DMML Lecture 05, 22 Jan 2026 — Decision Trees

Setup

This project requires Python 3.7 or above:

import sys
assert sys.version info >= (3, 7)

It also requires Scikit-Learn = 1.0.1:

from packaging import version
import sklearn

assert version.parse(sklearn. version) >= version.parse("1.0.1")

As we did in previous chapters, let's define the default font sizes to make the figures prettier:

import matplotlib.pyplot as plt

plt.rc('font', size=14)

plt.rc('axes', labelsize=14, titlesize=14)
plt.rc('legend', fontsize=14)
plt.rc('xtick', labelsize=10)
plt.rc('ytick', labelsize=10)

And let's create the images/decision_trees folder (if it doesn't already exist), and define the save fig() function which is used through this notebook to save the figures in high-res for the book:

from pathlib import Path

IMAGES PATH = Path() / "images" / "decision trees"
IMAGES PATH.mkdir(parents=True, exist ok=True)

def save fig(fig id, tight layout=True, fig extension="png", resolution=300):
path = IMAGES PATH / f"{fig id}.{fig extension}"
if tight layout:
plt.tight layout()
plt.savefig(path, format=fig extension, dpi=resolution)

Training and Visualizing a Decision Tree

from sklearn.datasets import load iris
from sklearn.tree import DecisionTreeClassifier

iris = load iris(as_frame=True)
X iris iris.data[["petal length (cm)", "petal width (cm)"]].values
y iris = iris.target

tree clf = DecisionTreeClassifier(max depth=2, random state=42)
tree clf.fit(X iris, y iris)

. v DecisionTreeClassifier @D @

i » Parameters

Examine iris data

iris

https://scikit-learn.org/1.8/modules/generated/sklearn.tree.DecisionTreeClassifier.html

{'data"': sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2
145 6.7 3.0 5.2 2.3
146 6.3 2.5 5.0 1.9
147 6.5 3.0 5.2 2.0
148 6.2 3.4 5.4 2.3
149 5.9 3.0 5.1 1.8

[150 rows x 4 columns],

‘target': 0 0

1 0

2 0

3 0

4 0

145 2

146 2

147 2

148 2

149 2

Name: target, Length: 150, dtype: int64,

'frame': sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \

0 5.1 3.5 1.4 0.2

1 4.9 3.0 1.4 0.2

2 4.7 3.2 1.3 0.2

3 4.6 3.1 1.5 0.2

4 5.0 3.6 1.4 0.2

145 6.7 3.0 5.2 2.3

146 6.3 2.5 5.0 1.9

147 6.5 3.0 5.2 2.0

148 6.2 3.4 5.4 2.3

149 5.9 3.0 5.1 1.8

target

0 0

1 0

2 0

3 0

4 0

145 2

146 2

147 2

148 2

149 2

[150 rows x 5 columns],

‘target names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'),

'DESCR': '.. iris dataset:\n\nIris plants dataset\n-------------------- \n\n**Data Set Characteristics:**\n\n:Number of Instances: 150 (50 in each of three classes)\n:Number
of Attributes: 4 numeric, predictive attributes and the class\n:Attribute Information:\n - sepal length in cm\n - sepal width in cm\n - petal length in cm\n - pet
al width in cm\n - class:\n - Iris-Setosa\n - Iris-Versicolour\n - Iris-Virginica\n\n:Summary Statistics:\n\n
=== \n Min Max Mean SD Class Correlation\n \nsepal length: 4.3
7.9 5.84 0.83 0.7826\nsepal width: 2.0 4.4 3.05 0.43 -0.4194\npetal length: 1.0 6.9 3.76 1.76 0.9490 (high!)\npetal width: 0.1 2.5 1.20 0.

76 0.9565 (high!)\n = ===== ==== ===\n\n:Missing Attribute Values: None\n:Class Distribution: 33.3% for each of 3 classes.\n:Cre

ator: R.A. Fisher\n:Donor: Michael Marshall (MARSHALLS%PLU@io.arc.nasa.gov)\n:Date: July, 1988\n\nThe famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
\nfrom Fisher\'s paper. Note that it\'s the same as in R, but not as in the UCI\nMachine Learning Repository, which has two wrong data points.\n\nThis is perhaps the best kno
wn database to be found in the\npattern recognition literature. Fisher\'s paper is a classic in the field and\nis referenced frequently to this day. (See Duda & Hart, for e
xample.) The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant. One class is linearly separable from the other 2; the\nlat
ter are NOT linearly separable from each other.\n\n.. dropdown:: References\n\n - Fisher, R.A. "The use of multiple measurements in taxonomic problems"\n Annual Eugenics,
7, Part II, 179-188 (1936); also in "Contributions to\n Mathematical Statistics" (John Wiley, NY, 1950).\n - Duda, R.0., & Hart, P.E. (1973) Pattern Classification and Sc
ene Analysis.\n (Q327.D83) John Wiley & Sons. 1ISBN 0-471-22361-1. See page 218.\n - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n Structure

and Classification Rule for Recognition in Partially Exposed\n Environments". IEEE Transactions on Pattern Analysis and Machine\n Intelligence, Vol. PAMI-2, No. 1, 67-
71.\n - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions\n on Information Theory, May 1972, 431-433.\n - See also: 1988 MLC Proceedings, 54-64.
Cheeseman et al"s AUTOCLASS II\n conceptual clustering system finds 3 classes in the data.\n - Many, many more ...\n',

‘feature names': ['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)'],
'filename': 'iris.csv',
'data module': 'sklearn.datasets.data'}

This code example generates Figure 6-1. Iris Decision Tree:

from sklearn.tree import export graphviz

export graphviz(
tree clf,
out file=str(IMAGES PATH / "iris tree.dot"), # path differs in the book
feature names=["petal length (cm)", "petal width (cm)"],
class names=iris.target names,
rounded=True,
filled=True

from graphviz import Source

Source.from file(IMAGES PATH / "iris tree.dot") # path differs in the book

petal length (cm) <= 2.45
gini = 0.667
samples = 150
value =[50, 50, 50]
class = setosa

False

True

petal width (cm) <= 1.75
gini=0.5
samples = 100
value = [0, 50, 50]
class = versicolor

gini = 0.168
samples = 54
value = [0, 49, 5]
class = versicolor

Graphviz also provides the dot command line toolto convert .dot files to avariety of formats. The following command converts the dot file to a png image:

extra code
Idot -Tpng {IMAGES PATH / "iris tree.dot"} -o {IMAGES PATH / "iris tree.png"}

Expand the tree to depth 3

from sklearn.datasets import load iris
from sklearn.tree import DecisionTreeClassifier

iris = load iris(as_frame=True)
X iris iris.data[["petal length (cm)", "petal width (cm)"]].values
y iris iris.target

tree clf 3 = DecisionTreeClassifier(max depth=3, random state=42)
tree clf 3.fit(X iris, y iris)

év DecisionTreeClassifier ()()g

. » Parameters

export graphviz(
tree clf 3,
out file=str(IMAGES PATH / "iris tree.dot"), # path differs in the book
feature names=["petal length (cm)", "petal width (cm)"],
class names=iris.target names,
rounded=True,
filled=True
)

Source.from file(IMAGES PATH / "iris tree.dot") # path differs in the book

https://scikit-learn.org/1.8/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Out[1l]: petal length (cm) <= 2.45
gini = 0.667
samples = 150
value =[50, 50, 50]
class = setosa

True e

petal width (cm) <= 1.75
gini=0.5
samples = 100
value = [0, 50, 50]
class = versicolor

—

No bound on tree depth

In [12]: from sklearn.datasets import load iris
from sklearn.tree import DecisionTreeClassifier

iris = load iris(as frame=True)

X iris = iris.data[["petal length (cm)", "petal width (cm)"]].values
y iris = iris.target

tree clf unbounded= DecisionTreeClassifier(random state=42)

tree clf unbounded.fit(X iris, y iris)

OutllZl: oy pecisionTreeClassifier (i) (7).

. » Parameters

In [13]: export graphviz(
tree clf unbounded,
out file=str(IMAGES PATH / "iris tree.dot"), # path differs in the book
feature names=["petal length (cm)", "petal width (cm)"1,
class names=iris.target names,
rounded=True,
filled=True

https://scikit-learn.org/1.8/modules/generated/sklearn.tree.DecisionTreeClassifier.html

)

Source.from file(IMAGES PATH / "iris tree.dot") # path differs in the book

Out[13]: petal length (cm) <= 2.45
gini = 0.667
samples = 150
value =[50, 50, 50]
class = setosa

True @ISG

petal width (cm) <= 1.75
gini = 0.5
samples = 100
value = [0, 50, 50]
class = versicolor

petal length (cm) <=5.45

gini = 0.444
samples = 3
value = [0, 2, 1]

class = versicolor

Making Predictions

import numpy as np
import matplotlib.pyplot as plt

extra code — just formatting details

from matplotlib.colors import ListedColormap

custom cmap = ListedColormap(['#fafab@', '#9898ff', '#a0faa0'])
plt.figure(figsize=(8, 4))

lengths, widths = np.meshgrid(np.linspace(0, 7.2, 100), np.linspace(0, 3, 100))

X iris all = np.c [lengths.ravel(), widths.ravel()]

y pred = tree clf.predict(X iris all).reshape(lengths.shape)
plt.contourf(lengths, widths, y pred, alpha=0.3, cmap=custom cmap)
for idx, (name, style) in enumerate(zip(iris.target names, ("yo",

"bs", "g~"))):

plt.plot(X iris[:, 0][y iris == idx], X iris[:, 1][y iris == idx],

style, label=f"Iris {name}")

extra code — this section beautifies and saves Figure 6-2

tree clf deeper = DecisionTreeClassifier(max depth=3, random state=42)

tree clf deeper.fit(X iris, y iris)

tho, thl, th2a, th2b = tree clf deeper.tree .threshold[[0, 2, 3, 6]]

plt.xlabel("Petal length (cm)")

plt.ylabel("Petal width (cm)")

plt.plot([thO, tho], [0, 3], "k-", linewidth=2)
plt.plot([thO, 7.2], [thl, thl], "k--", linewidth=2)
plt.plot([th2a, th2a], [0, thl], "k:", linewidth=2)
plt.plot([th2b, th2b], [thl, 3], "k:", linewidth=2)

plt.text(tho - 0.05, 1.0, "Depth=0", horizontalalignment="right", fontsize=15)
plt.text(3.2, thl + 0.02, "Depth=1", verticalalignment="bottom", fontsize=13)

plt.text(th2a + 0.05, 0.5, "(Depth=2)", fontsize=11)
plt.axis([0, 7.2, 0, 31])

plt.legend()

save fig("decision tree decision boundaries plot")

plt.show()
3.0 :
Iris setosa :
251 m |Iris versicolor : At A4
— rYyYveyh ‘l A A - A
c A Iris virginica . AAAA A A
o 2.0 Depth=1 v A A
= | e - A __AAAA_A______
] EE -0 A
T 15 - m Y
= memEe 0
| = .II. .
B 10- Depth=0 " s a"m :
L :
o - :(Depth=2)
0.0 . . : : - : :
0 1 2 3 4 5 6 7

Petal length (cm)

You can access the tree structure via the tree attribute:

tree clf.tree

<sklearn.tree. tree.Tree at 0x7f84cba39ae0>

For more information, check out this class's documentation:

help(sklearn.tree. tree.Tree)

See the extra material section below for an example.

Estimating Class Probabilities

tree clf.predict proba([[5, 1.5]]).round(3)

array([[0. , 0.907, 0.093]])

tree clf.predict([[5, 1.5]11)

array([1])

tree clf.predict proba([[5, 2.5]]).round(3)

array([[0. , 0.022, 0.978]11)

tree clf.predict([[5, 2.5]])

array([2])

Regularization Hyperparameters

from sklearn.datasets import make moons
X _moons, y moons = make moons(n samples=150, noise=0.2, random state=42)

tree clfl = DecisionTreeClassifier(random state=42)

tree clf2 = DecisionTreeClassifier(min_samples leaf=5, random state=42)
tree clfl.fit(X moons, y moons)

tree clf2.fit(X moons, y moons)

é v DecisionTreeClassifier ()()%

. » Parameters

extra code — this cell generates and saves Figure 6-3

def plot decision boundary(clf, X, y, axes, cmap):
x1, x2 = np.meshgrid(np.linspace(axes[0], axes[1l], 100),
np.linspace(axes[2], axes[3], 100))
X new = np.c_[x1l.ravel(), x2.ravel()]
y pred = clf.predict(X new).reshape(x1l.shape)

https://scikit-learn.org/1.8/modules/generated/sklearn.tree.DecisionTreeClassifier.html

plt.contourf(xl, x2, y pred, alpha=0.3, cmap=cmap)
plt.contour(xl, x2, y pred, cmap="Greys", alpha=0.8)

colors = {"Wistia": ["#78785c", "#c47b27"], "Pastell": ["red", "blue"]1}

markers - (IIOII’ II/\II)
for idx in (0, 1):
plt.plot(X[:, 0][y == idx], X[:, 1][y == idx],

color=colors[cmap] [idx], marker=markers[idx], linestyle="none")

plt.axis(axes)
plt.xlabel(r"$x 1$")
plt.ylabel(r"$x 2$", rotation=0)

fig, axes = plt.subplots(ncols=2, figsize=(10, 4), sharey=True)
plt.sca(axes[0])
plot decision boundary(tree clfl, X moons, y moons,

axes=[-1.5, 2.4, -1, 1.5], cmap="Wistia")
plt.title("No restrictions")
plt.sca(axes[1])
plot decision boundary(tree clf2, X moons, y moons,

axes=[-1.5, 2.4, -1, 1.5], cmap="Wistia")
plt.title(f"min samples leaf = {tree clf2.min samples leaf}")
plt.ylabel("")
save fig("min samples leaf plot")

plt.show()
No restrictions min_samples leaf = 5
@
L
° @
] ° ® % e .-
¢ ﬁ ' ..‘ .. ‘$
® o ‘. LN &
| @ ’?' —— e o A
A e [F X
g A L
L1 o® E n‘ L_I‘_ W
4 Ay A o A
s 4 o Yy
= LI S NP
] ;. 'Y f: A A,
. A
15 -10 -05 00 05 10 15 2.0
X1

X moons test, y moons test = make moons(n samples=1000, noise=0.2,
random state=43)
tree clfl.score(X moons test, y moons test)

0.898

tree clf2.score(X moons test, y moons test)

0.92

Sensitivity to axis orientation

Rotating the dataset also leads to completely different decision boundaries:

extra code — this cell generates and saves Figure 6—7

np.random.seed(6)
X _square np.random.rand (100, 2) - 0.5
y square = (X square[:, 0] > 0).astype(np.int64)

angle = np.pi / 4 # 45 degrees

rotation matrix = np.array([[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]])

X rotated square = X square.dot(rotation matrix)

tree clf square = DecisionTreeClassifier(random state=42)

tree clf square.fit(X square, y square)

tree clf rotated square = DecisionTreeClassifier(random state=42)
tree clf rotated square.fit(X rotated square, y square)

fig, axes = plt.subplots(ncols=2, figsize=(10, 4), sharey=True)
plt.sca(axes[0])
plot decision boundary(tree clf square, X square, y square,
axes=[-0.7, 0.7, -0.7, 0.7], cmap="Pastell")
plt.sca(axes[1])
plot decision boundary(tree clf rotated square, X rotated square, y square,
axes=[-0.7, 0.7, -0.7, 0.7], cmap="Pastell")
plt.ylabel("")

save fig("sensitivity to rotation plot")

plt.show()
0.6 1 1
o © ° AA A A
0.4 ¢ A a .
. s .
- ~ @ ‘- A A
_ @ A A |
0.2 N o . Jda ‘ A o®
@
X3 .'$ o* A A A P
0.0 ' A A 7
[] ® A Y A ® & B
° ° Jl"" AAA L
—0.2 1 o o A Aa T °
[] o® A,
04 - @ oo | a i
0.4] ° ®e N A A A
@
D.ﬁ .
I I I I) I I I I I) I
0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 —0.6 -0.4 -0.2 0.0 0.2 0.4
X1 X1

from sklearn.decomposition import PCA
from sklearn.pipeline import make pipeline
from sklearn.preprocessing import StandardScaler

pca pipeline = make pipeline(StandardScaler(), PCA())

X iris rotated = pca pipeline.fit transform(X iris)
tree clf pca = DecisionTreeClassifier(max depth=2, random state=42)
tree clf pca.fit(X iris rotated, y iris)

é v DecisionTreeClassifier ()()g

. » Parameters

extra code — this cell generates and saves Figure 6-8
plt.figure(figsize=(8, 4))

axes

= [-2.2, 2.4, -0.6, 0.7]
z0s, zls =

np.meshgrid(np.linspace(axes[0], axes[1], 100),
np.linspace(axes[2], axes[3], 100))

X iris pca all = np.c [z0Os.ravel(), zls.ravel()]

y pred = tree clf pca.predict(X iris pca all).reshape(z0s.shape)

plt.contourf(z0s, zls, y pred, alpha=0.3, cmap=custom cmap)

for idx, (name, style) in enumerate(zip(iris.target names, ("yo", "bs", "g™"))):
plt.plot(X iris rotated[:, O][y iris == idx],
X iris rotated[:, 1][y iris == idx],

style, label=f"Iris {name}")

plt.xlabel("$z 1$")

plt.ylabel("$z 2$", rotation=0)

thl, th2 = tree clf pca.tree .threshold[[0, 2]]

plt.plot([thl, thl], axes[2:], "k-", linewidth=2)

plt.plot([th2, th2], axes[2:], "k--", linewidth=2)

plt.text(thl - 0.01, axes[2] + 0.05, "Depth=0",
horizontalalignment="right", fontsize=15)

plt.text(th2 - 0.01, axes[2] + 0.05, "Depth=1",
horizontalalignment="right", fontsize=13)

plt.axis(axes)

plt.legend(loc=(0.32, 0.67))

save fig("pca preprocessing plot")

plt.show()

https://scikit-learn.org/1.8/modules/generated/sklearn.tree.DecisionTreeClassifier.html

]
0.6 1 Iris setosa : A
m Iris versicolor : A A A
0.4 .
A Iris virginica | A A .
=] .. a a & A 4
0.2 - mg 0 .: * u Fe
Z3 m B - m|
0.0 - - f d + = A
. ‘ ‘ ‘
m| A
[] ‘i A A 5
| Y
| A
0.2 1 - + R
A A
| A &
I A
—0.4 1 I Pl
| ‘l
Depth=0 Depth=1I
—0.6 . : : L A ;
-2 -1 0 1 2
Z]

Decision Trees Have High Variance

We've seen that small changes in the dataset (such as a rotation) may produce a very different Decision Tree. Now let's show that training the same model on the same data may produce a very different model every
time, since the CART training algorithm used by Scikit-Learn is stochastic. To show this, we will set random_state to a different value than earlier:

tree clf tweaked = DecisionTreeClassifier(max depth=2, random state=40)
tree clf tweaked.fit(X iris, y iris)

é v DecisionTreeClassifier ()()%

. » Parameters

extra code — this cell generates and saves Figure 6-9

plt.figure(figsize=(8, 4))
y pred = tree clf tweaked.predict(X iris all).reshape(lengths.shape)
plt.contourf(lengths, widths, y pred, alpha=0.3, cmap=custom cmap)

for idx, (name, style) in enumerate(zip(iris.target names, ("yo", "bs", "g""))):
plt.plot(X iris[:, O][y iris == idx], X iris[:, 1][y iris == idx],
style, label=f"Iris {name}")

the, thl = tree clf tweaked.tree .threshold[[0, 2]]

plt.plot ([0, 7.2], [thO, thO], "k-", linewidth=2)

plt.plot([0, 7.2], [thl, thl], "k--", linewidth=2)

plt.text(1.8, thO + 0.05, "Depth=0", verticalalignment="bottom", fontsize=15)
plt.text(2.3, thl + 0.05, "Depth=1", verticalalignment="bottom", fontsize=13)
plt.xlabel("Petal length (cm)")

plt.ylabel("Petal width (cm)")

plt.axis([0, 7.2, 0, 3])

plt.legend()

save fig("decision tree high variance plot")

https://scikit-learn.org/1.8/modules/generated/sklearn.tree.DecisionTreeClassifier.html

plt.show()

3.0
Iris setosa
251 m Iris versicolor A at M
. . _ Abhbhdh A A A A

= a lIris virginica aadats At
g 2.0 AAAA A A
A Depth=1 AA A A
P ot UGS T Wlpully ¥ W W il N
T 154] 1. = mal 4
IEE | Il'r"lll“l
— N - "
& 101 Depth=0 ®® = ==
(o

0.5 1

D-G T T T T T T

0 1 2 3 4 5 6
Petal length (cm)

Extra Material — Accessing the tree structure
Atrained DecisionTreeClassifier hasa tree attribute that stores the tree's structure:

tree = tree clf.tree
tree

<sklearn.tree. tree.Tree at 0x7f84cba39%ae0>

You can get the total number of nodes in the tree:

tree.node count
5
And other self-explanatory attributes are available:

tree.max_depth

2

tree.max _n_classes

3

tree.n features

2

tree.n _outputs

1

tree.n leaves

np.int64(3)

All the information about the nodes is stored in NumPy arrays. For example, the impurity of each node:
tree.impurity

array([0.66666667, 0. , 0.5 , 0.16803841, 0.04253308])

The root node is at index 0. The left and right children nodes of node jare tree.children left[i] and tree.children right[i] . For example, the children of the root node are:
tree.children left[0], tree.children right[0]

(np.int64(1l), np.int64(2))

When the left and right nodes are equal, it means this is a leaf node (and the children node ids are arbitrary):
tree.children left[3], tree.children right[3]

(np.int64(-1), np.int64(-1))

So you can get the leaf node ids like this:

is leaf = (tree.children left == tree.children right)
np.arange(tree.node count)[is leaf]

array([1, 3, 4])

Non-leaf nodes are called split nodes. The feature they split is available via the feature array. Values for leaf nodes should be ignored:
tree.feature

array([0, -2, 1, -2, -2], dtype=int64)

And the corresponding thresholds are:

tree.threshold

array([2.44999999, -2. , L1.75 , 2. , -2. 1)

And the number of instances per class that reached each node is available too:

tree.value

array([[[0.33333333, 0.33333333, 0.33333333]],

[[1. , 0. , 0. 11,
[[0. , 0.5 , 0.5 11,
[[0O. , 0.90740741, 0.09259259]1,
[[0. , 0.02173913, 0.97826087]111])

tree.n node samples

array([150, 50, 100, 54, 46], dtype=int64)

np.all(tree.value.sum(axis=(1, 2)) == tree.n node samples)

np.False

Here's how you can compute the depth of each node:

def compute depth(tree clf):
tree = tree clf.tree
depth = np.zeros(tree.node count)
stack = [(0, 0)]
while stack:
node, node depth = stack.pop()
depth[node] = node depth
if tree.children left[node] != tree.children right[node]:
stack.append((tree.children left[node], node depth + 1))
stack.append((tree.children right[node], node depth + 1))
return depth

depth = compute depth(tree clf)
depth

array([0., 1., 1., 2., 2.1)

Here's how to get the thresholds of all split nodes at depth 1:
tree clf.tree .feature[(depth == 1) & (~is leaf)]
array([1], dtype=int64)

tree clf.tree .threshold[(depth == 1) & (~is leaf)]

array([1.75])

