Q, then no
consistent extension of T is decidable.

168 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

The proof is just a small modification of the proof of the last theorem; one
could use a counterexample to get a separation of Q and Q̄. One can take ZFC,
Zermelo Fraenkel set theory with the axiom of choice, to be an axiomatic foun-
dation that is powerful enough to carry out a good deal of ordinary mathemat-
ics. In ZFC one can define the natural numbers, and via this interpretation,
the axioms of Q are true. So we have

Corollary 13.14. There is no decidable extension of ZFC.

Corollary 13.15. There is no complete, consistent, computably axiomatized exten-
sion of ZFC.

The language of ZFC has only a single binary relation, ∈. (In fact, you
don’t even need equality.) So we have

Corollary 13.16. First-order logic for any language with a binary relation symbol is
undecidable.

This result extends to any language with two unary function symbols,
since one can use these to simulate a binary relation symbol. The results just
cited are tight: it turns out that first-order logic for a language with only unary
relation symbols and at most one unary function symbol is decidable.

One more bit of trivia. We know that the set of sentences in the language
0, S,+,×,< true in the standard model is undecidable. In fact, one can de-
fine < in terms of the other symbols, and then one can define + in terms of
× and S. So the set of true sentences in the language 0, S,× is undecidable.
On the other hand, Presburger has shown that the set of sentences in the lan-
guage 0, S,+ true in the language of arithmetic is decidable. The procedure is
computationally infeasible, however.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 169

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 14

Incompleteness and Provability

14.1 Introduction

Hilbert thought that a system of axioms for a mathematical structure, such
as the natural numbers, is inadequate unless it allows one to derive all true
statements about the structure. Combined with his later interest in formal
systems of deduction, this suggests that one should try to guarantee that, say,
the formal system one is using to reason about the natural numbers is not
only consistent, but also complete, i.e., every statement is either provable or
refutable. Gödel’s first incompleteness theorem shows that no such system of
axioms exists: there is no complete, consistent, effectively axiomatized formal
system for arithmetic. In fact, no “sufficiently strong,” consistent, effectively
axiomatized mathematical theory is complete.

A more important goal of Hilbert’s, the centerpiece of his program for the
justification of modern (“classical”) mathematics, was to find finitary consis-
tency proofs for formal systems representing classical reasoning. With regard
to Hilbert’s program, then, Gödel’s second incompleteness theorem was a
much bigger blow.

The second incompleteness theorem can be stated in vague terms, like the
first incompleteness theorem. Roughly speaking, then, it says that no suf-
ficiently strong theory of arithmetic can prove its own consistency. We will
have to take “sufficiently strong” to include a little bit more than Q.

The idea behind Gödel’s original proof of the incompleteness theorem can
be found in the Epimenides paradox. Epimenides, a Cretin, asserted that all
Cretans are liars; a more direct form of the paradox is the assertion “this sen-
tence is false.” Essentially, by replacing truth with provability, Gödel was
able to formalize a sentence which, in essence, asserts “this sentence is not
provable.” Assuming ω-consistency—a property stronger than consistency—
Gödel was able to show that this sentence is neither provable nor refutable
from the system of axioms he was considering.

The first challenge is to understand how one can construct a sentence that

170

refers to itself. For every formula ϕ in the language of Q, let pϕq denote the
numeral corresponding to #(ϕ). Think about what this means: ϕ is a formula
in the language of Q, #(ϕ) is a natural number, and pϕq is a term in the lan-
guage of Q. So every formula ϕ in the language of Q has a name, pϕq, which is
a term in the language of Q; this provides us with a conceptual framework in
which formulas in the language of Q can “say” things about other formulas.
The following lemma is known as Gödel’s fixed-point lemma.

Lemma 14.1. Let T be any theory extending Q, and let ψ(x) be any formula with
free variable x. Then there is a sentence ϕ such that T proves ϕ↔ ψ(pϕq).

The lemma asserts that given any property ψ(x), there is a sentence ϕ that
asserts “ψ(x) is true of me.”

How can we construct such a sentence? Consider the following version of
the Epimenides paradox, due to Quine:

“Yields falsehood when preceded by its quotation” yields false-
hood when preceded by its quotation.

This sentence is not directly self-referential. It simply makes an assertion
about the syntactic objects between quotes, and, in doing so, it is on par with
sentences like

1. “Robert” is a nice name.

2. “I ran.” is a short sentence.

3. “Has three words” has three words.

But what happens when one takes the phrase “yields falsehood when pre-
ceded by its quotation,” and precedes it with a quoted version of itself? Then
one has the original sentence! In short, the sentence asserts that it is false.

14.2 The Fixed-Point Lemma

Let diag(y) be the computable (in fact, primitive recursive) function that does
the following: if y is the Gödel number of a formula ψ(x), diag(y) returns the
Gödel number of ψ(pψ(x)q). (pψ(x)q is the standard numeral of the Gödel
number of ψ(x), i.e., #(ψ(x))). If diag were a function symbol in T represent-
ing the function diag, we could take ϕ to be the formula ψ(diag(pψ(diag(x))q)).
Notice that

diag(#(ψ(diag(x)))) = #(ψ(diag(pψ(diag(x))q))

= #(ϕ).

Assuming T can prove

diag(pψ(diag(x))q) = pϕq,

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 171

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

it can prove ψ(diag(pψ(diag(x))q)) ↔ ψ(pϕq). But the left hand side is, by
definition, ϕ.

In general, diag will not be a function symbol of T. But since T extends
Q, the function diag will be represented in T by some formula θdiag(x, y). So
instead of writing ψ(diag(x)) we will have to write ∃y (θdiag(x, y) ∧ ψ(y)).
Otherwise, the proof sketched above goes through.

Lemma 14.2. Let T be any theory extending Q, and let ψ(x) be any formula with
free variable x. Then there is a sentence ϕ such that T proves ϕ↔ ψ(pϕq).

Proof. Given ψ(x), let α(x) be the formula ∃y (θdiag(x, y) ∧ ψ(y)) and let ϕ be
the formula α(pα(x)q).

Since θdiag represents diag, T can prove

∀y (θdiag(pα(x)q, y)↔ y = diag(pα(x)q)).

But by definition, diag(#(α(x))) = #(α(pα(x)q)) = #(ϕ), so T can prove

∀y (θdiag(pα(x)q, y)↔ y = pϕq).

Going back to the definition of α(x), we see α(pα(x)q) is just the formula

∃y (θdiag(pα(x)q, y) ∧ ψ(y)).

Using the last two sentences and ordinary first-order logic, one can then prove

α(pα(x)q)↔ ψ(pϕq).

But the left-hand side is just ϕ.

You should compare this to the proof of the fixed-point lemma in com-
putability theory. The difference is that here we want to define a statement in
terms of itself, whereas there we wanted to define a function in terms of itself;
this difference aside, it is really the same idea.

14.3 The First Incompleteness Theorem

We can now describe Gödel’s original proof of the first incompleteness theo-
rem. Let T be any computably axiomatized theory in a language extending
the language of arithmetic, such that T includes the axioms of Q. This means
that, in particular, T represents computable functions and relations.

We have argued that, given a reasonable coding of formulas and proofs
as numbers, the relation PrT(x, y) is computable, where PrT(x, y) holds if and
only if x is a proof of formula y in T. In fact, for the particular theory that
Gödel had in mind, Gödel was able to show that this relation is primitive
recursive, using the list of 45 functions and relations in his paper. The 45th

172 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

relation, xBy, is just PrT(x, y) for his particular choice of T. Remember that
where Gödel uses the word “recursive” in his paper, we would now use the
phrase “primitive recursive.”

Since PrT(x, y) is computable, it is representable in T. We will use PrT(x, y)
to refer to the formula that represents it. Let ProvT(y) be the formula ∃x PrT(x, y).
This describes the 46th relation, Bew(y), on Gödel’s list. As Gödel notes, this
is the only relation that “cannot be asserted to be recursive.” What he proba-
bly meant is this: from the definition, it is not clear that it is computable; and
later developments, in fact, show that it isn’t.

Definition 14.3. A theory T is ω-consistent if the following holds: if ∃x ϕ(x)
is any sentence and T proves ¬ϕ(0), ¬ϕ(1), ¬ϕ(2), . . . then T does not prove
∃x ϕ(x).

We can now prove the following.

Theorem 14.4. Let T be any ω-consistent, computably axiomatized theory extending
Q. Then T is not complete.

Proof. Let T be any computably axiomatized theory containing Q, and let
ProvT(y) be the formula we described above. By the fixed-point lemma, there
is a formula γT such that T proves

γT ↔ ¬ProvT(pγTq). (14.1)

Note that ϕ says, in essence, “I am not provable.”
We claim that

1. If T is consistent, T doesn’t prove γT

2. If T is ω-consistent, T doesn’t prove ¬γT.

This means that if T is ω-consistent, it is incomplete, since it proves neither γT
nor ¬γT. Let us take each claim in turn.

Suppose T proves γT. Then there is a proof, and so, for some number m,
the relation PrT(m, #(γT)) holds. But then T proves the sentence PrT(m, pγTq).
So T proves ∃x PrT(x, pγTq), which is, by definition, ProvT(pγTq). By eq. (14.1),
T proves ¬γT. We have shown that if T proves γT, then it also proves ¬γT,
and hence it is inconsistent.

For the second claim, let us show that if T proves¬γT, then it is ω-inconsistent.
Suppose T proves ¬γT. If T is inconsistent, it is ω-inconsistent, and we are
done. Otherwise, T is consistent, so it does not prove γT. Since there is no
proof of γT in T, T proves

¬PrT(0, pγTq),¬PrT(1, pγTq),¬PrT(2, pγTq), . . .

On the other hand, by eq. (14.1), ¬γT is equivalent to ∃x PrT(x, pγTq). So T is
ω-inconsistent.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 173

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

14.4 Rosser’s Theorem

Can we modify Gödel’s proof to get a stronger result, replacing “ω-consistent”
with simply “consistent”? The answer is “yes,” using a trick discovered by
Rosser. Let not(x) be the primitive recursive function which does the follow-
ing: if x is the code of a formula ϕ, not(x) is a code of ¬ϕ. To simplify matters,
assume T has a function symbol not such that for any formula ϕ, T proves
not(pϕq) = p¬ϕq. This is not a major assumption; since not(x) is computable,
it is represented in T by some formula θnot(x, y), and we could eliminate the
reference to the function symbol in the same way that we avoided using a
function symbol diag in the proof of the fixed-point lemma.

Rosser’s trick is to use a “modified” provability predicate RProvT(y), de-
fined to be

∃x (PrT(x, y) ∧ ∀z (z < x → ¬PrT(z, not(y)))).

Roughly, RProvT(y) says “there is a proof of y in T, and there is no shorter
proof of the negation of y.” (You might find it convenient to read RProvT(y)
as “y is shmovable.”) Assuming T is consistent, RProvT(y) is true of the same
numbers as ProvT(y); but from the point of view of provability in T (and we
now know that there is a difference between truth and provability!) the two
have different properties.

By the fixed-point lemma, there is a formula ρT such that T proves

ρT ↔ ¬RProvT(pρTq).

In contrast to the proof above, here we claim that if T is consistent, T doesn’t
prove ρT, and T also doesn’t prove ¬ρT. (In other words, we don’t need the
assumption of ω-consistency.)

By comparison to the proof of Theorem 13.9, the proofs of Theorem 14.4
and its improvement by Rosser explicitly exhibit a statement ϕ that is inde-
pendent of T. In the former, you have to dig to extract it from the argument.
The Gödel-Rosser methods therefore have the advantage of making the inde-
pendent statement perfectly clear.

14.5 Comparison with Gödel’s Original Paper

It is worthwhile to spend some time with Gödel’s 1931 paper. The introduc-
tion sketches the ideas we have just discussed. Even if you just skim through
the paper, it is easy to see what is going on at each stage: first Gödel describes
the formal system P (syntax, axioms, proof rules); then he defines the prim-
itive recursive functions and relations; then he shows that xBy is primitive
recursive, and argues that the primitive recursive functions and relations are
represented in P. He then goes on to prove the incompleteness theorem, as
above. In section 3, he shows that one can take the unprovable assertion to
be a sentence in the language of arithmetic. This is the origin of the β-lemma,

174 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

which is what we also used to handle sequences in showing that the recursive
functions are representable in Q. Gödel doesn’t go so far to isolate a minimal
set of axioms that suffice, but we now know that Q will do the trick. Finally,
in Section 4, he sketches a proof of the second incompleteness theorem.

14.6 The Provability Conditions for PA

Peano arithmetic, or PA, is the theory extending Q with induction axioms for
all formulas. In other words, one adds to Q axioms of the form

(ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x′)))→ ∀x ϕ(x)

for every formula ϕ. Notice that this is really a schema, which is to say, in-
finitely many axioms (and it turns out that PA is not finitely axiomatizable).
But since one can effectively determine whether or not a string of symbols is
an instance of an induction axiom, the set of axioms for PA is computable. PA
is a much more robust theory than Q. For example, one can easily prove that
addition and multiplication are commutative, using induction in the usual
way. In fact, most finitary number-theoretic and combinatorial arguments can
be carried out in PA.

Since PA is computably axiomatized, the provability predicate PrPA(x, y)
is computable and hence represented in Q (and so, in PA). As before, I will
take PrPA(x, y) to denote the formula representing the relation. Let ProvPA(y)
be the formula ∃x PrPA(x, y), which, intuitively says, “y is provable from the
axioms of PA.” The reason we need a little bit more than the axioms of Q is
we need to know that the theory we are using is strong enough to prove a
few basic facts about this provability predicate. In fact, what we need are the
following facts:

1. If PA ` ϕ, then PA ` ProvPA(pϕq)

2. For every formula ϕ and ψ, PA ` ProvPA(pϕ→ ψq)→ (ProvPA(pϕq)→
ProvPA(pψq))

3. For every formula ϕ, PA ` ProvPA(pϕq)→ ProvPA(pProvPA(pϕq)q).

The only way to verify that these three properties hold is to describe the for-
mula ProvPA(y) carefully and use the axioms of PA to describe the relevant
formal proofs. Clauses 1 and 2 are easy; it is really clause 3 that requires work.
(Think about what kind of work it entails. . .) Carrying out the details would
be tedious and uninteresting, so here we will ask you to take it on faith that
PA has the three properties listed above. A reasonable choice of ProvPA(y)
will also satisfy

4. If PA proves ProvPA(pϕq), then PA proves ϕ.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 175

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

But we will not need this fact.

Incidentally, Gödel was lazy in the same way we are being now. At the
end of the 1931 paper, he sketches the proof of the second incompleteness
theorem, and promises the details in a later paper. He never got around to it;
since everyone who understood the argument believed that it could be carried
out (he did not need to fill in the details.)

14.7 The Second Incompleteness Theorem

How can we express the assertion that PA doesn’t prove its own consistency?
Saying PA is inconsistent amounts to saying that PA proves 0 = 1. So we
can take ConPA to be the formula ¬ProvPA(p0 = 1q), and then the following
theorem does the job:

Theorem 14.5. Assuming PA is consistent, then PA does not prove ConPA.

It is important to note that the theorem depends on the particular repre-
sentation of ConPA (i.e., the particular representation of ProvPA(y)). All we
will use is that the representation of ProvPA(y) has the three properties above,
so the theorem generalizes to any theory with a provability predicate having
these properties.

It is informative to read Gödel’s sketch of an argument, since the theorem
follows like a good punch line. It goes like this. Let γPA be the Gödel sentence
that we constructed in the proof of Theorem 14.4. We have shown “If PA is
consistent, then PA does not prove γPA.” If we formalize this in PA, we have
a proof of

ConPA → ¬ProvPA(pγPAq).

Now suppose PA proves ConPA. Then it proves ¬ProvPA(pγPAq). But since
γPA is a Gödel sentence, this is equivalent to γPA. So PA proves γPA.

But: we know that if PA is consistent, it doesn’t prove γPA! So if PA is
consistent, it can’t prove ConPA.

To make the argument more precise, we will let γPA be the Gödel sentence
for PA and use properties 1–3 above to show that PA proves ConPA → γPA.
This will show that PA doesn’t prove ConPA. Here is a sketch of the proof,

176 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

in PA:

γPA → ¬ProvPA(pγPAq) since γPA is a Gödel sentence

ProvPA(pγPA → ¬ProvPA(pγPAq)q) by 1

ProvPA(pγPAq)→
ProvPA(p¬ProvPA(pγPAq)q) by 2

ProvPA(pγPAq)→
ProvPA(pProvPA(pγPAq)→ 0 = 1q) by 1 and 2

ProvPA(pγPAq)→
ProvPA(pProvPA(pγPAq)q) by 3

ProvPA(pγPAq)→ ProvPA(p0 = 1q) using 1 and 2

ConPA → ¬ProvPA(pγPAq) by contraposition

ConPA → γPA since γPA is a Gödel sentence

The move from the third to the fourth line uses the fact that ¬ProvPA(pγPAq)
is equivalent to ProvPA(pγPAq) → 0 = 1 in PA. The more abstract version of
the incompleteness theorem is as follows:

Theorem 14.6. Let T be any theory extending Q and let ProvT(y) be any formula
satisfying 1–3 for T. Then if T is consistent, then T does not prove ConT.

The moral of the story is that no “reasonable” consistent theory for math-
ematics can prove its own consistency. Suppose T is a theory of mathematics
that includes Q and Hilbert’s “finitary” reasoning (whatever that may be).
Then, the whole of T cannot prove the consistency of T, and so, a fortiori, the
finitary fragment can’t prove the consistency of T either. In that sense, there
cannot be a finitary consistency proof for “all of mathematics.”

There is some leeway in interpreting the term finitary, and Gödel, in the
1931 paper, grants the possibility that something we may consider “finitary”
may lie outside the kinds of mathematics Hilbert wanted to formalize. But
Gödel was being charitable; today, it is hard to see how we might find some-
thing that can reasonably be called finitary but is not formalizable in, say,
ZFC.

14.8 Löb’s Theorem

In this section, we will consider a fun application of the fixed-point lemma.
We now know that any “reasonable” theory of arithmetic is incomplete, which
is to say, there are sentences ϕ that are neither provable nor refutable in the
theory. One can ask whether, in general, a theory can prove “If I can prove ϕ,
then it must be true.” The answer is that, in general, it can’t. More precisely,
we have:

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 177

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Theorem 14.7. Let T be any theory extending Q, and suppose ProvT(y) is a formula
satisfying conditions 1–3 from section 14.7. If T proves ProvT(pϕq) → ϕ, then in
fact T proves ϕ.

Put differently, if ϕ is not provable in T, T can’t prove ProvT(pϕq) → ϕ.
This is known as Löb’s theorem.

The heuristic for the proof of Löb’s theorem is a clever proof that Santa
Claus exists. (If you don’t like that conclusion, you are free to substitute any
other conclusion you would like.) Here it is:

1. Let X be the sentence, “If X is true, then Santa Claus exists.”

2. Suppose X is true.

3. Then what it says is true; i.e., if X is true, then Santa Claus exists.

4. Since we are assuming X is true, we can conclude that Santa Claus exists.

5. So, we have shown: “If X is true, then Santa Claus exists.”

6. But this is just the statement X. So we have shown that X is true.

7. But then, by the argument above, Santa Claus exists.

A formalization of this idea, replacing “is true” with “is provable,” yields the
proof of Löb’s theorem.

Proof. Suppose ϕ is a sentence such that T proves ProvT(pϕq) → ϕ. Let ψ(y)
be the formula ProvT(y) → ϕ, and use the fixed-point lemma to find a sen-
tence θ such that T proves θ ↔ ψ(pθq). Then each of the following is provable
in T:

θ → (ProvT(pθq)→ ϕ)

ProvT(pθ → (ProvT(pθq)→ ϕ)q) by 1

ProvT(pθq)→ ProvT(pProvT(pθq)→ ϕq) using 2

ProvT(pθq)→
(ProvT(pProvT(pθq)q)→ ProvT(pϕq)) using 2

ProvT(pθq)→ ProvT(pProvT(pθq)q) by 3

ProvT(pθq)→ ProvT(pϕq)

ProvT(pϕq)→ ϕ by assumption

ProvT(pθq)→ ϕ

θ def of θ

ProvT(pθq) by 1

ϕ

178 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

With Löb’s theorem in hand, there is a short proof of the first incomplete-
ness theorem (for theories having a provability predicate satisfying 1–3): if a
theory proves ProvT(p0 = 1q)→ 0 = 1, it proves 0 = 1.

14.9 The Undefinability of Truth

The notion of definability depends on having a formal semantics for the lan-
guage of arithmetic. We have described a set of formulas and sentences in
the language of arithmetic. The “intended interpretation” is to read such sen-
tences as making assertions about the natural numbers, and such an assertion
can be true or false. Let N be the structure with domain N and the standard
interpretation for the symbols in the language of arithmetic. Then N |= ϕ
means “ϕ is true in the standard interpretation.”

Definition 14.8. A relation R(x1, . . . , xk) of natural numbers is definable in N if
and only if there is a formula ϕ(x1, . . . , xk) in the language of arithmetic such
that for every n1, . . . , nk, R(n1, . . . , nk) if and only if N |= ϕ(n1, . . . , nk).

Put differently, a relation is definable in in N if and only if it is repre-
sentable in the theory TA, where TA = {ϕ : N |= ϕ} is the set of true sentences
of arithmetic. (If this is not immediately clear to you, you should go back and
check the definitions and convince yourself that this is the case.)

Lemma 14.9. Every computable relation is definable in N.

Proof. It is easy to check that the formula representing a relation in Q defines
the same relation in N.

Now one can ask, is the converse also true? That is, is every replation
definable in N computable? The answer is no. For example:

Lemma 14.10. The halting relation is definable in N.

Proof. Let H be the halting relation, i.e.,

H = {〈e, x〉 : ∃s T(e, x, s)}.

Let θT define T in N. Then

H = {〈e, x〉 : N |= ∃s θT(e, x, s)},

so ∃s θT(z, x, s) defines H in N.

What about TA itself? Is it definable in arithmetic? That is: is the set
{#(ϕ) : N |= ϕ} definable in arithmetic? Tarski’s theorem answers this in the
negative.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 179

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Theorem 14.11. The set of true statements of arithmetic is not definable in arith-
metic.

Proof. Suppose θ(x) defined it. By the fixed-point lemma, there is a formula
ϕ such that Q proves ϕ ↔ ¬θ(pϕq), and hence N |= ϕ ↔ ¬θ(pϕq). But then
N |= ϕ if and only if N |= ¬θ(pϕq), which contradicts the fact that θ(y) is
supposed to define the set of true statements of arithmetic.

Tarski applied this analysis to a more general philosophical notion of truth.
Given any language L, Tarski argued that an adequate notion of truth for L
would have to satisfy, for each sentence X,

‘X’ is true if and only if X.

Tarski’s oft-quoted example, for English, is the sentence

‘Snow is white’ is true if and only if snow is white.

However, for any language strong enough to represent the diagonal function,
and any linguistic predicate T(x), we can construct a sentence X satisfying
“X if and only if not T(‘X’).” Given that we do not want a truth predicate
to declare some sentences to be both true and false, Tarski concluded that
one cannot specify a truth predicate for all sentences in a language without,
somehow, stepping outside the bounds of the language. In other words, a the
truth predicate for a language cannot be defined in the language itself.

180 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Part V

Sets, Relations, Functions

181

Chapter 15

Sets

15.1 Basics

Sets are the most fundamental building blocks of mathematical objects. In fact,
almost every mathematical object can be seen as a set of some kind. In logic,
as in other parts of mathematics, sets and set theoretical talk is ubiquitous.
So it will be important to discuss what sets are, and introduce the notations
necessary to talk about sets and operations on sets in a standard way.

Definition 15.1. A set is a collection of objects, considered independently of
the way it is specified, of the order of its elements, or of their multiplicity. The
objects making up the set are called elements or members of the set. If a is an
element of a set X, we write a ∈ X (otherwise, a /∈ X). The set which has no
elements is called the empty set and denoted ∅.

Example 15.2. Whenever you have a bunch of objects, you can collect them
together in a set. The set of Richard’s siblings, for instance, is a set that con-
tains one person, and we could write it as S = {Ruth}. In general, when
we have some objects a1, . . . , an, then the set consisting of exactly those ob-
jects is written {a1, . . . , an}. Frequently we’ll specify a set by some property
that its elements share—as we just did, for instance, by specifying S as the
set of Richard’s siblings. We’ll use the following shorthand notation for that:
{x : . . . x . . .}, where the . . . x . . . stands for the property that x has to have in
order to be counted among the elements of the set. In our example, we could
have specified S also as S = {x : x is a sibling of Richard}.

When we say that sets are independent of the way they are specified,
we mean that the elements of a set are all that matters. For instance, it so
happens that {Nicole, Jacob}, {x : is a niece or nephew of Richard} and {x :
is a child of Ruth} are three ways of specifying one and the same set.

Saying that sets are considered independently of the order of their ele-
ments and their multiplicity is a fancy way of saying that {Nicole, Jacob} and

182

{Jacob, Nicole} are two ways of specifying the same set; and that {Nicole, Jacob}
and {Jacob, Nicole, Nicole} are two ways of specifying the same set.

15.2 Some Important Sets

Example 15.3. Mostly we’ll be dealing with sets that have mathematical ob-
jects as members. You will remember the various sets of numbers: N is the set
of natural numbers {0, 1, 2, 3, . . . }; Z the set of integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . };
Q the set of rationals (Q = {z/n : z ∈ Z, n ∈ N, n 6= 0}); and R the set of real
numbers. These are all infinite sets, that is, they each have infinitely many el-
ements. As it turns out, N, Z, Q have the same number of elements, while R

has a whole bunch more—N, Z, Q are “enumerable and infinite” whereas R

is “non-enumerable”.
We’ll sometimes also use the set of positive integers Z+ = {1, 2, 3, . . . } and

the set containing just the first two natural numbers B = {0, 1}.

Example 15.4 (Strings). Another interesting example is the set A∗ of finite
strings over an alphabet A: any finite sequence of elements of A is a string
over A. We include the empty string Λ among the strings over A, for every
alphabet A. For instance,

B∗ = {Λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, . . .}.

If x = x1 . . . xn ∈ A∗is a string consisting of n “letters” from A, then we say
length of the string is n and write len(x) = n.

Example 15.5 (Infinite sequences). For any set A we may also consider the
set Aω of infinite sequences of elements of A. An infinite sequence a1a2a3a4 . . .
consists of a one-way infinite list of objects, each one of which is an element
of A.

15.3 Subsets

Sets are made up of their elements, and every element of a set is a part of that
set. But there is also a sense that some of the elements of a set taken together
are a “part of” that set. For instance, the number 2 is part of the set of integers,
but the set of even numbers is also a part of the set of integers. It’s important
to keep those two senses of being part of a set separate.

Definition 15.6. If every element of a set X is also an element of Y, then we
say that X is a subset of Y, and write X ⊆ Y.

Example 15.7. First of all, every set is a subset of itself, and ∅ is a subset of
every set. The set of even numbers is a subset of the set of natural numbers.
Also, {a, b} ⊆ {a, b, c}.

But {a, b, e} is not a subset of {a, b, c}.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 183

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Note that a set may contain other sets! In particular, a set may happen
to both be an element and a subset of another, e.g., {0} ∈ {0, {0}} and also
{0} ⊆ {0, {0}}.

Definition 15.8. The set consisting of all subsets of a set X is called the power
set of X, written ℘(X).

℘(X) = {x : x ⊆ X}

Example 15.9. What are all the possible subsets of {a, b, c}? They are: ∅,
{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}. The set of all these subsets is
℘({a, b, c}):

℘({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

15.4 Unions and Intersections

Definition 15.10. The union of two sets X and Y, written X ∪ Y, is the set of
all things which are members of X, Y, or both.

X ∪Y = {x : x ∈ X ∨ x ∈ Y}

Example 15.11. Since the multiplicity of elements doesn’t matter, the union of
two sets which have an element in common contains that element only once,
e.g., {a, b, c} ∪ {a, 0, 1} = {a, b, c, 0, 1}.

The union of a set and one of its subsets is just the bigger set: {a, b, c} ∪
{a} = {a, b, c}.

The union of a set with the empty set is identical to the set: {a, b, c} ∪∅ =
{a, b, c}.

Definition 15.12. The intersection of two sets X and Y, written X ∩Y, is the set
of all things which are elements of both X and Y.

X ∩Y = {x : x ∈ X ∧ x ∈ Y}

Two sets are called disjoint if their intersection is empty. This means they have
no elements in common.

Example 15.13. If two sets have no elements in common, their intersection is
empty: {a, b, c} ∩ {0, 1} = ∅.

If two sets do have elements in common, their intersection is the set of all
those: {a, b, c} ∩ {a, b, d} = {a, b}.

The intersection of a set with one of its subsets is just the smaller set:
{a, b, c} ∩ {a, b} = {a, b}.

The intersection of any set with the empty set is empty: {a, b, c} ∩∅ = ∅.

184 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

We can also form the union or intersection of more than two sets. An
elegant way of dealing with this in general is the following: suppose you
collect all the sets you want to form the union (or intersection) of into a single
set. Then we can define the union of all our original sets as the set of all objects
which belong to at least one element of the set, and the intersection as the set
of all objects which belong to every element of the set.

Definition 15.14. If C is a set of sets, then
⋃

C is the set of elements of elements
of C: ⋃

C = {x : x belongs to an element of C}, i.e.,⋃
C = {x : there is a y ∈ C so that x ∈ y}

Definition 15.15. If C is a set of sets, then
⋂

C is the set of objects which all
elements of C have in common:⋂

C = {x : x belongs to every element of C}, i.e.,
⋂

C = {x : for all y ∈ C, x ∈ y}

Example 15.16. Suppose C = {{a, b}, {a, d, e}, {a, d}}. Then
⋃

C = {a, b, d, e}
and

⋂
C = {a}.

We could also do the same for a sequence of sets A1, A2, . . .⋃
i

Ai = {x : x belongs to one of the Ai}⋂
i

Ai = {x : x belongs to every Ai}.

Definition 15.17. The difference X \ Y is the set of all elements of X which are
not also elements of Y, i.e.,

X \Y = {x : x ∈ X and x /∈ Y}.

15.5 Proofs about Sets

Sets and the notations we’ve introduced so far provide us with convenient
shorthands for specifying sets and expressing relationships between them.
Often it will also be necessary to prove claims about such relationships. If
you’re not familiar with mathematical proofs, this may be new to you. So
we’ll walk through a simple example. We’ll prove that for any sets X and Y,
it’s always the case that X ∩ (X ∪ Y) = X. How do you prove an identity be-
tween sets like this? Recall that sets are determined solely by their elements,
i.e., sets are identical iff they have the same elements. So in this case we have
to prove that (a) every element of X ∩ (X ∪ Y) is also an element of X and,
conversely, that (b) every element of X is also an element of X ∩ (X ∪ Y). In
other words, we show that both (a) X ∩ (X ∪Y) ⊆ X and (b) X ⊆ X ∩ (X ∪Y).

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 185

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

A proof of a general claim like “every element z of X ∩ (X ∪ Y) is also an
element of X” is proved by first assuming that an arbitrary z ∈ X ∩ (X ∪ Y)
is given, and proving from this assumtion that z ∈ X. You may know this
pattern as “general conditional proof.” In this proof we’ll also have to make
use of the definitions involved in the assumption and conclusion, e.g., in this
case of “∩” and “∪.” So case (a) would be argued as follows:

(a) We first want to show that X ∩ (X ∪ Y) ⊆ X, i.e., by definition
of ⊆, that if z ∈ X ∩ (X ∪ Y) then z ∈ X, for any z. So assume that
z ∈ X ∩ (X ∪ Y). Since z is an element of the intersection of two
sets iff it is an element of both sets, we can conclude that z ∈ X and
also z ∈ X ∪Y. In particular, z ∈ X. But this is what we wanted to
show.

This completes the first half of the proof. Note that in the last step we used
the fact that if a conjunction (z ∈ X and z ∈ X ∪ Y) follows from an assump-
tion, each conjunct follows from that same assumption. You may know this
rule as “conjunction elimination,” or ∧Elim. Now let’s prove (b):

(b) We now prove that X ⊆ X ∩ (X ∪ Y), i.e., by definition of ⊆,
that if z ∈ X then also z ∈ X ∩ (X ∪ Y), for any z. Assume z ∈ X.
To show that z ∈ X ∩ (X ∪ Y), we have to show (by definition of
“∩”) that (i) z ∈ X and also (ii) z ∈ X ∪ Y. Here (i) is just our
assumption, so there is nothing further to prove. For (ii), recall
that z is an element of a union of sets iff it is an element of at least
one of those sets. Since z ∈ X, and X ∪ Y is the union of X and Y,
this is the case here. So z ∈ X ∪Y. We’ve shown both (i) z ∈ X and
(ii) z ∈ X ∪Y, hence, by definition of “∩,” z ∈ X ∩ (X ∪Y).

This was somewhat long-winded, but it illustrates how we reason about
sets and their relationships. We usually aren’t this explicit; in particular, we
might not repeat all the definitions. A “textbook” proof of our result would
look something like this.

Proposition 15.18 (Absorption). For all sets X, Y,

X ∩ (X ∪Y) = X

Proof. (a) Suppose z ∈ X ∩ (X ∪Y). Then z ∈ X, so X ∩ (X ∪Y) ⊆ X.
(b) Now suppose z ∈ X. Then also z ∈ X ∪ Y, and therefore also z ∈

X ∩ (X ∪Y). Thus, X ⊆ X ∩ (X ∪Y).

186 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

15.6 Pairs, Tuples, Cartesian Products

Sets have no order to their elements. We just think of them as an unordered
collection. So if we want to represent order, we use ordered pairs 〈x, y〉, or more
generally, ordered n-tuples 〈x1, . . . , xn〉.

Definition 15.19. Given sets X and Y, their Cartesian product X×Y is {〈x, y〉 :
x ∈ X and y ∈ Y}.

Example 15.20. If X = {0, 1}, and Y = {1, a, b}, then their product is

X×Y = {〈0, 1〉, 〈0, a〉, 〈0, b〉, 〈1, 1〉, 〈1, a〉, 〈1, b〉}.

Example 15.21. If X is a set, the product of X with itself, X × X, is also writ-
ten X2. It is the set of all pairs 〈x, y〉 with x, y ∈ X.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 187

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 16

Relations

16.1 Relations as Sets

You will no doubt remember some interesting relations between objects of
some of the sets we’ve mentioned. For instance, numbers come with an order
relation < and from the theory of whole numbers the relation of divisibility
without remainder (usually written n | m) may be familar. There is also the
relation is identical with that every object bears to itself and to no other thing.
But there are many more interesting relations that we’ll encounter, and even
more possible relations. Before we review them, we’ll just point out that we
can look at relations as a special sort of set. For this, first recall what a pair is: if
a and b are two objects, we can combine them into the ordered pair 〈a, b〉. Note
that for ordered pairs the order does matter, e.g, 〈a, b〉 6= 〈b, a〉, in contrast to
unordered pairs, i.e., 2-element sets, where {a, b} = {b, a}.

If X and Y are sets, then the Cartesian product X×Y of X and Y is the set of
all pairs 〈a, b〉 with a ∈ X and b ∈ Y. In particular, X2 = X× X is the set of all
pairs from X.

Now consider a relation on a set, e.g., the <-relation on the set N of natural
numbers, and consider the set of all pairs of numbers 〈n, m〉where n < m, i.e.,

R = {〈n, m〉 : n, m ∈N and n < m}.

Then there is a close connection between the number n being less than a num-
ber m and the corresponding pair 〈n, m〉 being a member of R, namely, n < m
if and only if 〈n, m〉 ∈ R. In a sense we can consider the set R to be the <-
relation on the set N. In the same way we can construct a subset of N2 for
any relation between numbers. Conversely, given any set of pairs of numbers
S ⊆ N2, there is a corresponding relation between numbers, namely, the re-
lationship n bears to m if and only if 〈n, m〉 ∈ S. This justifies the following
definition:

188

Definition 16.1. A binary relation on a set X is a subset of X2. If R ⊆ X2 is a
binary relation on X and x, y ∈ X, we write Rxy (or xRy) for 〈x, y〉 ∈ R.

Example 16.2. The set N2 of pairs of natural numbers can be listed in a 2-
dimensional matrix like this:

〈0, 0〉 〈0, 1〉 〈0, 2〉 〈0, 3〉 . . .
〈1, 0〉 〈1, 1〉 〈1, 2〉 〈1, 3〉 . . .
〈2, 0〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 . . .
〈3, 0〉 〈3, 1〉 〈3, 2〉 〈3, 3〉 . . .

...
...

...
...

. . .

The subset consisting of the pairs lying on the diagonal, {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, . . . },
is the identity relation on N. (Since the identity relation is popular, let’s define
IdX = {〈x, x〉 : x ∈ X} for any set X.) The subset of all pairs lying above
the diagonal, L = {〈0, 1〉, 〈0, 2〉, . . . , 〈1, 2〉, 〈1, 3〉, . . . , 〈2, 3〉, 〈2, 4〉, . . .} is the less
than relation, i.e., Lnm iff n < m. The subset of pairs below the diagonal,
G = {〈1, 0〉, 〈2, 0〉, 〈2, 1〉, 〈3, 0〉, 〈3, 1〉, 〈3, 2〉, . . . } is the greater than relation, i.e.,
Gnm iff n > m. The union of L with I, K = L ∪ I, is the less than or equal to
relation: Knm iff n ≤ m. Similarly, H = G ∪ I is the greater than or equal to
relation. L, G, K, and H are special kinds of relations called orders. L and G
have the property that no number bears L or G to itself (i.e., for all n, neither
Lnn nor Gnn). Relations with this property are called antireflexive, and, if they
also happen to be orders, they are called strict orders.

Although orders and identity are important and natural relations, it should
be emphasized that according to our definition any subset of X2 is a relation
on X, regardless of how unnatural or contrived it seems. In particular, ∅ is a
relation on any set (the empty relation, which no pair of elements bears), and
X2 itself is a relation on X as well (one which every pair bears). But also
something like E = {〈n, m〉 : n > 5 or m× n ≥ 34} counts as a relation.

16.2 Special Properties of Relations

Some kinds of relations turn out to be so common that they have been given
special names. For instance, ≤ and ⊆ both relate their respective domains
(say, N in the case of ≤ and ℘(X) in the case of ⊆) in similar ways. To get
at exactly how these relations are similar, and how they differ, we categorize
them according to some special properties that relations can have. It turns out
that (combinations of) some of these special properties are especially impor-
tant: orders and equivalence relations.

Definition 16.3. A relation R ⊆ X2 is reflexive iff, for every x ∈ X, Rxx.

Definition 16.4. A relation R ⊆ X2 is transitive iff, whenever Rxy and Ryz,
then also Rxz.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 189

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 16.5. A relation R ⊆ X2 is symmetric iff, whenever Rxy, then
also Ryx.

Definition 16.6. A relation R ⊆ X2 is anti-symmetric iff, whenever both Rxy
and Ryx, then x = y (or, in other words: if x 6= y then either ¬Rxy or ¬Ryx).

In a symmetric relation, Rxy and Ryx always hold together, or neither
holds. In an anti-symmetric relation, the only way for Rxy and Ryx to hold to-
gether is if x = y. Note that this does not require that Rxy and Ryx holds when
x = y, only that it isn’t ruled out. So an anti-symmetric relation can be reflex-
ive, but it is not the case that every anti-symmetric relation is reflexive. Also
note that being anti-symmetric and merely not being symmetric are different
conditions. In fact, a relation can be both symmetric and anti-symmetric at the
same time (e.g., the identity relation is).

Definition 16.7. A relation R ⊆ X2 is connected if for all x, y ∈ X, if x 6= y,
then either Rxy or Ryx.

Definition 16.8. A relation R ⊆ X2 that is reflexive, transitive, and anti-
symmetric is called a partial order. A partial order that is also connected is
called a linear order.

Definition 16.9. A relation R ⊆ X2 that is reflexive, symmetric, and transitive
is called an equivalence relation.

16.3 Orders

Definition 16.10. A relation which is both reflexive and transitive is called a
preorder. A preorder which is also anti-symmetric is called a partial order. A
partial order which is also connected is called a total order or linear order. (If we
want to emphasize that the order is reflexive, we add the adjective “weak”—
see below).

Example 16.11. Every linear order is also a partial order, and every partial
order is also a preorder, but the converses don’t hold. For instance, the identity
relation and the full relation on X are preorders, but they are not partial orders,
because they are not anti-symmetric (if X has more than one element). For a
somewhat less silly example, consider the no longer than relation 4 on B∗:
x 4 y iff len(x) ≤ len(y). This is a preorder, even a linear preorder, but not a
partial order.

The relation of divisibility without remainder gives us an example of a partial
order which isn’t a linear order: for integers n, m, we say n (evenly) divides
m, in symbols: n | m, if there is some k so that m = kn. On N, this is a partial
order, but not a linear order: for instance, 2 - 3 and also 3 - 2. Considered as a
relation on Z, divisibility is only a preorder since anti-symmetry fails: 1 | −1

190 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

and −1 | 1 but 1 6= −1. Another important partial order is the relation ⊆ on a
set of sets.

Notice that the examples L and G from Example 16.2, although we said
there that they were called “strict orders” are not linear orders even though
they are connected (they are not reflexive). But there is a close connection, as
we will see momentarily.

Definition 16.12. A relation R on X is called irreflexive if, for all x ∈ X, ¬Rxx.
R is called asymmetric if for no pair x, y ∈ X we have Rxy and Ryx. A strict
partial order is a relation which is irreflexive, asymmetric, and transitive. A
strict partial order which is also connected is called a strict linear order.

A strict partial order R on X can be turned into a weak partial order R′by
adding the identity relation on X: R′ = R ∪ IdX . Conversely, starting from
a weak partial order, one can get a strict partial order by removing IdX , i.e.,
R′ = R \ IdX .

Proposition 16.13. R is a strict partial (linear) order on X iff R′ is a weak partial
(linear) order. Moreover, Rxy iff R′xy for all x 6= y.

Example 16.14. ≤ is the weak linear order corresponding to the strict linear
order <. ⊆ is the weak partial order corresponding to the strict partial order
(.

16.4 Operations on Relations

It is often useful to modify or combine relations. We’ve already used the union
of relations above (which is just the union of two relations considered as sets
of pairs). Here are some other ways:

Definition 16.15. Let R, S ⊆ X2 be relations and Y a set.

1. The inverse R−1 of R is R−1 = {〈y, x〉 : 〈x, y〉 ∈ R}.

2. The relative product R | S of R and S is

(R | S) = {〈x, z〉 : for some y, Rxy and Syz}

3. The restriction R � Y of R to Y is R ∩Y2

4. The application R[Y] of R to Y is

R[Y] = {y : for some x ∈ X, Rxy}

Example 16.16. Let S ⊆ Z2 be the successor relation on Z, i.e., the set of pairs
〈x, y〉 where x + 1 = y, for x, y ∈ Z. Sxy holds iff y is the successor of x.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 191

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. The inverse S−1 of S is the predecessor relation, i.e., S−1xy iff x− 1 = y.

2. The relative product S | S is the relation x bears to y if x + 2 = y.

3. The restriction of S to N is the successor relation on N.

4. The application of S to a set, e.g., S[{1, 2, 3}] is {2, 3, 4}.

Definition 16.17. The transitive closure R+ of a relation R ⊆ X2 is R+ =⋃∞
i=1 Ri where R1 = R and Ri+1 = Ri | R.

The reflexive transitive closure of R is R∗ = R+ ∪ IX .

Example 16.18. Take the successor relation S ⊆ Z2. S2xy iff x + 2 = y, S3xy
iff x + 3 = y, etc. So R∗xy iff for some i ≥ 1, x + i = y. In other words, S+xy
iff x < y (and R∗xy iff x ≤ y).

192 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 17

Functions

17.1 Basics

A function is a relation in which each object is related to a unique partner.
Many functions are familiar to us from basic arithmetic. For instance, addi-
tion and multiplication are functions. They take in two numbers and return a
third. A function, more generally, is something that takes one or more things
as input and returns some kind of output. A function is a black box: what
matters is only what output is paired with what input, not the method for
calculating the output.

Definition 17.1. A function f : X → Y is a mapping of each element of X to an
element of Y. We call X the domain of f and Y the codomain of f . The range of
f is the subset of the codomain that is actually output by f for some input.

Example 17.2. Multiplication goes from N×N (the domain) to N (the codomain).
As it turns out, the range is also N, since every n ∈N is n× 1.

Multiplication is a function because it pairs each input—each pair of natu-
ral numbers—with a single output: × : N2 → N. In contrast, the square root
operation applied to the domain N is not functional, since each positive inte-
ger n has two square roots:

√
n and −

√
n. We can make it functional by only

returning the positive square root:
√

: N → R. The relation that pairs each
student in a class with their final grade is a function—no student can get two
different final grades in the same class. The relation that pairs each student in
a class with their parents is not a function—generally each student will have
at least two parents.

Example 17.3. Let f : N→N be defined such that f (x) = x + 1. This tells us
that f is a function which takes in natural numbers and outputs natural num-
bers. It then tells us that, given a natural number, f will output its successor.

193

In this case, the codomain N is not the range of f , since the natural number
0 is not the successor of any natural number. The range of f is the set of all
positive integers, Z+.

Example 17.4. Let g : N → N be defined such that g(x) = x − 1 + 2. This
tells us that g is a function which takes in natural numbers and outputs nat-
ural numbers. It then tells us that, given a natural number, g will output the
successor of the successor of its predecessor. Despite their different defini-
tions, g and f are the same function.

Functions f and g defined above are the same because for any natural
number x, x − 1 + 2 = x + 1. f and g pair each natural number with the
same output. Functions, just like relations more generally, can be treated as
just sets of pairs. The definitions for f and g specify the same set by means
of different equations, and as we know, sets are independent of how they are
specified.

Example 17.5. We can also define functions by cases. For instance, we could
define f : N→N by

f (x) =

{
x
2 if x is even
x+1

2 if x is odd.

This is fine, since every natural number is either even or odd, and the output
of this function will always be a natural number. Just remember that if you
define a function by cases, every possible input must fall into exactly one case.

17.2 Kinds of Functions

Definition 17.6. A function f : X → Y is surjective iff Y is also the range of f ,
i.e., for every y ∈ Y there is at least one x ∈ X such that f (x) = y.

If you want to show that a function is surjective, then you need to show
that every object in the codomain is the output of the function given some
input or other.

Definition 17.7. A function f : X → Y is injective iff for each y ∈ Y there is at
most one x ∈ X such that f (x) = y.

Any function pairs each input with a unique output. An injective function
has a unique input for each possible output. If you want to show that a func-
tion f is injective, you need to show that for any element y of the codomain, if
f (x) = y and f (w) = y, then x = w.

A function which is neither injective, nor surjective, is the constant func-
tion f : N→N where f (x) = 1.

194 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

A function which is both injective and surjective is the identity function
f : N→N where f (x) = x.

The successor function f : N→N where f (x) = x + 1 is injective, but not
surjective.

The function

f (x) =

{
x
2 if x is even
x+1

2 if x is odd.

is surjective, but not injective.

Definition 17.8. A function f : X → Y is bijective iff it is both surjective and
injective. We call such a function a bijection from X to Y (or between X and Y).

17.3 Operations on Functions

We’ve already seen that the inverse f−1 of a bijective function f is itself a
function. It is also possible to compose functions.

Definition 17.9. Let f : X → Y and g : Y → Z. Then we compose g and f to
form the function (g ◦ f) : X → Z, where (g ◦ f)(x) = g(f (x)).

The function (g ◦ f) : X → Z pairs each member of X with a member of Z.
We specify which member of Z a member of X is paired with as follows—
given an input x ∈ X, first apply the function f to x, which will output some
y ∈ Y. Then apply the function g to y, which will output some z ∈ Z.

Example 17.10. Consider the functions f (x) = x + 1, and g(x) = 2x. What
function do you get when you compose these two? (g ◦ f)(x) = g(f (x)). So
that means for every natural number you give this function, you first add one,
and then you multiply the result by two. So their composition is (g ◦ f)(x) =
2(x + 1).

17.4 Isomorphism

An isomorphism is a bijection that preserves the structure of the sets it re-
lates, where structure is a matter of the relationships that obtain between
the members of the sets. Consider the following two sets X = {1, 2, 3} and
Y = {4, 5, 6}. These sets are both structured by the relations successor, less
than and greater than. An isomorphism between the two sets is a bijection
that preserves those structures. So a function f : X → Y is an isomorphism if,
among other things, i < j iff f (i) < f (j), and j is the successor of i iff f (j) is
the successor of f (i).

Definition 17.11. Let U be the pair 〈X, R〉 and V be the pair 〈Y, S〉 such that X
and Y are sets and R and S are relations on X and Y respectively. A bijection

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 195

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

f from X to Y is an isomorphism from U to V iff it preserves the relational
structure, that is, for any x and u in X, 〈x, u〉 ∈ R iff 〈 f (x), f (u)〉 ∈ S.

Example 17.12. Consider the following two sets X = {1, 2, 3} and Y = {4, 5, 6},
and the relations successor, less than, and greater than. The function f : X →
Y where f (x) = x + 3 is an isomorphism between X and Y.

17.5 Partial Functions

It is sometimes useful to relax the definition of function so that it is not re-
quired that the output of the function is defined for all possible inputs. Such
mappings are called partial functions.

Definition 17.13. A partial function f : X 7→ Y is a mapping which assigns to
every element of X at most one element of Y. If f assigns an element of Y to
x ∈ X, we say f (x) is defined, and otherwise undefined. If f (x) is defined, we
write f (x) ↓, otherwise f (x) ↑. The domain of a partial function f is the subset
of X where it is defined, i.e., dom(f) = {x : f (x) ↓}.

Example 17.14. Every function f : X → Y is also a partial function. Partial
functions that are defined everywhere on X are called total.

Example 17.15. The partial function f : R 7→ R given by f (x) = 1/x is unde-
fined for x = 0, and defined everywhere else.

196 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 18

The Size of Sets

18.1 Introduction

When Georg Cantor developed set theory in the 1870s, his interest was in part
to make palatable the idea of an infinite collection—an actual infinity, as the
medievals would say. Key to this rehabilitation of the notion of the infinite
was a way to assign sizes—“cardinalities”—to sets. The cardinality of a finite
set is just a natural number, e.g., ∅ has cardinality 0, and a set containing five
things has cardinality 5. But what about infinite sets? Do they all have the
same cardinality, ∞? It turns out, they do not.

The first important idea here is that of an enumeration. We can list every
finite set by listing all its elements. For some infinite sets, we can also list
all their elements if we allow the list itself to be infinite. Such sets are called
enumerable. Cantor’s surprising result was that some infinite sets are not
enumerable.

18.2 Enumerable Sets

Definition 18.1. Informally, an enumeration of a set X is a list (possibly infinite)
such that every element of X appears some finite number of places into the list.
If X has an enumeration, then X is said to be enumerable. If X is enumerable
and infinite, we say X is denumerable.

A couple of points about enumerations:

1. The order of elements of X in the enumeration does not matter, as long
as every element appears: 4, 1, 25, 16, 9 enumerates the (set of the) first
five square numbers just as well as 1, 4, 9, 16, 25 does.

2. Redundant enumerations are still enumerations: 1, 1, 2, 2, 3, 3, . . . enu-
merates the same set as 1, 2, 3, . . . does.

197

3. Order and redundancy do matter when we specify an enumeration: we
can enumerate the natural numbers beginning with 1, 2, 3, 1, . . . , but the
pattern is easier to see when enumerated in the standard way as 1, 2, 3,
4, . . .

4. Enumerations must have a beginning: . . . , 3, 2, 1 is not an enumeration
of the natural numbers because it has no first element. To see how this
follows from the informal definition, ask yourself, “at what place in the
list does the number 76 appear?”

5. The following is not an enumeration of the natural numbers: 1, 3, 5, . . . ,
2, 4, 6, . . . The problem is that the even numbers occur at places ∞ + 1,
∞ + 2, ∞ + 3, rather than at finite positions.

6. Lists may be gappy: 2, −, 4, −, 6, −, . . . enumerates the even natural
numbers.

7. The empty set is enumerable: it is enumerated by the empty list!

The following provides a more formal definition of an enumeration:

Definition 18.2. An enumeration of a set X is any surjective function f : N →
X.

Let’s convince ourselves that the formal definition and the informal defini-
tion using a possibly gappy, possibly infinite list are equivalent. A surjective
function (partial or total) from N to a set X enumerates X. Such a function de-
termines an enumeration as defined informally above. Then an enumeration
for X is the list f (0), f (1), f (2), Since f is surjective, every element of X
is guaranteed to be the value of f (n) for some n ∈ N. Hence, every element
of X appears at some finite place in the list. Since the function may be partial
or not injective, the list may be gappy or redundant, but that is acceptable (as
noted above). On the other hand, given a list that enumerates all elements
of X, we can define a a surjective function f : N → X by letting f (n) be the
(n + 1)st member of the list, or undefined if the list has a gap in the (n + 1)st
spot.

Example 18.3. A function enumerating the natural numbers (N) is simply the
identity function given by f (n) = n.

Example 18.4. The functions f : N→N and g : N→N given by

f (n) = 2n and (18.1)

g(n) = 2n + 1 (18.2)

enumerate the even natural numbers and the odd natural numbers, respec-
tively. However, neither function is an enumeration of N, since neither is
surjective.

198 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Example 18.5. The function f (n) = d (−1)nn
2 e (where dxe denotes the ceiling

function, which rounds x up to the nearest integer) enumerates the set of inte-
gers Z. Notice how f generates the values of Z by “hopping” back and forth
between positive and negative integers:

f (1) f (2) f (3) f (4) f (5) f (6) . . .

d− 1
2e d 2

2e d− 3
2e d 4

2e d− 5
2e d 6

2e . . .

0 1 −1 2 −2 3 . . .

That is fine for “easy” sets. What about the set of, say, pairs of natural
numbers?

N2 = N×N = {〈n, m〉 : n, m ∈N}
Another method we can use to enumerate sets is to organize them in an array,
such as the following:

1 2 3 4 . . .
1 〈1, 1〉 〈1, 2〉 〈1, 3〉 〈1, 4〉 . . .
2 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈2, 4〉 . . .
3 〈3, 1〉 〈3, 2〉 〈3, 3〉 〈3, 4〉 . . .
4 〈4, 1〉 〈4, 2〉 〈4, 3〉 〈4, 4〉 . . .
...

...
...

...
...

. . .

Clearly, every ordered pair in N2 will appear at least once in the array. In
particular, 〈n, m〉 will appear in the nth column and mth row. But how do we
organize the elements of an array into a list? The pattern in the array below
demonstrates one way to do this:

1 2 4 7 . . .
3 5 8
6 9

10
...

...
...

...
. . .

This pattern is called Cantor’s zig-zag method. Other patterns are perfectly per-
missible, as long as they “zig-zag” through every cell of the array. By Cantor’s
zig-zag method, the enumeration for N2 according to this scheme would be:

〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈1, 3〉, 〈2, 2〉, 〈3, 1〉, 〈1, 4〉, 〈2, 3〉, 〈3, 2〉, 〈4, 1〉, . . .

What ought we do about enumerating, say, the set of ordered triples of
natural numbers?

N3 = N×N×N = {(n, m, k) : n, m, k ∈N}

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 199

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

We can think of N3 as the Cartesian product of N2 and N, that is,

N3 = N2 ×N = {(~a, k) :~a ∈N2, k ∈N}

and thus we can enumerate N3 with an array by labelling one axis with the
enumeration of N, and the other axis with the enumeration of N2:

1 2 3 4 . . .
〈1, 1〉 〈1, 1, 1〉 〈1, 1, 2〉 〈1, 1, 3〉 〈1, 1, 4〉 . . .
〈1, 2〉 〈1, 2, 1〉 〈1, 2, 2〉 〈1, 2, 3〉 〈1, 2, 4〉 . . .
〈2, 1〉 〈2, 1, 1〉 〈2, 1, 2〉 〈2, 1, 3〉 〈2, 1, 4〉 . . .
〈1, 3〉 〈1, 3, 1〉 〈1, 3, 2〉 〈1, 3, 3〉 〈1, 3, 4〉 . . .

...
...

...
...

...
. . .

Thus, by using a method like Cantor’s zig-zag method, we may similarly ob-
tain an enumeration of N3.

18.3 Non-enumerable Sets

Some sets, such as the set N of natural numbers, are infinite. So far we’ve
seen examples of infinite sets which were all enumerable. However, there are
also infinite sets which do not have this property. Such sets are called non-
enumerable.

Cantor’s method of diagonalization shows a set to be non-enumerable via
a reductio proof. We start with the assumption that the set is enumerable, and
show that a contradiction results from this assumption. Our first example is
the set Bω of all infinite, non-gappy sequences of 0’s and 1’s.

Theorem 18.6. Bω is non-enumerable.

Proof. Suppose, for reductio, that Bω is enumerable, so that there is a list s1, s2,
s3, s4, . . . of all the elements of Bω. We may arrange this list, and the elements
of each sequence si in it vertically in an array with the positive integers on the
horizontal axis, as so:

1 2 3 4 . . .
s1(1) s1(2) s1(3) s1(4) . . .
s2(1) s2(2) s2(3) s2(4) . . .
s3(1) s3(2) s3(3) s3(4) . . .
s4(1) s4(2) s4(3) s4(4) . . .

...
...

...
...

. . .

Here s1(1) is a name for whatever number, a 0 or a 1, is the first member in
the sequence s1, and so on.

200 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Now define s as follows: The nth member s(n) of the sequence s is set to

s(n) =

{
1 if sn(n) = 0
0 if sn(n) = 1.

In other words, s(n) has the opposite value to sn(n).
Clearly s is a non-gappy infinite sequence of 0s and 1s, since it is just the

mirror sequence to the sequence of 0s and 1s that appear on the diagonal of
our array. So s is an element of Bω. Since it is an element of Bω, it must appear
somewhere in the enumeration of Bω, that is, s = sn for some n.

If s = sn, then for any m, s(m) = sn(m). (This is just the criterion of identity
for sequences—sequences are identical when they agree at every place.)

So in particular, s(n) = sn(n). s(n) must be either an 0 or a 1. If it is a 0
then (given the definition of s) sn(n) must be a 1. But if it is a 1 then sn(n)
must be a 0. In either case s(n) 6= sn(n).

Diagonalization need not involve the presence of an array, though the ar-
ray method is where it takes its name.

Theorem 18.7. ℘(Z+) is not enumerable.

Proof. Suppose, for reductio, that ℘(Z+) is enumerable, and so it has an enu-
meration, i.e., a list of all subsets of Z+:

Z1, Z2, Z3, . . .

We now define a set Z such that for any positive integer i, i ∈ Z iff i /∈ Zi:

Z = {i ∈ Z+ : i /∈ Zi}

Z is clearly a set of positive integers, and thus Z ∈ ℘(Z+). So Z must be
= Zk for some k ∈ Z+. And if that is the case, i.e., Z = Zk, then i ∈ Z iff i ∈ Zk
for all i ∈ Z+.

In particular, k ∈ Z iff k ∈ Zk.
Now either k ∈ Zk or k /∈ Zk. In the first case, by the previous line, k ∈ Z.

But we’ve defined Z so that it contains exactly those i ∈ Z+ which are not
elements of Zi. So by that definition, we would have to also have k /∈ Zk. In
the second case, k /∈ Zk. But now k satisfies the condition by which we have
defined Z, and that means that k ∈ Z. And as Z = Zk, we get that k ∈ Zk after
all. Either case leads to a contradiction.

18.4 Reduction

We showed ℘(Z+) to be non-enumerable by a diagonalization argument.
However, with the proof of the non-enumerability of Bω, the set of all infi-
nite sequences of 0s and 1s, in place, we could have instead showed ℘(Z+)

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 201

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

to be non-enumerable by showing that if ℘(Z+) is enumerable then Bω is also
enumerable. This called reducing one problem to another.

Proof of Theorem 18.7 by reduction. Suppose, for reductio, ℘(Z+) is enumerable,
and thus that there is an enumeration of it Z1, Z2, Z3, . . .

Define the function f : ℘(Z+) → Bω by letting f (Z) be the sequence sk
such that sk(j) = 1 iff j ∈ Z.

Every sequence of 0s and 1s corresponds to some set of positive integers,
namely the one which has as its members those integers corresponding to the
places where the sequence has 1s. In other words, this is a surjective function.

Now consider the list

f (Z1), f (Z2), f (Z3), . . .

Since f is surjective, every member of Bω must appear as a value of f for some
argument, and so must appear on the list. So this list must enumerate Bω.

So if ℘(Z+) were enumerable, Bω would be enumerable. But Bω is non-
enumerable (Theorem 18.6).

18.5 Equinumerous Sets

We have an intuitive notion of “size” of sets, which works fine for finite sets.
But what about infinite sets? If we want to come up with a formal way of com-
paring the sizes of two sets of any size, it is a good idea to start with defining
when sets are the same size. Let’s say sets of the same size are equinumerous.
We want the formal notion of equinumerosity to correspond with our intuitive
notion of “same size,” hence the formal notion ought to satisfy the following
properties:

Reflexivity: Every set is equinumerous with itself.

Symmetry: For any sets X and Y, if X is equinumerous with Y, then Y is
equinumerous with X.

Transitivity: For any sets X, Y, and Z, if X is equinumerous with Y and Y is
equinumerous with Z, then X is equinumerous with Z.

In other words, we want equinumerosity to be an equivalence relation.

Definition 18.8. A set X is equinumerous with a set Y if and only if there is a
total bijection f from X to Y (that is, f : X → Y).

Proposition 18.9. Equinumerosity defines an equivalence relation.

Proof. Let X, Y, and Z be sets.

202 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Reflexivity: Using the identity map 1X : X → X, where 1X(x) = x for all
x ∈ X, we see that X is equinumerous with itself (clearly, 1X is bijective).

Symmetry: Suppose that X is equinumerous with Y. Then there is a bijection
f : X → Y. Since f is bijective, its inverse f−1 is also a bijection. Since f
is surjective, f−1 is total. Hence, f−1 : Y → X is a total bijection from Y
to X, so Y is also equinumerous with X.

Transitivity: Suppose that X is equinumerous with Y via the total bijection f
and that Y is equinumerous with Z via the total bijection g. Then the
composition of g ◦ f : X → Z is a total bijection, and X is thus equinu-
merous with Z.

Therefore, equinumerosity is an equivalence relation by the given definition.

Theorem 18.10. Suppose X and Y are equinumerous. Then X is enumerable if and
only if Y is.

Proof. Let X and Y be equinumerous. Suppose that X is enumerable. Then
there is a possibly partial, surjective function f : N → X. Since X and Y are
equinumerous, there is a total bijection g : X → Y. Claim: g ◦ f : N → Y is
surjective. Clearly, g ◦ f is a function (since functions are closed under com-
position). To see g ◦ f is surjective, let y ∈ Y. Since g is surjective, there is an
x ∈ X such that g(x) = y. Since f is surjective, there is an n ∈ N such that
f (n) = x. Hence,

(g ◦ f)(n) = g(f (n)) = g(x) = y

and thus g ◦ f is surjective. Since g ◦ f : N→ Y is surjective, it is an enumera-
tion of Y, and so Y is enumerable.

18.6 Comparing Sizes of Sets

Just like we were able to make precise when two sets have the same size in
a way that also accounts for the size of infinite sets, we can also compare the
sizes of sets in a precise way. Our definition of “is smaller than (or equinu-
merous)” will require, instead of a bijection between the sets, a total injective
function from the first set to the second. If such a function exists, the size of the
first set is less than or equal to the size of the second. Intuitively, an injective
function from one set to another guarantees that the range of the function has
at least as many elements as the domain, since no two elements of the domain
map to the same element of the range.

Definition 18.11. |X| ≤ |Y| if and only if there is an injective function f : X →
Y.

open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY 203

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Theorem 18.12 (Schröder-Bernstein). Let X and Y be sets. If |X| ≤ |Y| and
|Y| ≤ |X|, then |X| = |Y|.

In other words, if there is a total injective function from X to Y, and if there
is a total injective function from Y back to X, then there is a total bijection
from X to Y. Sometimes, it can be difficult to think of a bijection between two
equinumerous sets, so the Schröder-Bernstein theorem allows us to break the
comparison down into cases so we only have to think of an injection from
the first to the second, and vice-versa. The Schröder-Bernstein theorem, apart
from being convenient, justifies the act of discussing the “sizes” of sets, for
it tells us that set cardinalities have the familiar anti-symmetric property that
numbers have.

Definition 18.13. |X| < |Y| if and only if there is an injective function f : X →
Y but no bijective g : X → Y.

Theorem 18.14 (Cantor). For all X, |X| < |℘(X)|.

Proof. The function f : X → ℘(X) that maps any x ∈ X to its singleton {x} is
injective, since if x 6= y then also f (x) = {x} 6= {y} = f (y).

There cannot be a surjective function g : X → ℘(X), let alone a bijective
one. For assume that a surjective g : X → ℘(X) exists. Then let Y = {x ∈ X :
x /∈ g(x)}. If g(x) is defined for all x ∈ X, then Y is clearly a well-defined
subset of X. If g is surjective, Y must be the value of g for some x0 ∈ X, i.e.,
Y = g(x0). Now consider x0: it cannot be an element of Y, since if x0 ∈ Y
then x0 ∈ g(x0), and the definition of Y then would have x0 /∈ Y. On the other
hand, it must be an element of Y, since if it were not, then x0 /∈ Y = g(x0). But
then x0 satisfies the defining condition of Y, and so x0 ∈ Y. In either case, we
have a contradiction.

204 open-logic-complete rev: 9d4975e (2015-06-26) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

	First-order Logic
	Syntax and Semantics
	First-Order Languages
	Terms and Formulas
	Unique Readability
	Main operator of a Formula
	Subformulas
	Free Variables and Sentences
	Substitution
	Structures for First-order Languages
	Satisfaction of a Formula in a Structure
	Extensionality
	Semantic Notions

	Theories and Their Models
	Introduction
	Expressing Properties of Structures
	Examples of First-Order Theories
	Expressing Relations in a Structure
	The Theory of Sets
	Expressing the Size of Structures

	The Sequent Calculus
	Rules and Derivations
	Examples of Derivations
	Proof-Theoretic Notions
	Properties of Derivability
	Soundness
	Derivations with Identity predicate

	The Completeness Theorem
	Introduction
	Outline of the Proof
	Maximally Consistent Sets of Sentences
	Henkin Expansion
	Lindenbaum's Lemma
	Construction of a Model
	Identity
	The Completeness Theorem
	The Compactness Theorem
	The Löwenheim-Skolem Theorem

	Beyond First-order Logic
	Overview
	Many-Sorted Logic
	Second-Order logic
	Higher-Order logic
	Intuitionistic logic
	Modal Logics
	Other Logics

	Computability
	Recursive Functions
	Introduction
	Primitive Recursion
	Primitive Recursive Functions are Computable
	Examples of Primitive Recursive Functions
	Primitive Recursive Relations
	Bounded Minimization
	Sequences
	Other Recursions
	Non-Primitive Recursive Functions
	Partial Recursive Functions
	The Normal Form Theorem
	The Halting Problem
	General Recursive Functions

	The Lambda Calculus
	Introduction
	The Syntax of the Lambda Calculus
	Reduction of Lambda Terms
	The Church-Rosser Property
	Representability by Lambda Terms
	Lambda Representable Functions are Computable
	Computable Functions are Lambda Representable
	The Basic Primitive Recursive Functions are Lambda Representable
	Lambda Representable Functions Closed under Composition
	Lambda Representable Functions Closed under Primitive Recursion
	Fixed-Point Combinators
	Lambda Representable Functions Closed under Minimization

	Computability Theory
	Introduction
	Coding Computations
	The Normal Form Theorem
	The s-m-n Theorem
	The Universal Partial Computable Function
	No Universal Computable Function
	The Halting Problem
	Comparison with Russell's Paradox
	Computable Sets
	Computably Enumerable Sets
	Definitions of C. E. Sets
	Union and Intersection of C.E. Sets
	Computably Enumerable Sets not Closed under Complement
	Reducibility
	Properties of Reducibility
	Complete Computably Enumerable Sets
	An Example of Reducibility
	Totality is Undecidable
	Rice's Theorem
	The Fixed-Point Theorem
	Applying the Fixed-Point Theorem
	Defining Functions using Self-Reference
	Minimization with Lambda Terms

	Turing Machines
	Turing Machine Computations
	Introduction
	Turing Machines
	Configurations and Computations
	Unary Representation of Numbers

	Undecidability
	Decision Problems
	Representing Turing Machines
	Verifying the Representation

	Incompleteness
	Arithmetization of Syntax
	Introduction
	Coding Symbols
	Coding Terms
	Coding Formulas
	Substitution
	Proofs in LK

	Representability in Q
	Introduction
	Functions Representable in Q are Computable
	Computable Functions are Representable in Q
	The Functions C
	The Beta Function Lemma
	Primitive Recursion in C
	Functions in C are Representable in Q
	Representing Relations
	Undecidability

	Theories and Computability
	Introduction
	Q is c.e.-complete
	-Consistent Extensions of Q are Undecidable
	Consistent Extensions of Q are Undecidable
	Computably Axiomatizable Theories
	Computably Axiomatizable Complete Theories are Decidable
	Q has no Complete, Consistent, Computably Axiomatized Extensions
	Sentences Provable and Refutable in Q are Computably Inseparable
	Theories Consistent with Q are Undecidable
	Theories In Which Q is Intepretable are Undecidable

	Incompleteness and Provability
	Introduction
	The Fixed-Point Lemma
	The First Incompleteness Theorem
	Rosser's Theorem
	Comparison with Gödel's Original Paper
	The Provability Conditions for PA
	The Second Incompleteness Theorem
	Löb's Theorem
	The Undefinability of Truth

	Sets, Relations, Functions
	Sets
	Basics
	Some Important Sets
	Subsets
	Unions and Intersections
	Proofs about Sets
	Pairs, Tuples, Cartesian Products

	Relations
	Relations as Sets
	Special Properties of Relations
	Orders
	Operations on Relations

	Functions
	Basics
	Kinds of Functions
	Operations on Functions
	Isomorphism
	Partial Functions

	The Size of Sets
	Introduction
	Enumerable Sets
	Non-enumerable Sets
	Reduction
	Equinumerous Sets
	Comparing Sizes of Sets

