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Abstract. This introductory paper reports on recent progress in the
search for classes of infinite graphs where interesting model-checking
problems are decidable. We consider properties expressible in monadic
second-order logic (MSO-logic), a formalism which encompasses stan-
dard temporal logics and the modal p-calculus. We discuss a class of
infinite graphs proposed by D. Caucal (in MFCS 2002) which can be
generated from the infinite binary tree by applying the two processes of
MSO-interpretation and of unfolding. The main purpose of the paper is
to give a feeling for the rich landscape of infinite structures in this class
and to point to some questions which deserve further study.

1 Introduction

A fundamental decidability result which appears in hundreds of applications in
theoretical computer science is Rabin’s Tree Theorem [23]. The theorem says
that the monadic second-order theory (MSO-theory) of the infinite binary tree
is decidable. The system of monadic second-order logic arises from first-order
logic by adjunction of variables for sets (of tree nodes) and quantifiers ranging
over sets. In this language one can express many interesting properties, among
them reachability conditions (existence of finite paths between elements) and
recurrence conditions (existence of infinite paths with infinitely many points of
a given property).

Already in Rabin’s paper [23] the main theorem is used to infer a great num-
ber of further decidability results. The technique for the transfer of decidability
is the method of interpretation: It is based on the idea of describing a struc-
ture A, using MSO-formulas, within the structure 7% of the binary tree. The
decidability of the MSO-theory of A can then be deduced from the fact that the
MSO-theory of T is decidable. Rabin considered mainly structures of interest
to mathematical logic. For example, he showed that the monadic second-order
theory of the rational number ordering (Q, <) is decidable. In theoretical com-
puter science, the interest shifted to models like transition systems (for example,
Kripke structures) and their unfoldings in the form of labelled trees. Also the
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terminology has changed a little: Rather than speaking of a structure with a
decidable MSO-theory one says that the model-checking problem for this struc-
ture is decidable with respect to MSO-properties. Thus the search for infinite
structures of this kind is tied to one of the fundamental questions in verification,
namely to determine the range of structures where the model-checking problem
(in our case with respect to MSO-logic) can be solved by automatic procedures.

In this research, the first key result is the Muller-Schupp Theorem [22],
stating that the transition graph of a pushdown automaton has a decidable
MSO-theory. In [4], Caucal showed that the same holds for the more extended
class of prefix-recognizable graphs. In both cases, the proof works by MSO-
interpretations in the binary tree T5. Proof sketches are provided in Section 2
below.

Nearly 20 years ago, in MFCS 1984, A. Semenov [24] presented a decidability
result of Muchnik which opened a new track for extending Rabin’s Tree Theorem.
Muchnik’s Theorem says that for a structure whose MSO-theory is decidable also
its “tree iteration” has a decidable MSO-theory. This provides another powerful
method for the transfer of decidability results. When referring to graphs as
structures, a variant of tree iteration is of central importance: the unfolding of
a graph as a tree. A short discussion is given in Section 3.

Again in MFCS, one year ago, D. Caucal proposed in [5] to use both transfer
techniques (of MSO-interpretation and of unfolding) together, starting with the
finite trees and graphs. (Equivalently one can start with the infinite binary tree.)
It turns out that by applying MSO-interpretations and unfoldings in alternation,
a very rich hierarchy of models can be generated, each of them having a decidable
MSO-theory. The main purpose of this paper is to provide (in Section 4 below)
an intuitive introduction to this Caucal hierarchy. We explain that it provides a
comprehensive framework for decidability results on MSO-theories.

In this paper, we pursue a purely model-theoretic view. One should mention
that at least two other views are also possible but not taken up here in any
depth: First, the tree structures which arise as unfoldings in the hierarchy have
been studied already decades ago in the investigation of higher-order recursion
schemes (cf. [12]); recent results in the field are due to Knapik, Niwiniski, and
Urzyczyn [17,18]. In connection with the evaluation of these recursion schemes,
the computational model of “iterated pushdown automaton” was introduced.
The (global) transition graphs of iterated pushdown automata coincide with the
graphs of the Caucal hierarchy (see [18,6,10]! ). Thus, the graphs of the Caucal
hierarchy constitute also an interesting chapter of “infinite automata theory”
([25]), where infinite graphs are viewed and used as acceptors of non-regular
languages.

! Tn [18], the equivalence is shown for the unfoldings of the tramsition graphs, in
[5] higher-order pushdown transition graphs are shown to belong to the Caucal
Hierarchy, and in [10] the converse (and thus the coincidence result) is established.



2 Interpretations

2.1 General Framework

We consider relational structures A = (A4, R{,.. .,RkA), where A is at most
countable. The R# are relations of possibly different arities, say R;* of arity n;.
The corresponding signature is given by the relation symbols Ry, ..., Rg. The
first-order language over this signature is built up from variables z,y, . . ., atomic
formulas x = y and R;(x1,...,%n,), where x,y, 1, ... are first-order variables,
using the standard propositional connectives =, A,V, —, <> and the quantifiers
3,V. The corresponding monadic second-order language (MSO-language) is ob-
tained by adjoining variables X,Y, ... for sets of elements (of the universe of a
structure) and atomic formulas X (y), meaning that the element y is in the set
X.

We use the standard notations; e.g. A = ¢[a] indicates that the structure
A satisfies the formula ¢(z) with the element a as interpretation of z. Given a
formula ¢(z1,...,x,), the relation defined by it in A is

‘PA:{(ala---:an) e A" | A':Qo[ala"'aan]}

The structures considered in this paper are edge- and vertex-labelled graphs of
the form G = (V, (E;)icr, (Pj)jes); here V is the set of vertices, I the alphabet
of edge labels, E; CV x V is the set of i-labelled edges, and P; C V the set of
vertices labelled j. We set E = J;c; Ei.

The binary tree is the structure Tp = ({0,1}*, Sy, S1) where S; = {(w, wi) |
w € {0,1}*}. Analogously T, = ({0,...,n — 1}*,S%,...,S" ;) is the n-ary
infinite tree.

Theorem 1 (Tree Theorem, [23]). The MSO-theory of Ty is decidable.

Let us illustrate the idea of MSO-interpretation by showing that the result
holds also for the structures T;, for n > 2. As typical example consider T3 =
({0,1,2}*,53,53,53). We obtain a copy of T3 in Ty by considering only the
Ty-vertices in the set T = (10 + 110 + 1110)*. A word in this set has the form
110...1%0 with iy,...,i, € {1,2,3}; and we take it as a representation of the
element (i1 —1)...(iy, — 1) of Ts.

The following MSO-formula p(z) (written in abbreviated suggestive form)
defines the set 1" in T5:

VY'Y (z) AVy((Y(y10) VY (y110) V Y (y1110)) — Y(y)) — Y(e)]

It says that x is in the closure of € under 10-, 110-, and 1110-successors. The
relation {(w,w10)|w € {0,1}*} is defined by the following formula:

Yo(x,y) == Fz(S1(x, 2) A So(2,9))

With the analogous formulas 1, ¥ for the other successor relations, we see
that the structure with universe 2 and the relations @/}?2 restricted to o2 is
isomorphic to T3.



In general, an MSO-interpretation of a structure A in a structure B is given
by a “domain formula” ¢(x) and, for each relation R of A, say of arity m, an
MSO-formula t(z1, . ..,zy) such that A with the relations R is isomorphic to
the structure with universe ¢ and the relations 1 restricted to ¢B.

Then for an MSO-sentence x (in the signature of A) one can construct a
sentence X' (in the signature of B) such that A | x iff B = x'. In order to
obtain ' from y, one has to replace every atomic formula R(x1, ..., %) by the
corresponding formula ¢(z1, . . ., z,,) and to relativize all quantifications to ¢(x)
(for details see e.g. [13]). As a consequence, we note the following:

Proposition 1. If A is MSO-interpretable in B and the MSO-theory of B is
decidable, then so is the MSO-theory of A.

In the literature a more general type of interpretation is also used, called
MSO-transduction (see [8]), where the universe A is represented in a k-fold copy
of B rather than in B itself. For the results treated below it suffices to use the
simple case mentioned above.

2.2 Pushdown Graphs and Prefix Recognizable Graphs

A graph G = (V, (E,)qeca) is called pushdown graph (over the label alphabet A)
if it is the transition graph of the reachable global states of an e-free pushdown
automaton. Here a pushdown automaton is of the form P = (Q, A, I, qo, Zo, 4),
where () is the finite set of control states, A the input alphabet, I" the stack
alphabet, go the initial control state, Zy € I" the initial stack symbol, and A C
Q x AxI'x I'* x () the transition relation. A global state (configuration) of the
automaton is given by a control state and a stack content, i.e., by a word from
QI'*. The graph G = (V, (E4)aca) is now specified as follows:

— V is the set of configurations from QI™* which are reachable (via finitely
many applications of transitions of A) from the initial global state goZp.

— E, is the set of all pairs (pyw,quw) from V? for which there is a transition
(p,a,7v,v,q) in A.

A more general class of graphs, which includes the case of vertices of infinite
degree, has been introduced by Caucal [4]. These graphs are introduced in terms
of prefix-rewriting systems in which “control states” (as they occur in pushdown
automata) are no longer used and where a word on the top of the stack (rather
than a single letter) may be rewritten. Thus, a rewriting step can be specified
by a triple (u1,a, uz), describing a transition from a word u;w via letter a to the
word usw. The feature of infinite degree is introduced by allowing generalized
rewriting rules of the form U; —, Uz with regular sets Uy, Us of words. Such a
rule leads to the (in general infinite) set of rewrite triples (u1, a, us) with uy € Uy
and uz € Us. A graph G = (V, (E,)qca) is called prefiz-recognizable if for some
finite system S of such generalized prefix rewriting rules U; —, U, over an
alphabet I', we have

— V C I'* is a regular set,



— E, consists of the pairs (ujw,usw) where u; € Uy, us € Us for some rule
Uy =4 Us from S, and w € I'™.

Theorem 2 (Muller-Schupp [22], Caucal [4]). The MSO-theory of a push-
down graph is decidable; so is the MSO-theory of a prefir-recognizable graph.

First we present the proof for pushdown graphs. Let G = (V, (E;)qca) be
generated by the pushdown automaton P = (Q, A, I, qo, Zo, Q). Each configura-
tion is a word over the alphabet @ U I". Taking m = |Q| + |I'| we can represent
a configuration by a node of the tree T,. For technical convenience we write
the configurations in reverse order, i.e. as words in I'T@Q). We give an MSO-
interpretation of G in T},,. The formula v, (x,y) which defines E, in T}, has to
say the following;:

“there is a stack content w such that z = (pyw)® and y = (quw)® for a
rule (p,a,vy,v,q) of A

This is easily formalized (even with a first-order formula), using the successor
relations in T}, to capture the prolongation of w by =, p, ¢ and by the letters of v.
Now it is easy to write down also the desired domain formula ¢(z) which defines
the configurations reachable from gy Zo. We refer to (goZo)* as definable element
of the tree T}, and to the union E of the relations E,, defined by \/ . 4 ¥a(z,y).
The formula p(z) says that

“each set X which contains (goZp)® and is closed under taking E-
successors also contains z.”

For prefix-recognizable graphs, a slight generalization of the previous proof
is needed. Let G be a prefix-recognizable graph with a regular set V' C I'* of
vertices. We describe an MSO-interpretation of G in the tree T, where m is
the size of I'. We start with a formula ¢ (z,y) which defines the edge relation
induced by a single rule U; —, U, with regular Uy, Us. The formula expresses
for z,y that there is a word (= tree node) w such that z = uyw, y = usw with
uy € Uy, ug € Us. If Ay, Az are finite automata recognizing Uy, U, respectively,
this can be phrased as follows:

“there is a node w such that 4; accepts the path segment from z to w
and A, the path segment from y to w.”

Acceptance of a path segment is expressed by requiring a corresponding automa-
ton run. Its existence can be coded by a tuple of subsets over the considered path
segment (for an automaton with 2% states a k-tuple of sets suffices). The dis-
junction of such formulas taken for all a-rules gives the desired formula defining
the edge relation E,. The domain formula ¢(z) is provided in the same way,
now referring to the path segment from node z back to the root.

Using the interpretation of T}, in T5, the decidability claims follow from Ra-
bin’s Tree Theorem. It is interesting to note that the prefix-recognizable graphs
in fact coincide with the graphs which are MSO-interpretable in 75 ([2]).



3 Unfoldings

Let G = (V, (Ei)ier, (Pj)jes) be a graph and vy a designated vertex of V. The
unfolding of G from vy is a structure of the form ¢(G,vo) = (V', (E})icr, (P})jer)-
Its domain V' is the set of all paths from vy; here a path from vy is a sequence
vpi101 ... ik where for h < k we have (vp_1,vs) € E;, . A pair (p,q) of paths
is in Ej iff ¢ is an extension of p by an edge from E;, and we have p € P} iff the
last element of p is in P;.

As an example consider the singleton graph Gy with vertex vy and two edge
relations Eg, E1, both of which contain the edge (vo,v9). The unfolding of Gy
is (isomorphic to) the binary tree T5. This example illustrates the power of the
unfolding operation: Starting from the trivial singleton graph (which of course
has a decidable MSO-theory), we obtain the binary tree T where decidability
of the MSO-theory is a deep result.

The unfolding operation takes sequences of edges (as elements of the unfolded
structure). A related construction, called ¢ree iteration, refers to sequences of ele-
ments instead. It has the advantage that it covers arbitrary relational structures
without extra conventions. To spare notation we define it only over graphs, as
considered above.

The tree iteration of a graph G = (V, (E;)cr, (Pj)jes) is the structure G* =
(V*, S, C (B} )ier, (P} )jes) where S = {(w,wv) |w € V*,v € V} (“successor”),
C = {(wv,wvv) | w € V*,v € V} (“clone relation”), Ef = {(wu,wv) | w €
V*, (u,v) € E;}, and P = {wv |w € V*,v € P;}.

From the singleton graph mentioned above one obtains by tree iteration a
copy of the natural number ordering rather than of the binary tree. However, the
structure 75 can be generated by tree iteration from the two element structure
({0,1}, Py, P1) using the two predicates Py = {0} and P, = {1}. The unfolding
t(G,vp) can be obtained by a monadic transduction from G*, more precisely by
an MSO-interpretation in a twofold copy of G.

Both operations preserve the decidability of the MSO-theory. Again we state
this only for graphs:

Theorem 3 (Muchnik, Walukiewicz, Courcelle (cf. [24]), [26], [11])). If
a graph has a decidable MSO-theory, then its unfolding from a definable vertex
and its tree iteration also have decidable MSO-theories.

Extending earlier work of Shelah and Stupp, the theorem was shown for tree
iterations by A. Muchnik (see [24]). A full proof is given by Walukiewicz in [26];
for a very readable account we recommend [1]. For the unfolding operation see
the papers [9, 11] by Courcelle and Walukiewicz.

As a small application of the theorem we show a result (of which we do
not know a reference) on structures (N, Succ, P), the successor structure of the
natural numbers with an extra unary predicate P. Consider the binary tree T5
expanded by the predicate P’ = {w € {0,1}* | |w| € P}, the “level predicate”
for P. Now the MSO-theory of (N, Succ, P) is decidable iff the MSO-theory of
(N, Succg, Succy, P) is decidable where Succg = Succ; = Succ. The unfolding



of the latter structure is the binary tree expanded by the level predicate for P.
Hence we obtain:

Proposition 2. If the MSO-theory of (N, Succ, P) is decidable, then so is the
MSO-theory of the binary tree expanded by the level predicate for P.

4 Caucal’s Hierarchy

In [5], Caucal introduced the following hierarchy (G,) of graphs, together with
a hierarchy (7,,) of trees:

— To = the class of finite trees
— G, = the class of graphs which are MSO-interpretable in a tree of T,
— Tn+1 = the class of unfoldings of graphs in G,

By the results of the preceding sections (and the fact that a finite struc-
ture has a decidable MSO-theory), each structure in the Caucal hierarchy has
a decidable MSO-theory. By a hierarchy result of Damm [12] on higher-order
recursion schemes, the hierarchy is strictly increasing.

In Caucal’s paper [5], a different formalism of interpretation (via “inverse
rational substitutions”) is used instead of MSO-interpretations. We work with
the latter to keep the presentation more uniform; the equivalence between the
two approaches has been established by Carayol and Wahrle [10].

Let us take a look at some structures which occur in this hierarchy. It is
clear that Gy is the class of finite graphs, while 7; contains the so-called regular
trees (alternatively defined as the infinite trees which have only finitely many
non-isomorphic subtrees). Figure 1 (upper half) shows a finite graph and its
unfolding as a regular tree:
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Fig. 1. A graph, its unfolding, and a pushdown graph

By an MSO-interpretation we can obtain the pushdown graph of Figure 1 in
the class G;; the domain formula and the formulas defining E,, E, E,. are trivial,
while

ba(@,y) = Ye(w,y) = F232'(Eal2,2') A Ee(2,y) A Ee(2', )



Let us apply the unfolding operation again, from the only vertex without
incoming edges. We obtain the “algebraic tree” of Figure 2, belonging to 7
(where for the moment one should ignore the dashed line).
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Fig. 2. Unfolding of the pushdown graph of Figure 1

As a next step, let us apply an MSO-interpretation to this tree which will
produce a graph (V, E, P) in the class Go (where E is the edge relation and P a
unary predicate). Referring to Figure 2, V' is the set of vertices which are located
along the dashed line, E contains the pairs which are successive vertices along
the dashed line, and P contains the special vertices drawn as non-filled circles.
This structure is isomorphic to the structure (N, Succ, P») with the successor
relation Succ and predicate Py containing the powers of 2.

To prepare a corresponding MSO-interpretation, we use formulas such as
E 4« (z,y) which expresses

“all sets which contain « and are closed under taking E4-successors con-
tain y, and y has no E4-successor”

As domain formula we use

p(x) = 32(Ep(z,2) V IY(Ee(2,4) A Eate)- (4, 7))

The required edge relation E is defined by ¢ (z,y) = 3232'(¢1(z,y) V Y2 (z,y) V
¥3(x,y)) where

(ZL“,Z/) = Ea(zazl)/\Eb(zam)/\Ec(zlay)
— o(x,y) = Eu(2,2') N Eeex(2,2) N Ecg (2, y)
(iL“,y) = Ede* (Z,iL“) A Eed* (Zay)

Finally we define P by the formula x(z) = 3232/ (E.(z,2") A Eg- (2, z)).



We infer that the MSO-theory of (N, Succ, P,) is decidable, a result first
proved by Elgot and Rabin [14] with a different approach. The idea of [14], later
applied to many other expansions of the successor structure by unary predicates,
is to transform first a given MSO-sentence ¢ to an equivalent Biichi automaton
By, so that (N,Succ,P») = ¢ iff B, accepts the characteristic 0-1-sequence
ap, (with ap,(i) = 1 iff i € P,). By contracting the 0-segments between the
letters 1, one can modify ap, to an ultimately periodic sequence 8 such that B,
accepts ap iff B, accepts 5. Whether B, accepts such a “regular model” f is
decidable. Note that this reduction to a regular model depends on the sentence
 under consideration. The generation of (N, Succ, P») as a model in G, provides
a uniform decidability proof.

In [7], the contraction method was adapted to cover all morphic predicates P
(coded by morphic 0-1-words). Caucal [5] and Fratani and Sénizergues [15] have
shown that such models (N, Succ, P) also occur in the Caucal hierarchy?. In the
present paper we discuss another structure treated already in [14]: the structure
(N, Succ, Fac) where Fac is the set of factorial numbers. We start from a simpler
pushdown graph than the one used above and consider its unfolding, which is
the comb structure indicated by the thick arrows of the lower part of the figure.

a a a a
[ ] [ ] [ ] [ ]
b b b b
(& c c c
[ ] [ ] [ ) [ ]
[ ] [ ] [ ] [ ]
b b b b
[ ] [ ] [ ] [ ]
\c \\C \C
[ ) [ ) [ ]
c [
[ ] [ ]

Fig. 3. Preparing for the factorial predicate

We number the vertices of the horizontal line by 0,1,2. .. and call the vertices
below them to be of “level 0”7, “level 17, “level 2” etc. Now we use the simple
MSO-interpretation which takes all tree nodes as domain and introduces for
n > 0 a new edge from any vertex of level n + 1 to the first vertex of level
n. This introduces the thin lines in Figure 3 as new edges (assumed to point

2 In [5] this is proved for morphic P; a more general class is obtained in [15].



backwards). The reader will be able to write down a defining MSO-formula.
Note that the top vertex of each level plays a special role since it is the target
of an edge labelled b, while the remaining ones are targets of edges labelled c.

Consider the tree obtained from this graph by unfolding. It has subtrees
consisting of a single branch off level 0, 2 branches off level 1, 2 - 3 branches off
level 2, and generally (n + 1)! branches off level n. Referring to the c-labelled
edges these branches are arranged in a natural (and MSO-definable) order. To
capture the structure (N, Succ, Fac), we apply an interpretation which (for n > 1)
cancels the branches starting at the b-edge target of level n (and leaves only the
branches off the targets of c-edges). As a result, (n + 1)! — n! branches off level
n remain for n > 1, while there is one branch off level 0. Numbering these
remaining branches, the n!-th branch appears as first branch off level n. Note
that we traverse this first branch off a given level by disallowing c-edges after
the first c-edge. So a global picture like Figure 2 emerges, now representing the
factorial predicate. Summing up, we have generated the structure (N, Succ, Fac)
as a graph in Gs.

So far we have considered expansions of the successor structure of the natural
numbers by unary predicates. We now discuss the expansion by an interesting
unary function (here identified with its graph, a binary relation). It is the flip
function, introduced in [21] in the study of a hierarchical time structure (involv-
ing different time granularities). The function flip associates 0 to 0 and for each
nonzero n that number which arises from the binary expansion of n by mod-
ifying the least significant 1-bit to 0. An illustration of the graph Flip of this
function is given in Figure 4. It is easy to see that the structure (N, Succ, Flip)

*o<—0 o<— 0 *o<—0 *o<— 0 o<—0 *o<— 0 o<— 0

0 1 10 11 100 110 1000 1010 1100

Fig. 4. Graph of flip function

can be obtained from the algebraic tree of Figure 2 by an MSO-interpretation.
A Flip-edge will connect vertex u to the last leaf vertex v which is reachable by
a d*-path from an ancestor of u; if such a path does not exist, an edge to the
target of the b-edge (representing number 0) is taken.

Other parts of arithmetic can also be captured by suitable structures of the
Caucal hierarchy. For example, it can be shown that a semilinear relation (a
relation definable in Presburger arithmetic) can be represented by a suitable
graph. As the simplest example consider the relation z + y = z. It can be
represented in a comb structure like Figure 3 where each vertical branch is infinite
and for each edge a corresponding back-edge (with dual label) is introduced. In
the unfolding of this infinite comb structure, a vertex on column z and row y



allows a path precisely of length x + y via the back-edges to the origin. In this
way, graphs can be generated which (as acceptors of languages) are equivalent
to the Parikh automata of [19].

5 Outlook

The examples treated above should convince the reader that the Caucal Hier-
archy supplies a large reservoir of interesting models where the MSO-theory is
decidable. Many problems are open in this field. We mention some of them.

1. Studying and extending the range of the Caucal Hierarchy: We do not know
much about the graphs on levels > 3 of the Caucal hierarchy. Which structures
of arithmetic (with domain N and some relations over N) occur there? How to
decide on which level a given structure occurs? Is it possible to obtain a still
richer landscape of models by invoking the operation of tree iteration (possibly
for structures with relations of arity > 2, as in [3])?

2. Comparison with other approaches to generate infinite graphs: There are rep-
resentation results which allow to generate, for n > 0, the graphs of level n
from a single tree of level n, respectively as the transition graphs of higher-level
pushdown automata (see [5,6] and the references mentioned there). There are as
yet only partial results which settle the relation between the graphs of Caucal’s
hierarchy and the synchronized rational (or “automatic”) graphs, the rational
graphs, and the graphs generated by ground term rewriting systems (cf. e.g. [25,
20] and the references mentioned there).

3. Complexity of Model-Checking: The reduction of the MSO-model-checking
problem for an unfolded graph to the corresponding problem for the original
graph involves a non-elementary blow-up in complexity. When using restricted
logics one can avoid this. For example, Cachat [6] has shown that u-calculus
model-checking over graphs of level n is possible in n-fold exponential time.
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