
DMML Lecture 05, 22 Jan 2026 – Decision Trees

Setup

This project requires Python 3.7 or above:

import sys

assert sys.version_info >= (3, 7)

It also requires Scikit-Learn ≥ 1.0.1:

from packaging import version

import sklearn

assert version.parse(sklearn.__version__) >= version.parse("1.0.1")

As we did in previous chapters, let's define the default font sizes to make the figures prettier:

import matplotlib.pyplot as plt

plt.rc('font', size=14)

plt.rc('axes', labelsize=14, titlesize=14)

plt.rc('legend', fontsize=14)

plt.rc('xtick', labelsize=10)

plt.rc('ytick', labelsize=10)

And let's create the images/decision_trees folder (if it doesn't already exist), and define the save_fig() function which is used through this notebook to save the figures in high-res for the book:

from pathlib import Path

IMAGES_PATH = Path() / "images" / "decision_trees"

IMAGES_PATH.mkdir(parents=True, exist_ok=True)

def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):

 path = IMAGES_PATH / f"{fig_id}.{fig_extension}"

 if tight_layout:

 plt.tight_layout()

 plt.savefig(path, format=fig_extension, dpi=resolution)

Training and Visualizing a Decision Tree

from sklearn.datasets import load_iris

from sklearn.tree import DecisionTreeClassifier

iris = load_iris(as_frame=True)

X_iris = iris.data[["petal length (cm)", "petal width (cm)"]].values

y_iris = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2,random_state=42)

tree_clf.fit(X_iris, y_iris)

In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

Examine iris data

iris

Out[5]: ▾ DecisionTreeClassifier ?i

Parameters

In [6]:

https://scikit-learn.org/1.8/modules/generated/sklearn.tree.DecisionTreeClassifier.html

{'data': sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

0 5.1 3.5 1.4 0.2

1 4.9 3.0 1.4 0.2

2 4.7 3.2 1.3 0.2

3 4.6 3.1 1.5 0.2

4 5.0 3.6 1.4 0.2

..

145 6.7 3.0 5.2 2.3

146 6.3 2.5 5.0 1.9

147 6.5 3.0 5.2 2.0

148 6.2 3.4 5.4 2.3

149 5.9 3.0 5.1 1.8

[150 rows x 4 columns],

'target': 0 0

1 0

2 0

3 0

4 0

 ..

145 2

146 2

147 2

148 2

149 2

Name: target, Length: 150, dtype: int64,

'frame': sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \

0 5.1 3.5 1.4 0.2

1 4.9 3.0 1.4 0.2

2 4.7 3.2 1.3 0.2

3 4.6 3.1 1.5 0.2

4 5.0 3.6 1.4 0.2

..

145 6.7 3.0 5.2 2.3

146 6.3 2.5 5.0 1.9

147 6.5 3.0 5.2 2.0

148 6.2 3.4 5.4 2.3

149 5.9 3.0 5.1 1.8

 target

0 0

1 0

2 0

3 0

4 0

.. ...

145 2

146 2

147 2

148 2

149 2

[150 rows x 5 columns],

'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'),

'DESCR': '.. _iris_dataset:\n\nIris plants dataset\n--------------------\n\n**Data Set Characteristics:**\n\n:Number of Instances: 150 (50 in each of three classes)\n:Number

of Attributes: 4 numeric, predictive attributes and the class\n:Attribute Information:\n - sepal length in cm\n - sepal width in cm\n - petal length in cm\n - pet

al width in cm\n - class:\n - Iris-Setosa\n - Iris-Versicolour\n - Iris-Virginica\n\n:Summary Statistics:\n\n============== ==== ==== ====

=== ===== ====================\n Min Max Mean SD Class Correlation\n============== ==== ==== ======= ===== ====================\nsepal length: 4.3

7.9 5.84 0.83 0.7826\nsepal width: 2.0 4.4 3.05 0.43 -0.4194\npetal length: 1.0 6.9 3.76 1.76 0.9490 (high!)\npetal width: 0.1 2.5 1.20 0.

76 0.9565 (high!)\n============== ==== ==== ======= ===== ====================\n\n:Missing Attribute Values: None\n:Class Distribution: 33.3% for each of 3 classes.\n:Cre

Out[6]:

ator: R.A. Fisher\n:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n:Date: July, 1988\n\nThe famous Iris database, first used by Sir R.A. Fisher. The dataset is taken

\nfrom Fisher\'s paper. Note that it\'s the same as in R, but not as in the UCI\nMachine Learning Repository, which has two wrong data points.\n\nThis is perhaps the best kno

wn database to be found in the\npattern recognition literature. Fisher\'s paper is a classic in the field and\nis referenced frequently to this day. (See Duda & Hart, for e

xample.) The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant. One class is linearly separable from the other 2; the\nlat

ter are NOT linearly separable from each other.\n\n.. dropdown:: References\n\n - Fisher, R.A. "The use of multiple measurements in taxonomic problems"\n Annual Eugenics,

7, Part II, 179-188 (1936); also in "Contributions to\n Mathematical Statistics" (John Wiley, NY, 1950).\n - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Sc

ene Analysis.\n (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.\n - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n Structure

and Classification Rule for Recognition in Partially Exposed\n Environments". IEEE Transactions on Pattern Analysis and Machine\n Intelligence, Vol. PAMI-2, No. 1, 67-

71.\n - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions\n on Information Theory, May 1972, 431-433.\n - See also: 1988 MLC Proceedings, 54-64.

Cheeseman et al"s AUTOCLASS II\n conceptual clustering system finds 3 classes in the data.\n - Many, many more ...\n',

'feature_names': ['sepal length (cm)',

 'sepal width (cm)',

 'petal length (cm)',

 'petal width (cm)'],

'filename': 'iris.csv',

'data_module': 'sklearn.datasets.data'}

This code example generates Figure 6–1. Iris Decision Tree:

from sklearn.tree import export_graphviz

export_graphviz(

 tree_clf,

 out_file=str(IMAGES_PATH / "iris_tree.dot"), # path differs in the book

 feature_names=["petal length (cm)", "petal width (cm)"],

 class_names=iris.target_names,

 rounded=True,

 filled=True

)

from graphviz import Source

Source.from_file(IMAGES_PATH / "iris_tree.dot") # path differs in the book

petal length (cm) <= 2.45
gini = 0.667

samples = 150
value = [50, 50, 50]

class = setosa

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) <= 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

False

gini = 0.168
samples = 54

value = [0, 49, 5]
class = versicolor

gini = 0.043
samples = 46

value = [0, 1, 45]
class = virginica

In [7]:

In [8]:

Out[8]:

Graphviz also provides the dot command line tool to convert .dot files to a variety of formats. The following command converts the dot file to a png image:

extra code

!dot -Tpng {IMAGES_PATH / "iris_tree.dot"} -o {IMAGES_PATH / "iris_tree.png"}

Expand the tree to depth 3

from sklearn.datasets import load_iris

from sklearn.tree import DecisionTreeClassifier

iris = load_iris(as_frame=True)

X_iris = iris.data[["petal length (cm)", "petal width (cm)"]].values

y_iris = iris.target

tree_clf_3 = DecisionTreeClassifier(max_depth=3,random_state=42)

tree_clf_3.fit(X_iris, y_iris)

export_graphviz(

 tree_clf_3,

 out_file=str(IMAGES_PATH / "iris_tree.dot"), # path differs in the book

 feature_names=["petal length (cm)", "petal width (cm)"],

 class_names=iris.target_names,

 rounded=True,

 filled=True

)

Source.from_file(IMAGES_PATH / "iris_tree.dot") # path differs in the book

In [9]:

In [10]:

Out[10]: ▾ DecisionTreeClassifier ?i

Parameters

In [11]:

https://scikit-learn.org/1.8/modules/generated/sklearn.tree.DecisionTreeClassifier.html

petal length (cm) <= 2.45
gini = 0.667

samples = 150
value = [50, 50, 50]

class = setosa

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) <= 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

False

petal length (cm) <= 4.95
gini = 0.168

samples = 54
value = [0, 49, 5]
class = versicolor

petal length (cm) <= 4.85
gini = 0.043

samples = 46
value = [0, 1, 45]
class = virginica

gini = 0.041
samples = 48

value = [0, 47, 1]
class = versicolor

gini = 0.444
samples = 6

value = [0, 2, 4]
class = virginica

gini = 0.444
samples = 3

value = [0, 1, 2]
class = virginica

gini = 0.0
samples = 43

value = [0, 0, 43]
class = virginica

No bound on tree depth

from sklearn.datasets import load_iris

from sklearn.tree import DecisionTreeClassifier

iris = load_iris(as_frame=True)

X_iris = iris.data[["petal length (cm)", "petal width (cm)"]].values

y_iris = iris.target

tree_clf_unbounded= DecisionTreeClassifier(random_state=42)

tree_clf_unbounded.fit(X_iris, y_iris)

export_graphviz(

 tree_clf_unbounded,

 out_file=str(IMAGES_PATH / "iris_tree.dot"), # path differs in the book

 feature_names=["petal length (cm)", "petal width (cm)"],

 class_names=iris.target_names,

 rounded=True,

 filled=True

Out[11]:

In [12]:

Out[12]: ▾ DecisionTreeClassifier ?i

Parameters

In [13]:

https://scikit-learn.org/1.8/modules/generated/sklearn.tree.DecisionTreeClassifier.html

)

Source.from_file(IMAGES_PATH / "iris_tree.dot") # path differs in the book

petal length (cm) <= 2.45
gini = 0.667

samples = 150
value = [50, 50, 50]

class = setosa

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) <= 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

False

petal length (cm) <= 4.95
gini = 0.168

samples = 54
value = [0, 49, 5]
class = versicolor

petal length (cm) <= 4.85
gini = 0.043

samples = 46
value = [0, 1, 45]
class = virginica

petal width (cm) <= 1.65
gini = 0.041

samples = 48
value = [0, 47, 1]
class = versicolor

petal width (cm) <= 1.55
gini = 0.444
samples = 6

value = [0, 2, 4]
class = virginica

gini = 0.0
samples = 47

value = [0, 47, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

gini = 0.0
samples = 3

value = [0, 0, 3]
class = virginica

petal length (cm) <= 5.45
gini = 0.444
samples = 3

value = [0, 2, 1]
class = versicolor

gini = 0.0
samples = 2

value = [0, 2, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

gini = 0.444
samples = 3

value = [0, 1, 2]
class = virginica

gini = 0.0
samples = 43

value = [0, 0, 43]
class = virginica

Making Predictions

Out[13]:

import numpy as np

import matplotlib.pyplot as plt

extra code – just formatting details

from matplotlib.colors import ListedColormap

custom_cmap = ListedColormap(['#fafab0', '#9898ff', '#a0faa0'])

plt.figure(figsize=(8, 4))

lengths, widths = np.meshgrid(np.linspace(0, 7.2, 100), np.linspace(0, 3, 100))

X_iris_all = np.c_[lengths.ravel(), widths.ravel()]

y_pred = tree_clf.predict(X_iris_all).reshape(lengths.shape)

plt.contourf(lengths, widths, y_pred, alpha=0.3, cmap=custom_cmap)

for idx, (name, style) in enumerate(zip(iris.target_names, ("yo", "bs", "g^"))):

 plt.plot(X_iris[:, 0][y_iris == idx], X_iris[:, 1][y_iris == idx],

 style, label=f"Iris {name}")

extra code – this section beautifies and saves Figure 6–2

tree_clf_deeper = DecisionTreeClassifier(max_depth=3, random_state=42)

tree_clf_deeper.fit(X_iris, y_iris)

th0, th1, th2a, th2b = tree_clf_deeper.tree_.threshold[[0, 2, 3, 6]]

plt.xlabel("Petal length (cm)")

plt.ylabel("Petal width (cm)")

plt.plot([th0, th0], [0, 3], "k-", linewidth=2)

plt.plot([th0, 7.2], [th1, th1], "k--", linewidth=2)

plt.plot([th2a, th2a], [0, th1], "k:", linewidth=2)

plt.plot([th2b, th2b], [th1, 3], "k:", linewidth=2)

plt.text(th0 - 0.05, 1.0, "Depth=0", horizontalalignment="right", fontsize=15)

plt.text(3.2, th1 + 0.02, "Depth=1", verticalalignment="bottom", fontsize=13)

plt.text(th2a + 0.05, 0.5, "(Depth=2)", fontsize=11)

plt.axis([0, 7.2, 0, 3])

plt.legend()

save_fig("decision_tree_decision_boundaries_plot")

plt.show()

You can access the tree structure via the tree_ attribute:

In [14]:

tree_clf.tree_

<sklearn.tree._tree.Tree at 0x7f84cba39ae0>

For more information, check out this class's documentation:

help(sklearn.tree._tree.Tree)

See the extra material section below for an example.

Estimating Class Probabilities

tree_clf.predict_proba([[5, 1.5]]).round(3)

array([[0. , 0.907, 0.093]])

tree_clf.predict([[5, 1.5]])

array([1])

tree_clf.predict_proba([[5, 2.5]]).round(3)

array([[0. , 0.022, 0.978]])

tree_clf.predict([[5, 2.5]])

array([2])

Regularization Hyperparameters

from sklearn.datasets import make_moons

X_moons, y_moons = make_moons(n_samples=150, noise=0.2, random_state=42)

tree_clf1 = DecisionTreeClassifier(random_state=42)

tree_clf2 = DecisionTreeClassifier(min_samples_leaf=5, random_state=42)

tree_clf1.fit(X_moons, y_moons)

tree_clf2.fit(X_moons, y_moons)

extra code – this cell generates and saves Figure 6–3

def plot_decision_boundary(clf, X, y, axes, cmap):

 x1, x2 = np.meshgrid(np.linspace(axes[0], axes[1], 100),

 np.linspace(axes[2], axes[3], 100))

 X_new = np.c_[x1.ravel(), x2.ravel()]

 y_pred = clf.predict(X_new).reshape(x1.shape)

In [15]:

Out[15]:

In [16]:

In [17]:

Out[17]:

In [18]:

Out[18]:

In [19]:

Out[19]:

In [20]:

Out[20]:

In [21]:

Out[21]: ▾ DecisionTreeClassifier ?i

Parameters

In [22]:

https://scikit-learn.org/1.8/modules/generated/sklearn.tree.DecisionTreeClassifier.html

 plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=cmap)

 plt.contour(x1, x2, y_pred, cmap="Greys", alpha=0.8)

 colors = {"Wistia": ["#78785c", "#c47b27"], "Pastel1": ["red", "blue"]}

 markers = ("o", "^")

 for idx in (0, 1):

 plt.plot(X[:, 0][y == idx], X[:, 1][y == idx],

 color=colors[cmap][idx], marker=markers[idx], linestyle="none")

 plt.axis(axes)

 plt.xlabel(r"x_1")

 plt.ylabel(r"x_2", rotation=0)

fig, axes = plt.subplots(ncols=2, figsize=(10, 4), sharey=True)

plt.sca(axes[0])

plot_decision_boundary(tree_clf1, X_moons, y_moons,

 axes=[-1.5, 2.4, -1, 1.5], cmap="Wistia")

plt.title("No restrictions")

plt.sca(axes[1])

plot_decision_boundary(tree_clf2, X_moons, y_moons,

 axes=[-1.5, 2.4, -1, 1.5], cmap="Wistia")

plt.title(f"min_samples_leaf = {tree_clf2.min_samples_leaf}")

plt.ylabel("")

save_fig("min_samples_leaf_plot")

plt.show()

X_moons_test, y_moons_test = make_moons(n_samples=1000, noise=0.2,

 random_state=43)

tree_clf1.score(X_moons_test, y_moons_test)

0.898

tree_clf2.score(X_moons_test, y_moons_test)

0.92

Sensitivity to axis orientation

In [23]:

Out[23]:

In [24]:

Out[24]:

Rotating the dataset also leads to completely different decision boundaries:

extra code – this cell generates and saves Figure 6–7

np.random.seed(6)

X_square = np.random.rand(100, 2) - 0.5

y_square = (X_square[:, 0] > 0).astype(np.int64)

angle = np.pi / 4 # 45 degrees

rotation_matrix = np.array([[np.cos(angle), -np.sin(angle)],

 [np.sin(angle), np.cos(angle)]])

X_rotated_square = X_square.dot(rotation_matrix)

tree_clf_square = DecisionTreeClassifier(random_state=42)

tree_clf_square.fit(X_square, y_square)

tree_clf_rotated_square = DecisionTreeClassifier(random_state=42)

tree_clf_rotated_square.fit(X_rotated_square, y_square)

fig, axes = plt.subplots(ncols=2, figsize=(10, 4), sharey=True)

plt.sca(axes[0])

plot_decision_boundary(tree_clf_square, X_square, y_square,

 axes=[-0.7, 0.7, -0.7, 0.7], cmap="Pastel1")

plt.sca(axes[1])

plot_decision_boundary(tree_clf_rotated_square, X_rotated_square, y_square,

 axes=[-0.7, 0.7, -0.7, 0.7], cmap="Pastel1")

plt.ylabel("")

save_fig("sensitivity_to_rotation_plot")

plt.show()

from sklearn.decomposition import PCA

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import StandardScaler

pca_pipeline = make_pipeline(StandardScaler(), PCA())

In [25]:

In [26]:

X_iris_rotated = pca_pipeline.fit_transform(X_iris)

tree_clf_pca = DecisionTreeClassifier(max_depth=2, random_state=42)

tree_clf_pca.fit(X_iris_rotated, y_iris)

extra code – this cell generates and saves Figure 6–8

plt.figure(figsize=(8, 4))

axes = [-2.2, 2.4, -0.6, 0.7]

z0s, z1s = np.meshgrid(np.linspace(axes[0], axes[1], 100),

 np.linspace(axes[2], axes[3], 100))

X_iris_pca_all = np.c_[z0s.ravel(), z1s.ravel()]

y_pred = tree_clf_pca.predict(X_iris_pca_all).reshape(z0s.shape)

plt.contourf(z0s, z1s, y_pred, alpha=0.3, cmap=custom_cmap)

for idx, (name, style) in enumerate(zip(iris.target_names, ("yo", "bs", "g^"))):

 plt.plot(X_iris_rotated[:, 0][y_iris == idx],

 X_iris_rotated[:, 1][y_iris == idx],

 style, label=f"Iris {name}")

plt.xlabel("z_1")

plt.ylabel("z_2", rotation=0)

th1, th2 = tree_clf_pca.tree_.threshold[[0, 2]]

plt.plot([th1, th1], axes[2:], "k-", linewidth=2)

plt.plot([th2, th2], axes[2:], "k--", linewidth=2)

plt.text(th1 - 0.01, axes[2] + 0.05, "Depth=0",

 horizontalalignment="right", fontsize=15)

plt.text(th2 - 0.01, axes[2] + 0.05, "Depth=1",

 horizontalalignment="right", fontsize=13)

plt.axis(axes)

plt.legend(loc=(0.32, 0.67))

save_fig("pca_preprocessing_plot")

plt.show()

Out[26]: ▾ DecisionTreeClassifier ?i

Parameters

In [27]:

https://scikit-learn.org/1.8/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Decision Trees Have High Variance

We've seen that small changes in the dataset (such as a rotation) may produce a very different Decision Tree. Now let's show that training the same model on the same data may produce a very different model every

time, since the CART training algorithm used by Scikit-Learn is stochastic. To show this, we will set random_state to a different value than earlier:

tree_clf_tweaked = DecisionTreeClassifier(max_depth=2, random_state=40)

tree_clf_tweaked.fit(X_iris, y_iris)

extra code – this cell generates and saves Figure 6–9

plt.figure(figsize=(8, 4))

y_pred = tree_clf_tweaked.predict(X_iris_all).reshape(lengths.shape)

plt.contourf(lengths, widths, y_pred, alpha=0.3, cmap=custom_cmap)

for idx, (name, style) in enumerate(zip(iris.target_names, ("yo", "bs", "g^"))):

 plt.plot(X_iris[:, 0][y_iris == idx], X_iris[:, 1][y_iris == idx],

 style, label=f"Iris {name}")

th0, th1 = tree_clf_tweaked.tree_.threshold[[0, 2]]

plt.plot([0, 7.2], [th0, th0], "k-", linewidth=2)

plt.plot([0, 7.2], [th1, th1], "k--", linewidth=2)

plt.text(1.8, th0 + 0.05, "Depth=0", verticalalignment="bottom", fontsize=15)

plt.text(2.3, th1 + 0.05, "Depth=1", verticalalignment="bottom", fontsize=13)

plt.xlabel("Petal length (cm)")

plt.ylabel("Petal width (cm)")

plt.axis([0, 7.2, 0, 3])

plt.legend()

save_fig("decision_tree_high_variance_plot")

In [28]:

Out[28]: ▾ DecisionTreeClassifier ?i

Parameters

In [29]:

https://scikit-learn.org/1.8/modules/generated/sklearn.tree.DecisionTreeClassifier.html

plt.show()

Extra Material – Accessing the tree structure

A trained DecisionTreeClassifier has a tree_ attribute that stores the tree's structure:

tree = tree_clf.tree_

tree

<sklearn.tree._tree.Tree at 0x7f84cba39ae0>

You can get the total number of nodes in the tree:

tree.node_count

5

And other self-explanatory attributes are available:

tree.max_depth

2

tree.max_n_classes

3

tree.n_features

2

In [30]:

Out[30]:

In [31]:

Out[31]:

In [32]:

Out[32]:

In [33]:

Out[33]:

In [34]:

Out[34]:

tree.n_outputs

1

tree.n_leaves

np.int64(3)

All the information about the nodes is stored in NumPy arrays. For example, the impurity of each node:

tree.impurity

array([0.66666667, 0. , 0.5 , 0.16803841, 0.04253308])

The root node is at index 0. The left and right children nodes of node i are tree.children_left[i] and tree.children_right[i] . For example, the children of the root node are:

tree.children_left[0], tree.children_right[0]

(np.int64(1), np.int64(2))

When the left and right nodes are equal, it means this is a leaf node (and the children node ids are arbitrary):

tree.children_left[3], tree.children_right[3]

(np.int64(-1), np.int64(-1))

So you can get the leaf node ids like this:

is_leaf = (tree.children_left == tree.children_right)

np.arange(tree.node_count)[is_leaf]

array([1, 3, 4])

Non-leaf nodes are called split nodes. The feature they split is available via the feature array. Values for leaf nodes should be ignored:

tree.feature

array([0, -2, 1, -2, -2], dtype=int64)

And the corresponding thresholds are:

tree.threshold

array([2.44999999, -2. , 1.75 , -2. , -2.])

And the number of instances per class that reached each node is available too:

tree.value

In [35]:

Out[35]:

In [36]:

Out[36]:

In [37]:

Out[37]:

In [38]:

Out[38]:

In [39]:

Out[39]:

In [40]:

Out[40]:

In [41]:

Out[41]:

In [42]:

Out[42]:

In [43]:

array([[[0.33333333, 0.33333333, 0.33333333]],

 [[1. , 0. , 0.]],

 [[0. , 0.5 , 0.5]],

 [[0. , 0.90740741, 0.09259259]],

 [[0. , 0.02173913, 0.97826087]]])

tree.n_node_samples

array([150, 50, 100, 54, 46], dtype=int64)

np.all(tree.value.sum(axis=(1, 2)) == tree.n_node_samples)

np.False_

Here's how you can compute the depth of each node:

def compute_depth(tree_clf):

 tree = tree_clf.tree_

 depth = np.zeros(tree.node_count)

 stack = [(0, 0)]

 while stack:

 node, node_depth = stack.pop()

 depth[node] = node_depth

 if tree.children_left[node] != tree.children_right[node]:

 stack.append((tree.children_left[node], node_depth + 1))

 stack.append((tree.children_right[node], node_depth + 1))

 return depth

depth = compute_depth(tree_clf)

depth

array([0., 1., 1., 2., 2.])

Here's how to get the thresholds of all split nodes at depth 1:

tree_clf.tree_.feature[(depth == 1) & (~is_leaf)]

array([1], dtype=int64)

tree_clf.tree_.threshold[(depth == 1) & (~is_leaf)]

array([1.75])

Out[43]:

In [44]:

Out[44]:

In [45]:

Out[45]:

In [46]:

Out[46]:

In [47]:

Out[47]:

In [48]:

Out[48]:

