Logic: Lecture 12, 13 September 2012 ----------------------------------- A "sequent" G |- phi consists of a list of formulas G (the "antecedent") and the conclusion phi (the "succedent"). The intention is that from the assumptions G, we can prove phi. As usual, we expect soundness to hold so G |- phi implies G |= phi. Sequent Calculus ----------------- A formal system for derivations using sequents Basic axioms/rules (Assumption) ----------- if phi in G G |- phi G |- phi (Antecdent) ----------- if G subset of G' G' |- phi (note that G, G' are lists, but the condition is on G, G' as sets) G, phi |- psi, G, ~phi |- psi (Proof by cases) --------------------------------- G |- psi G, ~phi |- psi, G, ~phi |- ~psi (Contradiction) ---------------------------------- G |- phi G, phi |- chi, G, psi |- chi (Or, Antecedent) -------------------------------- G, (phi or psi) |- chi G |- phi G |- phi (Or, Succedent) ------------------ , ------------------ G |- phi or psi G |- psi or phi G, phi[x|->y] |- psi (E, Antecedent) ----------------------, y not free in {G, Ex phi, psi} G, Ex phi |- psi G |- phi[x|->t] (E, Succedent) --------------------- G | Ex phi (Equality) ---------- t = t G |- phi[x |-> t] (Substitution) ---------------------------- G, t = t' |- phi[x |-> t'] Typical proofs --------------- 1. (TND, Excluded Middle) |- phi or ~phi a . phi |- phi (Assumption) v b. phi |- phi or ~phi (Or, Succedent from a) c. ~phi |- ~phi (Assumption) d. ~phi |- phi or ~phi (Or, Succedent from c) e |- phi or ~Phi (Proof by cases, b and e) 2. (Ctr', Second Contradiction rule) G |- psi, G |- ~psi -------------------- G |- phi a. G |- psi (Premise) b. G |- ~psi (Premise) c. G, ~phi |- psi (Antecdent, from a) d. G, ~phi |- ~psi (Antecdent, from b) e. G |- phi (Contradiction, c and d) 3. (Ch, Chain rule) G |- phi, G, phi |- psi -------------------------- G |- psi a. G |- phi (Premise) b. G, phi |- psi (Premise) c. G, ~phi |- phi (Antecedent, from a) d. G, ~phi |- ~phi (Assumption) e. G, ~phi |- psi (Ctr', c and d) e. G, |- psi (Proof by cases, b and e) 4. (Contrapositive, 4 variants) G, phi |- psi G, ~phi |- ~psi G, ~phi |- psi G, phi |- ~psi ---------------, ---------------, --------------, -------------- G, ~psi |- ~phi G, psi |- phi G, ~psi |- phi G, psi |- ~phi a. G, phi |- psi (Premise) b. G, ~psi, phi |- psi (Antecedent, from a) c. G, ~psi, phi |- ~psi (Assumption) d. G, ~psi, phi |- ~phi (Ctr', b and c) e. G, ~psi, ~phi |- ~phi (Assumption) f. G, ~psi |- ~phi (Proof by Cases, d and e) 5. G |- phi or psi, G |- ~phi --------------------------- G |- psi a. G |- phi or psi (Premise) b. G |- ~phi (Premise) c. G, psi |- psi (Assumption) d. G, phi |- ~phi (Antecdent, from b) e. G, phi |- phi (Assumption) f. G, phi |- psi (Ctr', d and e) g. G, phi or psi |- psi (Or, Antecedent f) h. G |- psi (Chain, a and g) 6. Modus ponens G |- phi -> psi, G |- phi ------------------------- G |- psi a. G |- ~phi or psi (Premise) b. G |- phi (Premise) c. G, psi |- psi (Assumption) d. G, ~phi |- ~phi (Antecdent, from b) e. G, ~phi |- ~phi (Assumption) f. G, ~phi |- psi (Ctr', d and e) g. G, ~phi or psi |- psi (Or, Antecedent f) h. G |- psi (Chain, a and g) 7. Equality axioms Symmetry: t0 = t1 |- t1 = t0 a. |- t0 = t0 (Equality) b. t0 = t1 |- t1 = t0 (Substitution, from a using phi(x): x = t0) Transitivity: t0 = t1, t1 = t2 |- t0 = t2 a. t0 = t1 |- t0 = t1 (Assumption) b. t0 = t1, t1 = t2 |- t0 = t2 (Substition, from a using phi(x): t0 = x) Relations: R(t0,..,tn), t0 = t'0, ..., tn = t'n |- R(t'0,..,t'n) Proof for the case R(t0,t1) a. R(t0,t1) |- R(t0,t1) (Assumption) b. R(t0,t1), t0 = t'0 |- R(t'0,t1) (Substitution, a, phi(x): R(x,t1)) c. R(t0,t1), t0 = t'0, t1 = t'1 |- R(t'0,t'1) (Substitution, b, phi(x): R(t'0,x)) Functions: t0 = t'0, ..., tn = t'n |- f(t0,..,tn) = f(t'0,..,t'n) Proof for the case f(t0,t1) a. |- f(t0,t1) = f(t0,t1) (Assumption) b. t0 = t'0 |- f(t0,t1) = f(t'0,t1) (Substitution, a, phi(x) : f(t0,t1) = f(x,t1) c. t0 = t'0, t1 = t'1 |- f(t0,t1) = f(t'0,t'1) (Substitution, b, phi(x) : f(t0,t1) = f(t'0,x) ======================================================================