
Mathematical Logic, August–December 2012
Assignment 1: Propositional Logic

September 10, 2012
Due: September 18, 2012

1. Let |α| denote the size of the formula α. Define | · | : Φ → N as follows:

• |p| = 0 where p is an atomic proposition.

• |¬α| = 1 + |α|
• |α ∨ β| = 1 + |α|+ |β|

Let sf(α) denote the set of subformulas of the formula α. Define sf : Φ → 2Φ as
follows:

• sf(p) = {p} for p ∈ P
• sf(¬α) = {(¬α)} ∪ sf(α)

• sf((α ∨ β)) = {(α ∨ β)} ∪ sf(α) ∪ sf(β)

Let #(sf(α)) denote the number of subformulas of α.

Show that:

• #(sf(α)) ≤ 2|α|+ 1

• For every i > 0, there is at least one formula αi with |αi| = i and #(sf(αi)) =
2|αi|+ 1 and at least one βi with |βi| = i and #(sf(βi)) < 2|βi|+ 1

2. An infinite k-sequence is a function s : N → {0, . . . , k − 1} and a k-sequence of
length l is a function s : {0, . . . , l − 1} → {0, . . . , k − 1}.
We say that a k-sequence s (finite or infinite) is n-free if there does not exist a finite
k-sequence x such that xn (x repeated n times) is a substring of s.

(a) Show that there is no infinite 2-sequence that is 2-free.

(b) Using König’s lemma, show that there is an infinite 3-free 2-sequence if and
only if for every n, there is a 3-free 2-sequence of length n.

(c) Prove a similar result for 2-free 3-sequences.

3. Determine if each of the following sets of formulas is satisfiable or not. If it is
satisfiable, provide the satisfying assignment. If not, provide a proof why it is not
satisfiable.

(a) {(p0 ⊃ p1), (p1 ⊃ p2), ((p2 ∨ p3) ≡ ¬p1)}
(b) {¬(¬p1 ∨ p0), (p0 ∨ ¬p2), (p1 ⊃ ¬p2)}.
(c) {(p3 ⊃ p1), (p0 ∨ ¬p1),¬(p3 ∧ p0), p3}.
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4. Alternate proof of Completeness[Kalmár, 1935]:

Consider the system with three axiom schemes and one inference rule:

• Axiom 1: α ⊃ (β ⊃ α)

• Axiom 2: (α ⊃ (β ⊃ γ)) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))

• Axiom 3: (¬β ⊃ ¬α) ⊃ ((¬β ⊃ α) ⊃ β)

• Modus Ponens:
α, α ⊃ β

β
.

Let α be a formula from Φ such that ¬ and ⊃ are the only connectives appearing
in α.

For completeness, we need to show that if α is valid then α is a theorem.

Let Voc(α) = {p0, p1, . . . , pk}
Let v be a valuation over Voc(α).

For 0 ≤ i ≤ n define

p′i =

{
pi if v(pi) = >
¬pi if v(pi) = ⊥

Similarly define

α′ =

{
α if v(α) = >
¬α if v(α) = ⊥

Let n be the number of occurences of ¬ and ⊃ in α.

Subtask a: When n = 0 show that p′0, p
′
1, . . . , p

′
k ` α′.

Assume that for all n < j it is the case that p′0, p
′
1, . . . , p

′
k ` α′.

Subtask b: When n = j and α is of the form ¬β show that p′0, p
′
1, . . . , p

′
k ` α′.

[Hint: Observe that β has fewer than j occurences of ¬ and ⊃. Argue seperately
for the cases when v(β) = > and v(β) = ⊥.]

Subtask c: For n = j and α of the form β ⊃ γ, show that p′0, p
′
1, . . . , p

′
k ` α′.

[Hint: As before, use the fact that β and γ have fewer than j occurences of ¬ and
⊃. Argue separately for the different valuations of β and γ.]

Subtask d: Conclude that for any α and a valuation v, p′0, p
′
1, . . . , p

′
k ` α′.
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Now, suppose α is a valid formula.

Subtask e: Show that for any valuation v, p′0, p
′
1, . . . , p

′
k ` α.

Suppose pk = >. Then p′k = pk and p′0, p
′
1, . . . , p

′
k−1, pk ` α. Similarly if pk = ⊥,

then p′k = ¬pk and p′0, p
′
1, . . . , p

′
k−1, ¬pk ` α.

Subtask f: From this conclude that p′0, p
′
1, . . . , p

′
k−1 ` α.

Subtask g: Show that ` α and conclude that if α is valid then α is a theorem.
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