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Abstra
t. This introdu
tory paper reports on re
ent progress in the

sear
h for 
lasses of in�nite graphs where interesting model-
he
king

problems are de
idable. We 
onsider properties expressible in monadi


se
ond-order logi
 (MSO-logi
), a formalism whi
h en
ompasses stan-

dard temporal logi
s and the modal �-
al
ulus. We dis
uss a 
lass of

in�nite graphs proposed by D. Cau
al (in MFCS 2002) whi
h 
an be

generated from the in�nite binary tree by applying the two pro
esses of

MSO-interpretation and of unfolding. The main purpose of the paper is

to give a feeling for the ri
h lands
ape of in�nite stru
tures in this 
lass

and to point to some questions whi
h deserve further study.

1 Introdu
tion

A fundamental de
idability result whi
h appears in hundreds of appli
ations in

theoreti
al 
omputer s
ien
e is Rabin's Tree Theorem [23℄. The theorem says

that the monadi
 se
ond-order theory (MSO-theory) of the in�nite binary tree

is de
idable. The system of monadi
 se
ond-order logi
 arises from �rst-order

logi
 by adjun
tion of variables for sets (of tree nodes) and quanti�ers ranging

over sets. In this language one 
an express many interesting properties, among

them rea
hability 
onditions (existen
e of �nite paths between elements) and

re
urren
e 
onditions (existen
e of in�nite paths with in�nitely many points of

a given property).

Already in Rabin's paper [23℄ the main theorem is used to infer a great num-

ber of further de
idability results. The te
hnique for the transfer of de
idability

is the method of interpretation: It is based on the idea of des
ribing a stru
-

ture A, using MSO-formulas, within the stru
ture T

2

of the binary tree. The

de
idability of the MSO-theory of A 
an then be dedu
ed from the fa
t that the

MSO-theory of T

2

is de
idable. Rabin 
onsidered mainly stru
tures of interest

to mathemati
al logi
. For example, he showed that the monadi
 se
ond-order

theory of the rational number ordering (Q; <) is de
idable. In theoreti
al 
om-

puter s
ien
e, the interest shifted to models like transition systems (for example,

Kripke stru
tures) and their unfoldings in the form of labelled trees. Also the

?

to appear in Pro
. MFCS 2003, Springer-Verlag. For the present version, misprints

were eliminated and pointers to referen
es 
orre
ted (see footnotes).



terminology has 
hanged a little: Rather than speaking of a stru
ture with a

de
idable MSO-theory one says that the model-
he
king problem for this stru
-

ture is de
idable with respe
t to MSO-properties. Thus the sear
h for in�nite

stru
tures of this kind is tied to one of the fundamental questions in veri�
ation,

namely to determine the range of stru
tures where the model-
he
king problem

(in our 
ase with respe
t to MSO-logi
) 
an be solved by automati
 pro
edures.

In this resear
h, the �rst key result is the Muller-S
hupp Theorem [22℄,

stating that the transition graph of a pushdown automaton has a de
idable

MSO-theory. In [4℄, Cau
al showed that the same holds for the more extended


lass of pre�x-re
ognizable graphs. In both 
ases, the proof works by MSO-

interpretations in the binary tree T

2

. Proof sket
hes are provided in Se
tion 2

below.

Nearly 20 years ago, in MFCS 1984, A. Semenov [24℄ presented a de
idability

result of Mu
hnik whi
h opened a new tra
k for extending Rabin's Tree Theorem.

Mu
hnik's Theorem says that for a stru
ture whose MSO-theory is de
idable also

its \tree iteration" has a de
idable MSO-theory. This provides another powerful

method for the transfer of de
idability results. When referring to graphs as

stru
tures, a variant of tree iteration is of 
entral importan
e: the unfolding of

a graph as a tree. A short dis
ussion is given in Se
tion 3.

Again in MFCS, one year ago, D. Cau
al proposed in [5℄ to use both transfer

te
hniques (of MSO-interpretation and of unfolding) together, starting with the

�nite trees and graphs. (Equivalently one 
an start with the in�nite binary tree.)

It turns out that by applying MSO-interpretations and unfoldings in alternation,

a very ri
h hierar
hy of models 
an be generated, ea
h of them having a de
idable

MSO-theory. The main purpose of this paper is to provide (in Se
tion 4 below)

an intuitive introdu
tion to this Cau
al hierar
hy. We explain that it provides a


omprehensive framework for de
idability results on MSO-theories.

In this paper, we pursue a purely model-theoreti
 view. One should mention

that at least two other views are also possible but not taken up here in any

depth: First, the tree stru
tures whi
h arise as unfoldings in the hierar
hy have

been studied already de
ades ago in the investigation of higher-order re
ursion

s
hemes (
f. [12℄); re
ent results in the �eld are due to Knapik, Niwi�nski, and

Urzy
zyn [17, 18℄. In 
onne
tion with the evaluation of these re
ursion s
hemes,

the 
omputational model of \iterated pushdown automaton" was introdu
ed.

The (global) transition graphs of iterated pushdown automata 
oin
ide with the

graphs of the Cau
al hierar
hy (see [18, 6, 10℄

1

). Thus, the graphs of the Cau
al

hierar
hy 
onstitute also an interesting 
hapter of \in�nite automata theory"

([25℄), where in�nite graphs are viewed and used as a

eptors of non-regular

languages.

1

In [18℄, the equivalen
e is shown for the unfoldings of the transition graphs, in

[5℄ higher-order pushdown transition graphs are shown to belong to the Cau
al

Hierar
hy, and in [10℄ the 
onverse (and thus the 
oin
iden
e result) is established.



2 Interpretations

2.1 General Framework

We 
onsider relational stru
tures A = (A;R

A

1

; : : : ; R

A

k

), where A is at most


ountable. The R

A

i

are relations of possibly di�erent arities, say R

A

i

of arity n

i

.

The 
orresponding signature is given by the relation symbols R

1

; : : : ; R

k

. The

�rst-order language over this signature is built up from variables x; y; : : :, atomi


formulas x = y and R

i

(x

1

; : : : ; x

n

i

), where x; y; x

1

; : : : are �rst-order variables,

using the standard propositional 
onne
tives :;^;_;!;$ and the quanti�ers

9;8. The 
orresponding monadi
 se
ond-order language (MSO-language) is ob-

tained by adjoining variables X;Y; : : : for sets of elements (of the universe of a

stru
ture) and atomi
 formulas X(y), meaning that the element y is in the set

X .

We use the standard notations; e.g. A j= '[a℄ indi
ates that the stru
ture

A satis�es the formula '(x) with the element a as interpretation of x. Given a

formula '(x

1

; : : : ; x

n

), the relation de�ned by it in A is

'

A

= f(a

1

; : : : ; a

n

) 2 A

n

j A j= '[a

1

; : : : ; a

n

℄g

The stru
tures 
onsidered in this paper are edge- and vertex-labelled graphs of

the form G = (V; (E

i

)

i2I

; (P

j

)

j2J

); here V is the set of verti
es, I the alphabet

of edge labels, E

i

� V � V is the set of i-labelled edges, and P

j

� V the set of

verti
es labelled j. We set E =

S

i2I

E

i

.

The binary tree is the stru
ture T

2

= (f0; 1g

�

; S

0

; S

1

) where S

i

= f(w;wi) j

w 2 f0; 1g

�

g. Analogously T

n

= (f0; : : : ; n � 1g

�

; S

n

0

; : : : ; S

n

n�1

) is the n-ary

in�nite tree.

Theorem 1 (Tree Theorem, [23℄). The MSO-theory of T

2

is de
idable.

Let us illustrate the idea of MSO-interpretation by showing that the result

holds also for the stru
tures T

n

for n > 2. As typi
al example 
onsider T

3

=

(f0; 1; 2g

�

; S

3

0

; S

3

1

; S

3

2

). We obtain a 
opy of T

3

in T

2

by 
onsidering only the

T

2

-verti
es in the set T = (10 + 110 + 1110)

�

. A word in this set has the form

1

i

1

0 : : : 1

i

m

0 with i

1

; : : : ; i

m

2 f1; 2; 3g; and we take it as a representation of the

element (i

1

� 1) : : : (i

m

� 1) of T

3

.

The following MSO-formula '(x) (written in abbreviated suggestive form)

de�nes the set T in T

2

:

8Y [Y (x) ^ 8y((Y (y10) _ Y (y110) _ Y (y1110))! Y (y)) ! Y (�)℄

It says that x is in the 
losure of � under 10-, 110-, and 1110-su

essors. The

relation f(w;w10)jw 2 f0; 1g

�

g is de�ned by the following formula:

 

0

(x; y) := 9z(S

1

(x; z) ^ S

0

(z; y))

With the analogous formulas  

1

,  

2

for the other su

essor relations, we see

that the stru
ture with universe '

T

2

and the relations  

T

2

i

restri
ted to '

T

2

is

isomorphi
 to T

3

.



In general, an MSO-interpretation of a stru
ture A in a stru
ture B is given

by a \domain formula" '(x) and, for ea
h relation R

A

of A, say of arity m, an

MSO-formula  (x

1

; : : : ; x

m

) su
h that A with the relations R

A

is isomorphi
 to

the stru
ture with universe '

B

and the relations  

B

restri
ted to '

B

.

Then for an MSO-senten
e � (in the signature of A) one 
an 
onstru
t a

senten
e �

0

(in the signature of B) su
h that A j= � i� B j= �

0

. In order to

obtain �

0

from �, one has to repla
e every atomi
 formula R(x

1

; : : : ; x

m

) by the


orresponding formula  (x

1

; : : : ; x

m

) and to relativize all quanti�
ations to '(x)

(for details see e.g. [13℄). As a 
onsequen
e, we note the following:

Proposition 1. If A is MSO-interpretable in B and the MSO-theory of B is

de
idable, then so is the MSO-theory of A.

In the literature a more general type of interpretation is also used, 
alled

MSO-transdu
tion (see [8℄), where the universe A is represented in a k-fold 
opy

of B rather than in B itself. For the results treated below it suÆ
es to use the

simple 
ase mentioned above.

2.2 Pushdown Graphs and Pre�x Re
ognizable Graphs

A graph G = (V; (E

a

)

a2A

) is 
alled pushdown graph (over the label alphabet A)

if it is the transition graph of the rea
hable global states of an �-free pushdown

automaton. Here a pushdown automaton is of the form P = (Q;A; �; q

0

; Z

0

; �),

where Q is the �nite set of 
ontrol states, A the input alphabet, � the sta
k

alphabet, q

0

the initial 
ontrol state, Z

0

2 � the initial sta
k symbol, and � �

Q�A�� ��

�

�Q the transition relation. A global state (
on�guration) of the

automaton is given by a 
ontrol state and a sta
k 
ontent, i.e., by a word from

Q�

�

. The graph G = (V; (E

a

)

a2A

) is now spe
i�ed as follows:

{ V is the set of 
on�gurations from Q�

�

whi
h are rea
hable (via �nitely

many appli
ations of transitions of �) from the initial global state q

0

Z

0

.

{ E

a

is the set of all pairs (p
w; qvw) from V

2

for whi
h there is a transition

(p; a; 
; v; q) in �.

A more general 
lass of graphs, whi
h in
ludes the 
ase of verti
es of in�nite

degree, has been introdu
ed by Cau
al [4℄. These graphs are introdu
ed in terms

of pre�x-rewriting systems in whi
h \
ontrol states" (as they o

ur in pushdown

automata) are no longer used and where a word on the top of the sta
k (rather

than a single letter) may be rewritten. Thus, a rewriting step 
an be spe
i�ed

by a triple (u

1

; a; u

2

), des
ribing a transition from a word u

1

w via letter a to the

word u

2

w. The feature of in�nite degree is introdu
ed by allowing generalized

rewriting rules of the form U

1

!

a

U

2

with regular sets U

1

; U

2

of words. Su
h a

rule leads to the (in general in�nite) set of rewrite triples (u

1

; a; u

2

) with u

1

2 U

1

and u

2

2 U

2

. A graph G = (V; (E

a

)

a2A

) is 
alled pre�x-re
ognizable if for some

�nite system S of su
h generalized pre�x rewriting rules U

1

!

a

U

2

over an

alphabet � , we have

{ V � �

�

is a regular set,



{ E

a


onsists of the pairs (u

1

w; u

2

w) where u

1

2 U

1

, u

2

2 U

2

for some rule

U

1

!

a

U

2

from S, and w 2 �

�

.

Theorem 2 (Muller-S
hupp [22℄, Cau
al [4℄). The MSO-theory of a push-

down graph is de
idable; so is the MSO-theory of a pre�x-re
ognizable graph.

First we present the proof for pushdown graphs. Let G = (V; (E

a

)

a2A

) be

generated by the pushdown automaton P = (Q;A; �; q

0

; Z

0

; �). Ea
h 
on�gura-

tion is a word over the alphabet Q [ � . Taking m = jQj+ j� j we 
an represent

a 
on�guration by a node of the tree T

m

. For te
hni
al 
onvenien
e we write

the 
on�gurations in reverse order, i.e. as words in �

+

Q. We give an MSO-

interpretation of G in T

m

. The formula  

a

(x; y) whi
h de�nes E

a

in T

m

has to

say the following:

\there is a sta
k 
ontent w su
h that x = (p
w)

R

and y = (qvw)

R

for a

rule (p; a; 
; v; q) of �."

This is easily formalized (even with a �rst-order formula), using the su

essor

relations in T

m

to 
apture the prolongation of w by 
; p; q and by the letters of v.

Now it is easy to write down also the desired domain formula '(x) whi
h de�nes

the 
on�gurations rea
hable from q

0

Z

0

. We refer to (q

0

Z

0

)

R

as de�nable element

of the tree T

m

and to the union E of the relations E

a

, de�ned by

W

a2A

 

a

(x; y).

The formula '(x) says that

\ea
h set X whi
h 
ontains (q

0

Z

0

)

R

and is 
losed under taking E-

su

essors also 
ontains x."

For pre�x-re
ognizable graphs, a slight generalization of the previous proof

is needed. Let G be a pre�x-re
ognizable graph with a regular set V � �

�

of

verti
es. We des
ribe an MSO-interpretation of G in the tree T

m

where m is

the size of � . We start with a formula  (x; y) whi
h de�nes the edge relation

indu
ed by a single rule U

1

!

a

U

2

with regular U

1

; U

2

. The formula expresses

for x; y that there is a word (= tree node) w su
h that x = u

1

w, y = u

2

w with

u

1

2 U

1

, u

2

2 U

2

. If A

1

;A

2

are �nite automata re
ognizing U

1

; U

2

respe
tively,

this 
an be phrased as follows:

\there is a node w su
h that A

1

a

epts the path segment from x to w

and A

2

the path segment from y to w."

A

eptan
e of a path segment is expressed by requiring a 
orresponding automa-

ton run. Its existen
e 
an be 
oded by a tuple of subsets over the 
onsidered path

segment (for an automaton with 2

k

states a k-tuple of sets suÆ
es). The dis-

jun
tion of su
h formulas taken for all a-rules gives the desired formula de�ning

the edge relation E

a

. The domain formula '(x) is provided in the same way,

now referring to the path segment from node x ba
k to the root.

Using the interpretation of T

m

in T

2

, the de
idability 
laims follow from Ra-

bin's Tree Theorem. It is interesting to note that the pre�x-re
ognizable graphs

in fa
t 
oin
ide with the graphs whi
h are MSO-interpretable in T

2

([2℄).



3 Unfoldings

Let G = (V; (E

i

)

i2I

; (P

j

)

j2J

) be a graph and v

0

a designated vertex of V . The

unfolding of G from v

0

is a stru
ture of the form t(G; v

0

) = (V

0

; (E

0

i

)

i2I

; (P

0

j

)

j2J

).

Its domain V

0

is the set of all paths from v

0

; here a path from v

0

is a sequen
e

v

0

i

1

v

1

: : : i

k

v

k

where for h � k we have (v

h�1

; v

h

) 2 E

i

h

. A pair (p; q) of paths

is in E

0

i

i� q is an extension of p by an edge from E

i

, and we have p 2 P

0

j

i� the

last element of p is in P

j

.

As an example 
onsider the singleton graph G

0

with vertex v

0

and two edge

relations E

0

; E

1

, both of whi
h 
ontain the edge (v

0

; v

0

). The unfolding of G

0

is (isomorphi
 to) the binary tree T

2

. This example illustrates the power of the

unfolding operation: Starting from the trivial singleton graph (whi
h of 
ourse

has a de
idable MSO-theory), we obtain the binary tree T

2

where de
idability

of the MSO-theory is a deep result.

The unfolding operation takes sequen
es of edges (as elements of the unfolded

stru
ture). A related 
onstru
tion, 
alled tree iteration, refers to sequen
es of ele-

ments instead. It has the advantage that it 
overs arbitrary relational stru
tures

without extra 
onventions. To spare notation we de�ne it only over graphs, as


onsidered above.

The tree iteration of a graph G = (V; (E

i

)

i2I

; (P

j

)

j2J

) is the stru
ture G

�

=

(V

�

; S; C; (E

�

i

)

i2I

; (P

�

j

)

j2J

) where S = f(w;wv) j w 2 V

�

; v 2 V g (\su

essor"),

C = f(wv;wvv) j w 2 V

�

; v 2 V g (\
lone relation"), E

�

i

= f(wu;wv) j w 2

V

�

; (u; v) 2 E

i

g, and P

�

j

= fwv j w 2 V

�

; v 2 P

j

g.

From the singleton graph mentioned above one obtains by tree iteration a


opy of the natural number ordering rather than of the binary tree. However, the

stru
ture T

2


an be generated by tree iteration from the two element stru
ture

(f0; 1g; P

0

; P

1

) using the two predi
ates P

0

= f0g and P

1

= f1g. The unfolding

t(G; v

0

) 
an be obtained by a monadi
 transdu
tion from G

�

, more pre
isely by

an MSO-interpretation in a twofold 
opy of G.

Both operations preserve the de
idability of the MSO-theory. Again we state

this only for graphs:

Theorem 3 (Mu
hnik, Walukiewi
z, Cour
elle (
f. [24℄), [26℄, [11℄)). If

a graph has a de
idable MSO-theory, then its unfolding from a de�nable vertex

and its tree iteration also have de
idable MSO-theories.

Extending earlier work of Shelah and Stupp, the theorem was shown for tree

iterations by A. Mu
hnik (see [24℄). A full proof is given by Walukiewi
z in [26℄;

for a very readable a

ount we re
ommend [1℄. For the unfolding operation see

the papers [9, 11℄ by Cour
elle and Walukiewi
z.

As a small appli
ation of the theorem we show a result (of whi
h we do

not know a referen
e) on stru
tures (N; Su

; P ), the su

essor stru
ture of the

natural numbers with an extra unary predi
ate P . Consider the binary tree T

2

expanded by the predi
ate P

0

= fw 2 f0; 1g

�

j jwj 2 Pg, the \level predi
ate"

for P . Now the MSO-theory of (N; Su

; P ) is de
idable i� the MSO-theory of

(N; Su



0

; Su



1

; P ) is de
idable where Su



0

= Su



1

= Su

. The unfolding



of the latter stru
ture is the binary tree expanded by the level predi
ate for P .

Hen
e we obtain:

Proposition 2. If the MSO-theory of (N; Su

; P ) is de
idable, then so is the

MSO-theory of the binary tree expanded by the level predi
ate for P .

4 Cau
al's Hierar
hy

In [5℄, Cau
al introdu
ed the following hierar
hy (G

n

) of graphs, together with

a hierar
hy (T

n

) of trees:

{ T

0

= the 
lass of �nite trees

{ G

n

= the 
lass of graphs whi
h are MSO-interpretable in a tree of T

n

{ T

n+1

= the 
lass of unfoldings of graphs in G

n

By the results of the pre
eding se
tions (and the fa
t that a �nite stru
-

ture has a de
idable MSO-theory), ea
h stru
ture in the Cau
al hierar
hy has

a de
idable MSO-theory. By a hierar
hy result of Damm [12℄ on higher-order

re
ursion s
hemes, the hierar
hy is stri
tly in
reasing.

In Cau
al's paper [5℄, a di�erent formalism of interpretation (via \inverse

rational substitutions") is used instead of MSO-interpretations. We work with

the latter to keep the presentation more uniform; the equivalen
e between the

two approa
hes has been established by Carayol and W�ohrle [10℄.

Let us take a look at some stru
tures whi
h o

ur in this hierar
hy. It is


lear that G

0

is the 
lass of �nite graphs, while T

1


ontains the so-
alled regular

trees (alternatively de�ned as the in�nite trees whi
h have only �nitely many

non-isomorphi
 subtrees). Figure 1 (upper half) shows a �nite graph and its

unfolding as a regular tree:

�

a //

b

��

�

a

��




��
� �

�

a //

b

��

�

a //




��

�

a //




��

�

a //




��

�

a //




��

�

a //




��

� � �

� � � � � � � � �

�

a //

b

��

�

a //




��

�

a //




��

�

a //




��

�

a //




��

�

a //




��

� � �

� � �

doo

e

oo
�

doo

e

oo
�

doo

e

oo
�

doo

e

oo
� � �

doo

e

oo

Fig. 1. A graph, its unfolding, and a pushdown graph

By an MSO-interpretation we 
an obtain the pushdown graph of Figure 1 in

the 
lass G

1

; the domain formula and the formulas de�ning E

a

; E

b

; E




are trivial,

while

 

d
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e
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Let us apply the unfolding operation again, from the only vertex without

in
oming edges. We obtain the \algebrai
 tree" of Figure 2, belonging to T

2

(where for the moment one should ignore the dashed line).
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Fig. 2. Unfolding of the pushdown graph of Figure 1

As a next step, let us apply an MSO-interpretation to this tree whi
h will

produ
e a graph (V;E; P ) in the 
lass G

2

(where E is the edge relation and P a

unary predi
ate). Referring to Figure 2, V is the set of verti
es whi
h are lo
ated

along the dashed line, E 
ontains the pairs whi
h are su

essive verti
es along

the dashed line, and P 
ontains the spe
ial verti
es drawn as non-�lled 
ir
les.

This stru
ture is isomorphi
 to the stru
ture (N; Su

; P

2

) with the su

essor

relation Su

 and predi
ate P

2


ontaining the powers of 2.

To prepare a 
orresponding MSO-interpretation, we use formulas su
h as

E

d

�

(x; y) whi
h expresses

\all sets whi
h 
ontain x and are 
losed under taking E

d

-su

essors 
on-

tain y, and y has no E

d

-su

essor"

As domain formula we use

'(x) = 9z(E

b

(z; x) _ 9y(E




(z; y) ^ E

(d+e)

�

(y; x))):

The required edge relation E is de�ned by  (x; y) = 9z9z

0

( 

1

(x; y) _  

2

(x; y) _

 

3

(x; y)) where

{  

1

(x; y) = E

a

(z; z

0

) ^ E

b

(z; x) ^ E




(z

0

; y)

{  

2

(x; y) = E

a

(z; z

0

) ^ E


e

�

(z; x) ^ E


d

�

(z

0

; y)

{  

3

(x; y) = E

de

�

(z; x) ^ E

ed

�

(z; y)

Finally we de�ne P by the formula �(x) = 9z9z

0

(E




(z; z

0

) ^ E

d

�

(z

0

; x)).



We infer that the MSO-theory of (N; Su

; P

2

) is de
idable, a result �rst

proved by Elgot and Rabin [14℄ with a di�erent approa
h. The idea of [14℄, later

applied to many other expansions of the su

essor stru
ture by unary predi
ates,

is to transform �rst a given MSO-senten
e ' to an equivalent B�u
hi automaton

B

'

, so that (N; Su

; P

2

) j= ' i� B

'

a

epts the 
hara
teristi
 0-1-sequen
e

�

P

2

(with �

P

2

(i) = 1 i� i 2 P

2

). By 
ontra
ting the 0-segments between the

letters 1, one 
an modify �

P

2

to an ultimately periodi
 sequen
e � su
h that B

'

a

epts �

P

i� B

'

a

epts �. Whether B

'

a

epts su
h a \regular model" � is

de
idable. Note that this redu
tion to a regular model depends on the senten
e

' under 
onsideration. The generation of (N; Su

; P

2

) as a model in G

2

provides

a uniform de
idability proof.

In [7℄, the 
ontra
tion method was adapted to 
over all morphi
 predi
ates P

(
oded by morphi
 0-1-words). Cau
al [5℄ and Fratani and S�enizergues [15℄ have

shown that su
h models (N; Su

; P ) also o

ur in the Cau
al hierar
hy

2

. In the

present paper we dis
uss another stru
ture treated already in [14℄: the stru
ture

(N; Su

;Fa
) where Fa
 is the set of fa
torial numbers. We start from a simpler

pushdown graph than the one used above and 
onsider its unfolding, whi
h is

the 
omb stru
ture indi
ated by the thi
k arrows of the lower part of the �gure.
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Fig. 3. Preparing for the fa
torial predi
ate

We number the verti
es of the horizontal line by 0; 1; 2 : : : and 
all the verti
es

below them to be of \level 0", \level 1", \level 2" et
. Now we use the simple

MSO-interpretation whi
h takes all tree nodes as domain and introdu
es for

n � 0 a new edge from any vertex of level n + 1 to the �rst vertex of level

n. This introdu
es the thin lines in Figure 3 as new edges (assumed to point

2

In [5℄ this is proved for morphi
 P ; a more general 
lass is obtained in [15℄.



ba
kwards). The reader will be able to write down a de�ning MSO-formula.

Note that the top vertex of ea
h level plays a spe
ial role sin
e it is the target

of an edge labelled b, while the remaining ones are targets of edges labelled 
.

Consider the tree obtained from this graph by unfolding. It has subtrees


onsisting of a single bran
h o� level 0, 2 bran
hes o� level 1, 2 � 3 bran
hes o�

level 2, and generally (n + 1)! bran
hes o� level n. Referring to the 
-labelled

edges these bran
hes are arranged in a natural (and MSO-de�nable) order. To


apture the stru
ture (N; Su

;Fa
), we apply an interpretation whi
h (for n � 1)


an
els the bran
hes starting at the b-edge target of level n (and leaves only the

bran
hes o� the targets of 
-edges). As a result, (n + 1)!� n! bran
hes o� level

n remain for n � 1, while there is one bran
h o� level 0. Numbering these

remaining bran
hes, the n!-th bran
h appears as �rst bran
h o� level n. Note

that we traverse this �rst bran
h o� a given level by disallowing 
-edges after

the �rst 
-edge. So a global pi
ture like Figure 2 emerges, now representing the

fa
torial predi
ate. Summing up, we have generated the stru
ture (N; Su

;Fa
)

as a graph in G

3

.

So far we have 
onsidered expansions of the su

essor stru
ture of the natural

numbers by unary predi
ates. We now dis
uss the expansion by an interesting

unary fun
tion (here identi�ed with its graph, a binary relation). It is the 
ip

fun
tion, introdu
ed in [21℄ in the study of a hierar
hi
al time stru
ture (involv-

ing di�erent time granularities). The fun
tion 
ip asso
iates 0 to 0 and for ea
h

nonzero n that number whi
h arises from the binary expansion of n by mod-

ifying the least signi�
ant 1-bit to 0. An illustration of the graph Flip of this

fun
tion is given in Figure 4. It is easy to see that the stru
ture (N; Su

;Flip)

� �
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Fig. 4. Graph of 
ip fun
tion


an be obtained from the algebrai
 tree of Figure 2 by an MSO-interpretation.

A Flip-edge will 
onne
t vertex u to the last leaf vertex v whi
h is rea
hable by

a d

�

-path from an an
estor of u; if su
h a path does not exist, an edge to the

target of the b-edge (representing number 0) is taken.

Other parts of arithmeti
 
an also be 
aptured by suitable stru
tures of the

Cau
al hierar
hy. For example, it 
an be shown that a semilinear relation (a

relation de�nable in Presburger arithmeti
) 
an be represented by a suitable

graph. As the simplest example 
onsider the relation x + y = z. It 
an be

represented in a 
omb stru
ture like Figure 3 where ea
h verti
al bran
h is in�nite

and for ea
h edge a 
orresponding ba
k-edge (with dual label) is introdu
ed. In

the unfolding of this in�nite 
omb stru
ture, a vertex on 
olumn x and row y



allows a path pre
isely of length x + y via the ba
k-edges to the origin. In this

way, graphs 
an be generated whi
h (as a

eptors of languages) are equivalent

to the Parikh automata of [19℄.

5 Outlook

The examples treated above should 
onvin
e the reader that the Cau
al Hier-

ar
hy supplies a large reservoir of interesting models where the MSO-theory is

de
idable. Many problems are open in this �eld. We mention some of them.

1. Studying and extending the range of the Cau
al Hierar
hy: We do not know

mu
h about the graphs on levels � 3 of the Cau
al hierar
hy. Whi
h stru
tures

of arithmeti
 (with domain N and some relations over N) o

ur there? How to

de
ide on whi
h level a given stru
ture o

urs? Is it possible to obtain a still

ri
her lands
ape of models by invoking the operation of tree iteration (possibly

for stru
tures with relations of arity > 2, as in [3℄)?

2. Comparison with other approa
hes to generate in�nite graphs: There are rep-

resentation results whi
h allow to generate, for n > 0, the graphs of level n

from a single tree of level n, respe
tively as the transition graphs of higher-level

pushdown automata (see [5, 6℄ and the referen
es mentioned there). There are as

yet only partial results whi
h settle the relation between the graphs of Cau
al's

hierar
hy and the syn
hronized rational (or \automati
") graphs, the rational

graphs, and the graphs generated by ground term rewriting systems (
f. e.g. [25,

20℄ and the referen
es mentioned there).

3. Complexity of Model-Che
king: The redu
tion of the MSO-model-
he
king

problem for an unfolded graph to the 
orresponding problem for the original

graph involves a non-elementary blow-up in 
omplexity. When using restri
ted

logi
s one 
an avoid this. For example, Ca
hat [6℄ has shown that �-
al
ulus

model-
he
king over graphs of level n is possible in n-fold exponential time.
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