

Lecture 5: 22 January, 2026

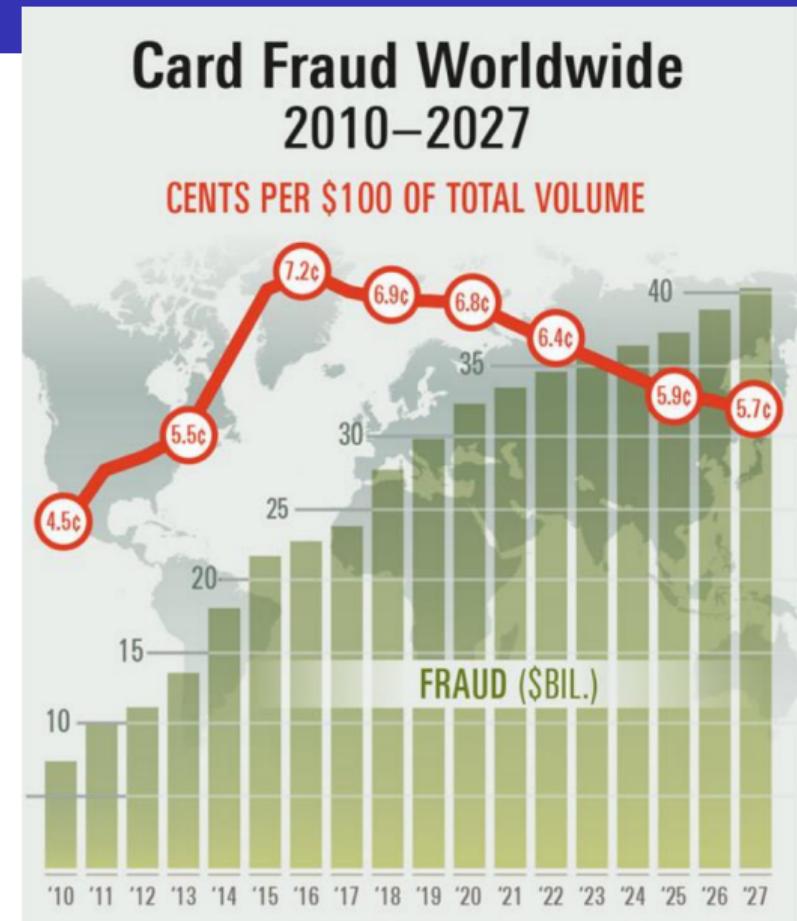
Madhavan Mukund

<https://www.cmi.ac.in/~madhavan>

Data Mining and Machine Learning
January–April 2026

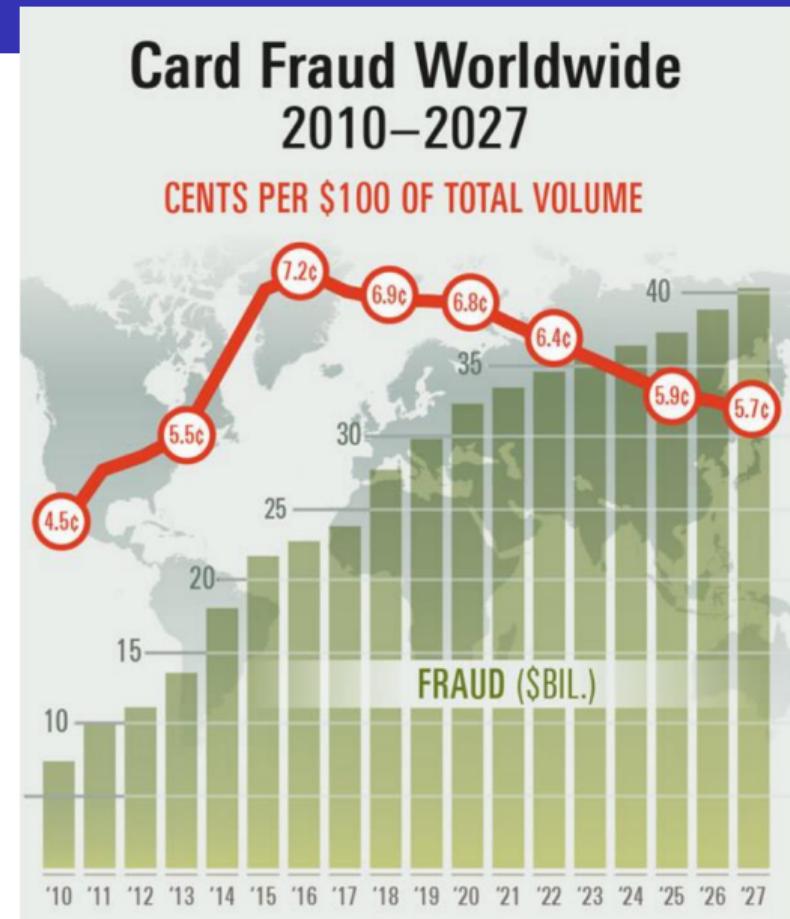
What are we measuring?

- Accuracy is an obvious measure
 - Fraction of inputs where classification is correct
- Classifiers are often used in asymmetric situations
 - Less than 1% of credit card transactions are fraud
- “Is this transaction a fraud?”
 - Trivial classifier — always answer “No”
 - More than 99% accurate, but useless!



Catching the minority case

- The minority case is the useful case
 - Assume question is phrased so that minority answer is “Yes”
 - Want to flag as many “Yes” cases as possible
- Aggressive classifier
 - Marks borderline “No” as “Yes”
 - False positives
- Cautious classifier
 - Marks borderline “Yes” as “No”
 - False negatives



Confusion matrix

- Four possible combinations
 - Actual answer: Yes / No
 - Prediction: Yes / No
- Record all four possibilities in **confusion matrix**
 - Correct answers
 - True positives, true negatives
 - Wrong answers
 - False positives, false negatives

	Classified positive	Classified negative
Actual positive	True Positive (TP)	False Negative (FN)
Actual negative	False Positive (FP)	True Negative (TN)

Performance measures

Precision

- What percentage of positive predictions are correct?

$$\frac{TP}{TP + FP}$$

Recall

- What percentage of actual positive cases are discovered?

$$\frac{TP}{TP + FN}$$

	Classified positive	Classified negative
Actual positive	True Positive (TP)	False Negative (FN)
Actual negative	False Positive (FP)	True Negative (TN)

Performance measures

- Precision 1, Recall 0.01
- Recall up to 0.4, but precision down to 0.29
- Recall up to 0.99, but precision down to 0.165
- Precision-recall tradeoff
 - **Strict classifiers** : fewer false positives (high precision), miss more actual positives (low recall)
 - **Permissive classifiers** : catch more actual positives (high recall) but more false positives (low precision)

	Classified positive	Classified negative
Actual positive	1 40 99	99 60 1
Actual negative	0 100 500	900 800 400

Performance measures

- Which measure is more useful?

- Depends on situation

- Hiring

- Screening test:
high recall
 - Interview:
high precision

- Medical diagnosis

- Immunization:
high recall
 - Critical illness diagnosis:
high precision

	Classified positive	Classified negative
Actual positive	True Positive (TP)	False Negative (FN)
Actual negative	False Positive (FP)	True Negative (TN)

Performance measures

Other measures, terminology

- Recall is also called sensitivity
- Accuracy: $(TP+TN)/(TP+TN+FP+FN)$
- Specificity: $TN/(TN+FP)$
- Threat score:
 $TP/(TP+FP+FN)$
 - TN usually majority, ignore, not useful

	Classified positive	Classified negative
Actual positive	True Positive (TP)	False Negative (FN)
Actual negative	False Positive (FP)	True Negative (TN)

F Score

- A single combined score
- Harmonic mean of precision, recall

$$\frac{2pr}{p+r}$$