MATHEMATICAL LOGIC, AUGUST–DECEMBER 2012 Assignment 1: Propositional Logic September 10, 2012 Due: September 18, 2012

- 1. Let $|\alpha|$ denote the size of the formula α . Define $|\cdot|: \Phi \to \mathbb{N}$ as follows:
 - |p| = 0 where p is an atomic proposition.
 - $|\neg \alpha| = 1 + |\alpha|$
 - $|\alpha \vee \beta| = 1 + |\alpha| + |\beta|$

Let $sf(\alpha)$ denote the set of subformulas of the formula α . Define $sf: \Phi \to 2^{\Phi}$ as follows:

- $sf(p) = \{p\}$ for $p \in \mathcal{P}$
- $sf(\neg \alpha) = \{(\neg \alpha)\} \cup sf(\alpha)$
- $sf((\alpha \lor \beta)) = \{(\alpha \lor \beta)\} \cup sf(\alpha) \cup sf(\beta)$

Let $\#(sf(\alpha))$ denote the number of subformulas of α . Show that:

- $\#(sf(\alpha)) \le 2|\alpha| + 1$
- For every i > 0, there is at least one formula α_i with $|\alpha_i| = i$ and $\#(sf(\alpha_i)) = 2|\alpha_i| + 1$ and at least one β_i with $|\beta_i| = i$ and $\#(sf(\beta_i)) < 2|\beta_i| + 1$
- 2. An infinite k-sequence is a function $s : \mathbb{N} \to \{0, \dots, k-1\}$ and a k-sequence of length l is a function $s : \{0, \dots, l-1\} \to \{0, \dots, k-1\}$.

We say that a k-sequence s (finite or infinite) is n-free if there does not exist a finite k-sequence x such that x^n (x repeated n times) is a substring of s.

- (a) Show that there is no infinite 2-sequence that is 2-free.
- (b) Using König's lemma, show that there is an infinite 3-free 2-sequence if and only if for every n, there is a 3-free 2-sequence of length n.
- (c) Prove a similar result for 2-free 3-sequences.
- 3. Determine if each of the following sets of formulas is satisfiable or not. If it is satisfiable, provide the satisfying assignment. If not, provide a proof why it is not satisfiable.
 - (a) $\{(p_0 \supset p_1), (p_1 \supset p_2), ((p_2 \lor p_3) \equiv \neg p_1)\}$
 - (b) $\{\neg(\neg p_1 \lor p_0), (p_0 \lor \neg p_2), (p_1 \supset \neg p_2)\}.$
 - (c) $\{(p_3 \supset p_1), (p_0 \lor \neg p_1), \neg (p_3 \land p_0), p_3\}.$

4. Alternate proof of Completeness [Kalmár, 1935]:

Consider the system with three axiom schemes and one inference rule:

- Axiom 1: $\alpha \supset (\beta \supset \alpha)$
- Axiom 2: $(\alpha \supset (\beta \supset \gamma)) \supset ((\alpha \supset \beta) \supset (\alpha \supset \gamma))$
- Axiom 3: $(\neg \beta \supset \neg \alpha) \supset ((\neg \beta \supset \alpha) \supset \beta)$
- Modus Ponens: $\frac{\alpha, \alpha \supset \beta}{\beta}$.

Let α be a formula from Φ such that \neg and \supset are the only connectives appearing in α .

For completeness, we need to show that if α is valid then α is a theorem.

Let $Voc(\alpha) = \{p_0, p_1, ..., p_k\}$

Let v be a valuation over $Voc(\alpha)$.

For $0 \le i \le n$ define

$$p'_{i} = \begin{cases} p_{i} & \text{if } v(p_{i}) = \top \\ \neg p_{i} & \text{if } v(p_{i}) = \bot \end{cases}$$

Similarly define

$$\alpha' = \begin{cases} \alpha & \text{if } v(\alpha) = \top \\ \neg \alpha & \text{if } v(\alpha) = \bot \end{cases}$$

Let n be the number of occurrences of \neg and \supset in α .

Subtask a: When n = 0 show that $p'_0, p'_1, \ldots, p'_k \vdash \alpha'$. Assume that for all n < j it is the case that $p'_0, p'_1, \ldots, p'_k \vdash \alpha'$.

Subtask b: When n = j and α is of the form $\neg\beta$ show that $p'_0, p'_1, \ldots, p'_k \vdash \alpha'$. [*Hint:* Observe that β has fewer than j occurences of \neg and \supset . Argue seperately for the cases when $v(\beta) = \top$ and $v(\beta) = \bot$.]

Subtask c: For n = j and α of the form $\beta \supset \gamma$, show that $p'_0, p'_1, \ldots, p'_k \vdash \alpha'$. [*Hint:* As before, use the fact that β and γ have fewer than j occurences of \neg and \supset . Argue separately for the different valuations of β and γ .]

Subtask d: Conclude that for any α and a valuation $v, p'_0, p'_1, \ldots, p'_k \vdash \alpha'$.

Now, suppose α is a valid formula.

Subtask e: Show that for any valuation $v, p'_0, p'_1, \ldots, p'_k \vdash \alpha$.

Suppose $p_k = \top$. Then $p'_k = p_k$ and $p'_0, p'_1, \ldots, p'_{k-1}, p_k \vdash \alpha$. Similarly if $p_k = \bot$, then $p'_k = \neg p_k$ and $p'_0, p'_1, \ldots, p'_{k-1}, \neg p_k \vdash \alpha$.

Subtask f: From this conclude that $p'_0, p'_1, \ldots, p'_{k-1} \vdash \alpha$.

Subtask g: Show that $\vdash \alpha$ and conclude that if α is valid then α is a theorem.