Mathematical Logic, August-December 2012
 Assignment 2: First order Logic
 September 21, 2012
 Due: October 7, 2012

1. Let L be a finite first-order language and let \mathcal{M} be a finite L-structure. Show that there is an L-sentence $\varphi_{\mathcal{M}}$ whose models are precisely the L-structures isomorphic to \mathcal{M}.
2. (a) Let $L=(\emptyset,\{+, \times\},\{0\})$ where + and \times are binary function symbols and 0 is a constant symbol. Consider an L-structure $(\mathbb{R},+, \times, 0)$, where \mathbb{R} is the set of real numbers with the conventional interpretation of,$+ \times$ and 0 as addition, multiplication and zero.
Show that the relation $<$ ("less-than") is elementary definable in $(\mathbb{R},+, \times, 0)$ that is, there is a formula $\varphi(x, y)$ over L such that for all $a, b \in \mathbb{R}$,

$$
((\mathbb{R},+, \times, 0),[x \mapsto a, y \mapsto b]) \models \varphi(x, y) \text { iff } a<b .
$$

(b) Let $L=(\emptyset,\{+\},\{0\})$. Show that $<$ is not elementary definable in $(\mathbb{R},+, 0)$. [Hint: Work with a suitable automorphism of $(\mathbb{R},+, 0)$ - that is, an isomorphism of $(\mathbb{R},+, 0)$ onto itself.]
(c) (Bonus Question): Is $<$ elementary definable in $(\mathbb{Z},+, \times, 0)$, where \mathbb{Z} is the set of integers ?
3. A set of natural numbers M is called a spectrum if there is a language L and a sentence φ over L such that

$$
M=\{n \mid \varphi \text { has a model of size exactly } n\} .
$$

Show that:
(a) Every finite subset of $\{1,2,3, \ldots\}$ is a spectrum.
(b) For every $m \geq 1$, the set of numbers greater than 0 that are divisible by m is a spectrum.
(c) The set of squares greater than 0 is a spectrum.
4. Let L be the first-order language consisting of a single binary relation $<$. The following axioms capture the fact that $<$ is a dense linear order. The resulting theory is called DLO.

- $\forall x \forall y \forall z(x<y \wedge y<z \supset x<z)$
- $\forall x \neg(x<x)$
- $\forall x \forall y(x<y \vee x=y \vee y<x)$
- $\forall x \exists y \exists z(x<y \wedge z<x)$
- $\forall x \forall y(x<y \supset \exists z(x<z \wedge z<y))$

For example, the structures $(\mathbb{R},<)$ and $(\mathbb{Q},<)$ both satisfy DLO.
Show that any two countable models of DLO are isomorphic.

Hint: Prove that a countable model $(A,<)$ such that $(A,<) \models \mathbf{D L O}$ is isomorphic to $(\mathbb{Q},<)$ by building an isomorphism $A \rightarrow \mathbb{Q}$ inductively. At any stage in the construction we have n distinct elements $a_{1}, a_{2}, \ldots, a_{n}$ of A and n distinct elements $q_{1}, q_{2}, \ldots, q_{n}$ of \mathbb{Q}. Inductively assume $a_{i}<a_{j}$ if and only if $q_{i}<q_{j}$ for all i, j. Show that the DLO axioms allow the following: given a new element a_{n+1} from A, we can add a new element q_{n+1} from \mathbb{Q} while preserving the induction hypothesis, and, symmetrically, given a new element q_{n+1} from \mathbb{Q}, we can add a new element a_{n+1} from A while preserving the induction hypothesis. (These two steps are traditionally called 'back-and-forth'.) Explain also how the countability of A and \mathbb{Q} allows this inductive back-and-forth construction to build an isomorphism between $(A,<)$ and ($\mathbb{Q},<$).
5. Using Ehrenfeucht Fraïssé games show that acyclicity of finite graphs is not firstorder definable in the language $L=(\{E\}, \emptyset, \emptyset)$ where E is interpreted as the edge relation

