Mathematical Logic, August-December 2012
 Assignment 1: Propositional Logic
 September 10, 2012
 Due: September 18, 2012

1. Let $|\alpha|$ denote the size of the formula α. Define $|\cdot|: \Phi \rightarrow \mathbb{N}$ as follows:

- $|p|=0$ where p is an atomic proposition.
- $|\neg \alpha|=1+|\alpha|$
- $|\alpha \vee \beta|=1+|\alpha|+|\beta|$

Let $s f(\alpha)$ denote the set of subformulas of the formula α. Define $s f: \Phi \rightarrow 2^{\Phi}$ as follows:

- $s f(p)=\{p\}$ for $p \in \mathcal{P}$
- $s f(\neg \alpha)=\{(\neg \alpha)\} \cup s f(\alpha)$
- $s f((\alpha \vee \beta))=\{(\alpha \vee \beta)\} \cup s f(\alpha) \cup s f(\beta)$

Let \#(sf($\alpha))$ denote the number of subformulas of α.
Show that:

- $\#(s f(\alpha)) \leq 2|\alpha|+1$
- For every $i>0$, there is at least one formula α_{i} with $\left|\alpha_{i}\right|=i$ and $\#\left(s f\left(\alpha_{i}\right)\right)=$ $2\left|\alpha_{i}\right|+1$ and at least one β_{i} with $\left|\beta_{i}\right|=i$ and $\#\left(s f\left(\beta_{i}\right)\right)<2\left|\beta_{i}\right|+1$

2. An infinite k-sequence is a function $s: \mathbb{N} \rightarrow\{0, \ldots, k-1\}$ and a k-sequence of length l is a function $s:\{0, \ldots, l-1\} \rightarrow\{0, \ldots, k-1\}$.
We say that a k-sequence s (finite or infinite) is n-free if there does not exist a finite k-sequence x such that x^{n} (x repeated n times) is a substring of s.
(a) Show that there is no infinite 2 -sequence that is 2 -free.
(b) Using König's lemma, show that there is an infinite 3-free 2-sequence if and only if for every n, there is a 3 -free 2 -sequence of length n.
(c) Prove a similar result for 2 -free 3 -sequences.
3. Determine if each of the following sets of formulas is satisfiable or not. If it is satisfiable, provide the satisfying assignment. If not, provide a proof why it is not satisfiable.
(a) $\left\{\left(p_{0} \supset p_{1}\right),\left(p_{1} \supset p_{2}\right),\left(\left(p_{2} \vee p_{3}\right) \equiv \neg p_{1}\right)\right\}$
(b) $\left\{\neg\left(\neg p_{1} \vee p_{0}\right),\left(p_{0} \vee \neg p_{2}\right),\left(p_{1} \supset \neg p_{2}\right)\right\}$.
(c) $\left\{\left(p_{3} \supset p_{1}\right),\left(p_{0} \vee \neg p_{1}\right), \neg\left(p_{3} \wedge p_{0}\right), p_{3}\right\}$.
4. Alternate proof of Completeness[Kalmár, 1935]:

Consider the system with three axiom schemes and one inference rule:

- Axiom 1: $\alpha \supset(\beta \supset \alpha)$
- Axiom 2: $(\alpha \supset(\beta \supset \gamma)) \supset((\alpha \supset \beta) \supset(\alpha \supset \gamma))$
- Axiom 3: $(\neg \beta \supset \neg \alpha) \supset((\neg \beta \supset \alpha) \supset \beta)$
- Modus Ponens: $\frac{\alpha, \alpha \supset \beta}{\beta}$.

Let α be a formula from Φ such that \neg and \supset are the only connectives appearing in α.
For completeness, we need to show that if α is valid then α is a theorem.
Let $\operatorname{Voc}(\alpha)=\left\{p_{0}, p_{1}, \ldots, p_{k}\right\}$
Let v be a valuation over $\operatorname{Voc}(\alpha)$.
For $0 \leq i \leq n$ define

$$
p_{i}^{\prime}= \begin{cases}p_{i} & \text { if } v\left(p_{i}\right)=\top \\ \neg p_{i} & \text { if } v\left(p_{i}\right)=\perp\end{cases}
$$

Similarly define

$$
\alpha^{\prime}= \begin{cases}\alpha & \text { if } v(\alpha)=\top \\ \neg \alpha & \text { if } v(\alpha)=\perp\end{cases}
$$

Let n be the number of occurences of \neg and \supset in α.

Subtask a: When $n=0$ show that $p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{k}^{\prime} \vdash \alpha^{\prime}$.
Assume that for all $n<j$ it is the case that $p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{k}^{\prime} \vdash \alpha^{\prime}$.

Subtask b: When $n=j$ and α is of the form $\neg \beta$ show that $p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{k}^{\prime} \vdash \alpha^{\prime}$.
[Hint: Observe that β has fewer than j occurences of \neg and \supset. Argue seperately for the cases when $v(\beta)=\top$ and $v(\beta)=\perp$.]

Subtask c: For $n=j$ and α of the form $\beta \supset \gamma$, show that $p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{k}^{\prime} \vdash \alpha^{\prime}$.
[Hint: As before, use the fact that β and γ have fewer than j occurences of \neg and \supset. Argue separately for the different valuations of β and γ.]

Subtask d: Conclude that for any α and a valuation $v, p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{k}^{\prime} \vdash \alpha^{\prime}$.

Now, suppose α is a valid formula.

Subtask e: Show that for any valuation $v, p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{k}^{\prime} \vdash \alpha$.
Suppose $p_{k}=T$. Then $p_{k}^{\prime}=p_{k}$ and $p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{k-1}^{\prime}, p_{k} \vdash \alpha$. Similarly if $p_{k}=\perp$, then $p_{k}^{\prime}=\neg p_{k}$ and $p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{k-1}^{\prime}, \neg p_{k} \vdash \alpha$.

Subtask f: From this conclude that $p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{k-1}^{\prime} \vdash \alpha$.

Subtask g: Show that $\vdash \alpha$ and conclude that if α is valid then α is a theorem.

