MATHEMATICAL LOGIC, AUGUST–DECEMBER 2012 Assignment 3: First order theory of N October 19, 2012 Due: October 26, 2012

Let \mathfrak{N}_S , $\mathfrak{N}_<$ and \mathfrak{N}_+ denote the structures $(\mathbb{N}, 0, S)$, $(\mathbb{N}, 0, S, <)$ and $(\mathbb{N}, 0, S, +, <)$, respectively.

- 1. A relation $R \subseteq \mathbb{N} \times \mathbb{N}$ is said to be *linear* if all pairs in R, seen as points in the *xy*-plane, can be covered by a finite number lines. Show that if a binary relation R over \mathbb{N} is definable in \mathfrak{N}_S , either R or its complement is linear.
- 2. Show that a subset $D \subseteq \mathbb{N}$ is definable in $\mathfrak{N}_{<}$ iff D or its complement is finite.
- 3. A subset D of natural numbers is said to be *eventually periodic* iff there exist positive numbers M and p such that for all n greater than $M, n \in D$ iff $n + p \in D$. Show that any eventually periodic set of natural numbers is definable in \mathfrak{N}_+ .
- 4. Consider the structure $(\mathbb{N}, +)$. Show that the following relations are definable.
 - (a) Ordering, $\{(m, n) \mid m < n\}$.
 - (b) Zero, $\{0\}$.
 - (c) Successor, $\{(m, n) \mid n = S(m)\}$.