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Abstrat. This introdutory paper reports on reent progress in the

searh for lasses of in�nite graphs where interesting model-heking

problems are deidable. We onsider properties expressible in monadi

seond-order logi (MSO-logi), a formalism whih enompasses stan-

dard temporal logis and the modal �-alulus. We disuss a lass of

in�nite graphs proposed by D. Caual (in MFCS 2002) whih an be

generated from the in�nite binary tree by applying the two proesses of

MSO-interpretation and of unfolding. The main purpose of the paper is

to give a feeling for the rih landsape of in�nite strutures in this lass

and to point to some questions whih deserve further study.

1 Introdution

A fundamental deidability result whih appears in hundreds of appliations in

theoretial omputer siene is Rabin's Tree Theorem [23℄. The theorem says

that the monadi seond-order theory (MSO-theory) of the in�nite binary tree

is deidable. The system of monadi seond-order logi arises from �rst-order

logi by adjuntion of variables for sets (of tree nodes) and quanti�ers ranging

over sets. In this language one an express many interesting properties, among

them reahability onditions (existene of �nite paths between elements) and

reurrene onditions (existene of in�nite paths with in�nitely many points of

a given property).

Already in Rabin's paper [23℄ the main theorem is used to infer a great num-

ber of further deidability results. The tehnique for the transfer of deidability

is the method of interpretation: It is based on the idea of desribing a stru-

ture A, using MSO-formulas, within the struture T

2

of the binary tree. The

deidability of the MSO-theory of A an then be dedued from the fat that the

MSO-theory of T

2

is deidable. Rabin onsidered mainly strutures of interest

to mathematial logi. For example, he showed that the monadi seond-order

theory of the rational number ordering (Q; <) is deidable. In theoretial om-

puter siene, the interest shifted to models like transition systems (for example,

Kripke strutures) and their unfoldings in the form of labelled trees. Also the

?

to appear in Pro. MFCS 2003, Springer-Verlag. For the present version, misprints

were eliminated and pointers to referenes orreted (see footnotes).



terminology has hanged a little: Rather than speaking of a struture with a

deidable MSO-theory one says that the model-heking problem for this stru-

ture is deidable with respet to MSO-properties. Thus the searh for in�nite

strutures of this kind is tied to one of the fundamental questions in veri�ation,

namely to determine the range of strutures where the model-heking problem

(in our ase with respet to MSO-logi) an be solved by automati proedures.

In this researh, the �rst key result is the Muller-Shupp Theorem [22℄,

stating that the transition graph of a pushdown automaton has a deidable

MSO-theory. In [4℄, Caual showed that the same holds for the more extended

lass of pre�x-reognizable graphs. In both ases, the proof works by MSO-

interpretations in the binary tree T

2

. Proof skethes are provided in Setion 2

below.

Nearly 20 years ago, in MFCS 1984, A. Semenov [24℄ presented a deidability

result of Muhnik whih opened a new trak for extending Rabin's Tree Theorem.

Muhnik's Theorem says that for a struture whose MSO-theory is deidable also

its \tree iteration" has a deidable MSO-theory. This provides another powerful

method for the transfer of deidability results. When referring to graphs as

strutures, a variant of tree iteration is of entral importane: the unfolding of

a graph as a tree. A short disussion is given in Setion 3.

Again in MFCS, one year ago, D. Caual proposed in [5℄ to use both transfer

tehniques (of MSO-interpretation and of unfolding) together, starting with the

�nite trees and graphs. (Equivalently one an start with the in�nite binary tree.)

It turns out that by applying MSO-interpretations and unfoldings in alternation,

a very rih hierarhy of models an be generated, eah of them having a deidable

MSO-theory. The main purpose of this paper is to provide (in Setion 4 below)

an intuitive introdution to this Caual hierarhy. We explain that it provides a

omprehensive framework for deidability results on MSO-theories.

In this paper, we pursue a purely model-theoreti view. One should mention

that at least two other views are also possible but not taken up here in any

depth: First, the tree strutures whih arise as unfoldings in the hierarhy have

been studied already deades ago in the investigation of higher-order reursion

shemes (f. [12℄); reent results in the �eld are due to Knapik, Niwi�nski, and

Urzyzyn [17, 18℄. In onnetion with the evaluation of these reursion shemes,

the omputational model of \iterated pushdown automaton" was introdued.

The (global) transition graphs of iterated pushdown automata oinide with the

graphs of the Caual hierarhy (see [18, 6, 10℄

1

). Thus, the graphs of the Caual

hierarhy onstitute also an interesting hapter of \in�nite automata theory"

([25℄), where in�nite graphs are viewed and used as aeptors of non-regular

languages.

1

In [18℄, the equivalene is shown for the unfoldings of the transition graphs, in

[5℄ higher-order pushdown transition graphs are shown to belong to the Caual

Hierarhy, and in [10℄ the onverse (and thus the oinidene result) is established.



2 Interpretations

2.1 General Framework

We onsider relational strutures A = (A;R

A

1

; : : : ; R

A

k

), where A is at most

ountable. The R

A

i

are relations of possibly di�erent arities, say R

A

i

of arity n

i

.

The orresponding signature is given by the relation symbols R

1

; : : : ; R

k

. The

�rst-order language over this signature is built up from variables x; y; : : :, atomi

formulas x = y and R

i

(x

1

; : : : ; x

n

i

), where x; y; x

1

; : : : are �rst-order variables,

using the standard propositional onnetives :;^;_;!;$ and the quanti�ers

9;8. The orresponding monadi seond-order language (MSO-language) is ob-

tained by adjoining variables X;Y; : : : for sets of elements (of the universe of a

struture) and atomi formulas X(y), meaning that the element y is in the set

X .

We use the standard notations; e.g. A j= '[a℄ indiates that the struture

A satis�es the formula '(x) with the element a as interpretation of x. Given a

formula '(x

1

; : : : ; x

n

), the relation de�ned by it in A is

'

A

= f(a

1

; : : : ; a

n

) 2 A

n

j A j= '[a

1

; : : : ; a

n

℄g

The strutures onsidered in this paper are edge- and vertex-labelled graphs of

the form G = (V; (E

i

)

i2I

; (P

j

)

j2J

); here V is the set of verties, I the alphabet

of edge labels, E

i

� V � V is the set of i-labelled edges, and P

j

� V the set of

verties labelled j. We set E =

S

i2I

E

i

.

The binary tree is the struture T

2

= (f0; 1g

�

; S

0

; S

1

) where S

i

= f(w;wi) j

w 2 f0; 1g

�

g. Analogously T

n

= (f0; : : : ; n � 1g

�

; S

n

0

; : : : ; S

n

n�1

) is the n-ary

in�nite tree.

Theorem 1 (Tree Theorem, [23℄). The MSO-theory of T

2

is deidable.

Let us illustrate the idea of MSO-interpretation by showing that the result

holds also for the strutures T

n

for n > 2. As typial example onsider T

3

=

(f0; 1; 2g

�

; S

3

0

; S

3

1

; S

3

2

). We obtain a opy of T

3

in T

2

by onsidering only the

T

2

-verties in the set T = (10 + 110 + 1110)

�

. A word in this set has the form

1

i

1

0 : : : 1

i

m

0 with i

1

; : : : ; i

m

2 f1; 2; 3g; and we take it as a representation of the

element (i

1

� 1) : : : (i

m

� 1) of T

3

.

The following MSO-formula '(x) (written in abbreviated suggestive form)

de�nes the set T in T

2

:

8Y [Y (x) ^ 8y((Y (y10) _ Y (y110) _ Y (y1110))! Y (y)) ! Y (�)℄

It says that x is in the losure of � under 10-, 110-, and 1110-suessors. The

relation f(w;w10)jw 2 f0; 1g

�

g is de�ned by the following formula:

 

0

(x; y) := 9z(S

1

(x; z) ^ S

0

(z; y))

With the analogous formulas  

1

,  

2

for the other suessor relations, we see

that the struture with universe '

T

2

and the relations  

T

2

i

restrited to '

T

2

is

isomorphi to T

3

.



In general, an MSO-interpretation of a struture A in a struture B is given

by a \domain formula" '(x) and, for eah relation R

A

of A, say of arity m, an

MSO-formula  (x

1

; : : : ; x

m

) suh that A with the relations R

A

is isomorphi to

the struture with universe '

B

and the relations  

B

restrited to '

B

.

Then for an MSO-sentene � (in the signature of A) one an onstrut a

sentene �

0

(in the signature of B) suh that A j= � i� B j= �

0

. In order to

obtain �

0

from �, one has to replae every atomi formula R(x

1

; : : : ; x

m

) by the

orresponding formula  (x

1

; : : : ; x

m

) and to relativize all quanti�ations to '(x)

(for details see e.g. [13℄). As a onsequene, we note the following:

Proposition 1. If A is MSO-interpretable in B and the MSO-theory of B is

deidable, then so is the MSO-theory of A.

In the literature a more general type of interpretation is also used, alled

MSO-transdution (see [8℄), where the universe A is represented in a k-fold opy

of B rather than in B itself. For the results treated below it suÆes to use the

simple ase mentioned above.

2.2 Pushdown Graphs and Pre�x Reognizable Graphs

A graph G = (V; (E

a

)

a2A

) is alled pushdown graph (over the label alphabet A)

if it is the transition graph of the reahable global states of an �-free pushdown

automaton. Here a pushdown automaton is of the form P = (Q;A; �; q

0

; Z

0

; �),

where Q is the �nite set of ontrol states, A the input alphabet, � the stak

alphabet, q

0

the initial ontrol state, Z

0

2 � the initial stak symbol, and � �

Q�A�� ��

�

�Q the transition relation. A global state (on�guration) of the

automaton is given by a ontrol state and a stak ontent, i.e., by a word from

Q�

�

. The graph G = (V; (E

a

)

a2A

) is now spei�ed as follows:

{ V is the set of on�gurations from Q�

�

whih are reahable (via �nitely

many appliations of transitions of �) from the initial global state q

0

Z

0

.

{ E

a

is the set of all pairs (pw; qvw) from V

2

for whih there is a transition

(p; a; ; v; q) in �.

A more general lass of graphs, whih inludes the ase of verties of in�nite

degree, has been introdued by Caual [4℄. These graphs are introdued in terms

of pre�x-rewriting systems in whih \ontrol states" (as they our in pushdown

automata) are no longer used and where a word on the top of the stak (rather

than a single letter) may be rewritten. Thus, a rewriting step an be spei�ed

by a triple (u

1

; a; u

2

), desribing a transition from a word u

1

w via letter a to the

word u

2

w. The feature of in�nite degree is introdued by allowing generalized

rewriting rules of the form U

1

!

a

U

2

with regular sets U

1

; U

2

of words. Suh a

rule leads to the (in general in�nite) set of rewrite triples (u

1

; a; u

2

) with u

1

2 U

1

and u

2

2 U

2

. A graph G = (V; (E

a

)

a2A

) is alled pre�x-reognizable if for some

�nite system S of suh generalized pre�x rewriting rules U

1

!

a

U

2

over an

alphabet � , we have

{ V � �

�

is a regular set,



{ E

a

onsists of the pairs (u

1

w; u

2

w) where u

1

2 U

1

, u

2

2 U

2

for some rule

U

1

!

a

U

2

from S, and w 2 �

�

.

Theorem 2 (Muller-Shupp [22℄, Caual [4℄). The MSO-theory of a push-

down graph is deidable; so is the MSO-theory of a pre�x-reognizable graph.

First we present the proof for pushdown graphs. Let G = (V; (E

a

)

a2A

) be

generated by the pushdown automaton P = (Q;A; �; q

0

; Z

0

; �). Eah on�gura-

tion is a word over the alphabet Q [ � . Taking m = jQj+ j� j we an represent

a on�guration by a node of the tree T

m

. For tehnial onveniene we write

the on�gurations in reverse order, i.e. as words in �

+

Q. We give an MSO-

interpretation of G in T

m

. The formula  

a

(x; y) whih de�nes E

a

in T

m

has to

say the following:

\there is a stak ontent w suh that x = (pw)

R

and y = (qvw)

R

for a

rule (p; a; ; v; q) of �."

This is easily formalized (even with a �rst-order formula), using the suessor

relations in T

m

to apture the prolongation of w by ; p; q and by the letters of v.

Now it is easy to write down also the desired domain formula '(x) whih de�nes

the on�gurations reahable from q

0

Z

0

. We refer to (q

0

Z

0

)

R

as de�nable element

of the tree T

m

and to the union E of the relations E

a

, de�ned by

W

a2A

 

a

(x; y).

The formula '(x) says that

\eah set X whih ontains (q

0

Z

0

)

R

and is losed under taking E-

suessors also ontains x."

For pre�x-reognizable graphs, a slight generalization of the previous proof

is needed. Let G be a pre�x-reognizable graph with a regular set V � �

�

of

verties. We desribe an MSO-interpretation of G in the tree T

m

where m is

the size of � . We start with a formula  (x; y) whih de�nes the edge relation

indued by a single rule U

1

!

a

U

2

with regular U

1

; U

2

. The formula expresses

for x; y that there is a word (= tree node) w suh that x = u

1

w, y = u

2

w with

u

1

2 U

1

, u

2

2 U

2

. If A

1

;A

2

are �nite automata reognizing U

1

; U

2

respetively,

this an be phrased as follows:

\there is a node w suh that A

1

aepts the path segment from x to w

and A

2

the path segment from y to w."

Aeptane of a path segment is expressed by requiring a orresponding automa-

ton run. Its existene an be oded by a tuple of subsets over the onsidered path

segment (for an automaton with 2

k

states a k-tuple of sets suÆes). The dis-

juntion of suh formulas taken for all a-rules gives the desired formula de�ning

the edge relation E

a

. The domain formula '(x) is provided in the same way,

now referring to the path segment from node x bak to the root.

Using the interpretation of T

m

in T

2

, the deidability laims follow from Ra-

bin's Tree Theorem. It is interesting to note that the pre�x-reognizable graphs

in fat oinide with the graphs whih are MSO-interpretable in T

2

([2℄).



3 Unfoldings

Let G = (V; (E

i

)

i2I

; (P

j

)

j2J

) be a graph and v

0

a designated vertex of V . The

unfolding of G from v

0

is a struture of the form t(G; v

0

) = (V

0

; (E

0

i

)

i2I

; (P

0

j

)

j2J

).

Its domain V

0

is the set of all paths from v

0

; here a path from v

0

is a sequene

v

0

i

1

v

1

: : : i

k

v

k

where for h � k we have (v

h�1

; v

h

) 2 E

i

h

. A pair (p; q) of paths

is in E

0

i

i� q is an extension of p by an edge from E

i

, and we have p 2 P

0

j

i� the

last element of p is in P

j

.

As an example onsider the singleton graph G

0

with vertex v

0

and two edge

relations E

0

; E

1

, both of whih ontain the edge (v

0

; v

0

). The unfolding of G

0

is (isomorphi to) the binary tree T

2

. This example illustrates the power of the

unfolding operation: Starting from the trivial singleton graph (whih of ourse

has a deidable MSO-theory), we obtain the binary tree T

2

where deidability

of the MSO-theory is a deep result.

The unfolding operation takes sequenes of edges (as elements of the unfolded

struture). A related onstrution, alled tree iteration, refers to sequenes of ele-

ments instead. It has the advantage that it overs arbitrary relational strutures

without extra onventions. To spare notation we de�ne it only over graphs, as

onsidered above.

The tree iteration of a graph G = (V; (E

i

)

i2I

; (P

j

)

j2J

) is the struture G

�

=

(V

�

; S; C; (E

�

i

)

i2I

; (P

�

j

)

j2J

) where S = f(w;wv) j w 2 V

�

; v 2 V g (\suessor"),

C = f(wv;wvv) j w 2 V

�

; v 2 V g (\lone relation"), E

�

i

= f(wu;wv) j w 2

V

�

; (u; v) 2 E

i

g, and P

�

j

= fwv j w 2 V

�

; v 2 P

j

g.

From the singleton graph mentioned above one obtains by tree iteration a

opy of the natural number ordering rather than of the binary tree. However, the

struture T

2

an be generated by tree iteration from the two element struture

(f0; 1g; P

0

; P

1

) using the two prediates P

0

= f0g and P

1

= f1g. The unfolding

t(G; v

0

) an be obtained by a monadi transdution from G

�

, more preisely by

an MSO-interpretation in a twofold opy of G.

Both operations preserve the deidability of the MSO-theory. Again we state

this only for graphs:

Theorem 3 (Muhnik, Walukiewiz, Courelle (f. [24℄), [26℄, [11℄)). If

a graph has a deidable MSO-theory, then its unfolding from a de�nable vertex

and its tree iteration also have deidable MSO-theories.

Extending earlier work of Shelah and Stupp, the theorem was shown for tree

iterations by A. Muhnik (see [24℄). A full proof is given by Walukiewiz in [26℄;

for a very readable aount we reommend [1℄. For the unfolding operation see

the papers [9, 11℄ by Courelle and Walukiewiz.

As a small appliation of the theorem we show a result (of whih we do

not know a referene) on strutures (N; Su; P ), the suessor struture of the

natural numbers with an extra unary prediate P . Consider the binary tree T

2

expanded by the prediate P

0

= fw 2 f0; 1g

�

j jwj 2 Pg, the \level prediate"

for P . Now the MSO-theory of (N; Su; P ) is deidable i� the MSO-theory of

(N; Su

0

; Su

1

; P ) is deidable where Su

0

= Su

1

= Su. The unfolding



of the latter struture is the binary tree expanded by the level prediate for P .

Hene we obtain:

Proposition 2. If the MSO-theory of (N; Su; P ) is deidable, then so is the

MSO-theory of the binary tree expanded by the level prediate for P .

4 Caual's Hierarhy

In [5℄, Caual introdued the following hierarhy (G

n

) of graphs, together with

a hierarhy (T

n

) of trees:

{ T

0

= the lass of �nite trees

{ G

n

= the lass of graphs whih are MSO-interpretable in a tree of T

n

{ T

n+1

= the lass of unfoldings of graphs in G

n

By the results of the preeding setions (and the fat that a �nite stru-

ture has a deidable MSO-theory), eah struture in the Caual hierarhy has

a deidable MSO-theory. By a hierarhy result of Damm [12℄ on higher-order

reursion shemes, the hierarhy is stritly inreasing.

In Caual's paper [5℄, a di�erent formalism of interpretation (via \inverse

rational substitutions") is used instead of MSO-interpretations. We work with

the latter to keep the presentation more uniform; the equivalene between the

two approahes has been established by Carayol and W�ohrle [10℄.

Let us take a look at some strutures whih our in this hierarhy. It is

lear that G

0

is the lass of �nite graphs, while T

1

ontains the so-alled regular

trees (alternatively de�ned as the in�nite trees whih have only �nitely many

non-isomorphi subtrees). Figure 1 (upper half) shows a �nite graph and its

unfolding as a regular tree:

�

a //

b

��

�

a

��



��
� �

�

a //

b

��

�

a //



��

�

a //



��

�

a //



��

�

a //



��

�

a //



��

� � �

� � � � � � � � �

�

a //

b

��

�

a //



��

�

a //



��

�

a //



��

�

a //



��

�

a //



��

� � �

� � �

doo

e

oo
�

doo

e

oo
�

doo

e

oo
�

doo

e

oo
� � �

doo

e

oo

Fig. 1. A graph, its unfolding, and a pushdown graph

By an MSO-interpretation we an obtain the pushdown graph of Figure 1 in

the lass G

1

; the domain formula and the formulas de�ning E

a

; E

b

; E



are trivial,

while

 

d

(x; y) =  

e

(x; y) = 9z9z

0

(E

a

(z; z

0

) ^ E



(z; y) ^E



(z

0

; x))



Let us apply the unfolding operation again, from the only vertex without

inoming edges. We obtain the \algebrai tree" of Figure 2, belonging to T

2

(where for the moment one should ignore the dashed line).

�

a //

b

��

�

a //



��

�



��

a //
�



��

a //
�



��

a //
� � �

�
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.
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. �
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<
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�
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d

����
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e
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�

d

����
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e
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..

..
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�

d

����
��
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e
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..

�

d

����
��
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e
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Æ
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�
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�

.
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d

����
��
��

e
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..
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� � �

Æ

___
�

� � �

Fig. 2. Unfolding of the pushdown graph of Figure 1

As a next step, let us apply an MSO-interpretation to this tree whih will

produe a graph (V;E; P ) in the lass G

2

(where E is the edge relation and P a

unary prediate). Referring to Figure 2, V is the set of verties whih are loated

along the dashed line, E ontains the pairs whih are suessive verties along

the dashed line, and P ontains the speial verties drawn as non-�lled irles.

This struture is isomorphi to the struture (N; Su; P

2

) with the suessor

relation Su and prediate P

2

ontaining the powers of 2.

To prepare a orresponding MSO-interpretation, we use formulas suh as

E

d

�

(x; y) whih expresses

\all sets whih ontain x and are losed under taking E

d

-suessors on-

tain y, and y has no E

d

-suessor"

As domain formula we use

'(x) = 9z(E

b

(z; x) _ 9y(E



(z; y) ^ E

(d+e)

�

(y; x))):

The required edge relation E is de�ned by  (x; y) = 9z9z

0

( 

1

(x; y) _  

2

(x; y) _

 

3

(x; y)) where

{  

1

(x; y) = E

a

(z; z

0

) ^ E

b

(z; x) ^ E



(z

0

; y)

{  

2

(x; y) = E

a

(z; z

0

) ^ E

e

�

(z; x) ^ E

d

�

(z

0

; y)

{  

3

(x; y) = E

de

�

(z; x) ^ E

ed

�

(z; y)

Finally we de�ne P by the formula �(x) = 9z9z

0

(E



(z; z

0

) ^ E

d

�

(z

0

; x)).



We infer that the MSO-theory of (N; Su; P

2

) is deidable, a result �rst

proved by Elgot and Rabin [14℄ with a di�erent approah. The idea of [14℄, later

applied to many other expansions of the suessor struture by unary prediates,

is to transform �rst a given MSO-sentene ' to an equivalent B�uhi automaton

B

'

, so that (N; Su; P

2

) j= ' i� B

'

aepts the harateristi 0-1-sequene

�

P

2

(with �

P

2

(i) = 1 i� i 2 P

2

). By ontrating the 0-segments between the

letters 1, one an modify �

P

2

to an ultimately periodi sequene � suh that B

'

aepts �

P

i� B

'

aepts �. Whether B

'

aepts suh a \regular model" � is

deidable. Note that this redution to a regular model depends on the sentene

' under onsideration. The generation of (N; Su; P

2

) as a model in G

2

provides

a uniform deidability proof.

In [7℄, the ontration method was adapted to over all morphi prediates P

(oded by morphi 0-1-words). Caual [5℄ and Fratani and S�enizergues [15℄ have

shown that suh models (N; Su; P ) also our in the Caual hierarhy

2

. In the

present paper we disuss another struture treated already in [14℄: the struture

(N; Su;Fa) where Fa is the set of fatorial numbers. We start from a simpler

pushdown graph than the one used above and onsider its unfolding, whih is

the omb struture indiated by the thik arrows of the lower part of the �gure.
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Fig. 3. Preparing for the fatorial prediate

We number the verties of the horizontal line by 0; 1; 2 : : : and all the verties

below them to be of \level 0", \level 1", \level 2" et. Now we use the simple

MSO-interpretation whih takes all tree nodes as domain and introdues for

n � 0 a new edge from any vertex of level n + 1 to the �rst vertex of level

n. This introdues the thin lines in Figure 3 as new edges (assumed to point

2

In [5℄ this is proved for morphi P ; a more general lass is obtained in [15℄.



bakwards). The reader will be able to write down a de�ning MSO-formula.

Note that the top vertex of eah level plays a speial role sine it is the target

of an edge labelled b, while the remaining ones are targets of edges labelled .

Consider the tree obtained from this graph by unfolding. It has subtrees

onsisting of a single branh o� level 0, 2 branhes o� level 1, 2 � 3 branhes o�

level 2, and generally (n + 1)! branhes o� level n. Referring to the -labelled

edges these branhes are arranged in a natural (and MSO-de�nable) order. To

apture the struture (N; Su;Fa), we apply an interpretation whih (for n � 1)

anels the branhes starting at the b-edge target of level n (and leaves only the

branhes o� the targets of -edges). As a result, (n + 1)!� n! branhes o� level

n remain for n � 1, while there is one branh o� level 0. Numbering these

remaining branhes, the n!-th branh appears as �rst branh o� level n. Note

that we traverse this �rst branh o� a given level by disallowing -edges after

the �rst -edge. So a global piture like Figure 2 emerges, now representing the

fatorial prediate. Summing up, we have generated the struture (N; Su;Fa)

as a graph in G

3

.

So far we have onsidered expansions of the suessor struture of the natural

numbers by unary prediates. We now disuss the expansion by an interesting

unary funtion (here identi�ed with its graph, a binary relation). It is the ip

funtion, introdued in [21℄ in the study of a hierarhial time struture (involv-

ing di�erent time granularities). The funtion ip assoiates 0 to 0 and for eah

nonzero n that number whih arises from the binary expansion of n by mod-

ifying the least signi�ant 1-bit to 0. An illustration of the graph Flip of this

funtion is given in Figure 4. It is easy to see that the struture (N; Su;Flip)
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Fig. 4. Graph of ip funtion

an be obtained from the algebrai tree of Figure 2 by an MSO-interpretation.

A Flip-edge will onnet vertex u to the last leaf vertex v whih is reahable by

a d

�

-path from an anestor of u; if suh a path does not exist, an edge to the

target of the b-edge (representing number 0) is taken.

Other parts of arithmeti an also be aptured by suitable strutures of the

Caual hierarhy. For example, it an be shown that a semilinear relation (a

relation de�nable in Presburger arithmeti) an be represented by a suitable

graph. As the simplest example onsider the relation x + y = z. It an be

represented in a omb struture like Figure 3 where eah vertial branh is in�nite

and for eah edge a orresponding bak-edge (with dual label) is introdued. In

the unfolding of this in�nite omb struture, a vertex on olumn x and row y



allows a path preisely of length x + y via the bak-edges to the origin. In this

way, graphs an be generated whih (as aeptors of languages) are equivalent

to the Parikh automata of [19℄.

5 Outlook

The examples treated above should onvine the reader that the Caual Hier-

arhy supplies a large reservoir of interesting models where the MSO-theory is

deidable. Many problems are open in this �eld. We mention some of them.

1. Studying and extending the range of the Caual Hierarhy: We do not know

muh about the graphs on levels � 3 of the Caual hierarhy. Whih strutures

of arithmeti (with domain N and some relations over N) our there? How to

deide on whih level a given struture ours? Is it possible to obtain a still

riher landsape of models by invoking the operation of tree iteration (possibly

for strutures with relations of arity > 2, as in [3℄)?

2. Comparison with other approahes to generate in�nite graphs: There are rep-

resentation results whih allow to generate, for n > 0, the graphs of level n

from a single tree of level n, respetively as the transition graphs of higher-level

pushdown automata (see [5, 6℄ and the referenes mentioned there). There are as

yet only partial results whih settle the relation between the graphs of Caual's

hierarhy and the synhronized rational (or \automati") graphs, the rational

graphs, and the graphs generated by ground term rewriting systems (f. e.g. [25,

20℄ and the referenes mentioned there).

3. Complexity of Model-Cheking: The redution of the MSO-model-heking

problem for an unfolded graph to the orresponding problem for the original

graph involves a non-elementary blow-up in omplexity. When using restrited

logis one an avoid this. For example, Cahat [6℄ has shown that �-alulus

model-heking over graphs of level n is possible in n-fold exponential time.
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