

Lecture 6: 27 January, 2026

Madhavan Mukund

<https://www.cmi.ac.in/~madhavan>

Data Mining and Machine Learning
January–April 2026

Predicting numerical values

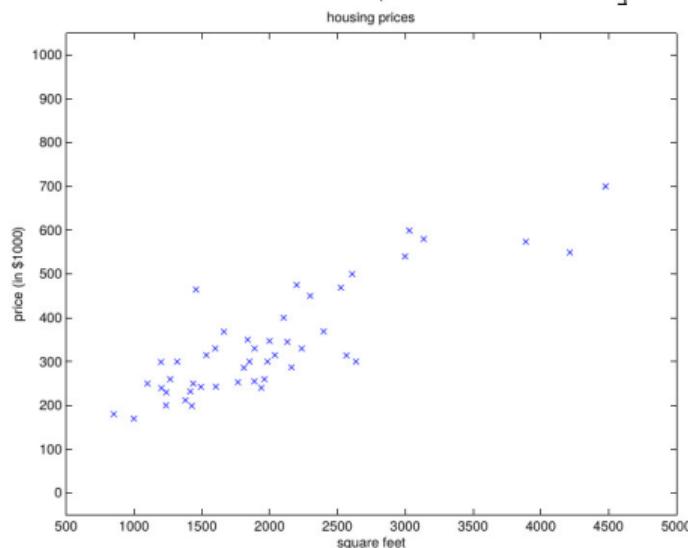
- Data about housing prices
- Predict house price from living area

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
⋮	⋮

Predicting numerical values

- Data about housing prices
- Predict house price from living area
- Scatterplot corresponding to the data
- Fit a function to the points

Living area (feet ²)	Price (1000\$)
2104	400
1600	330
2400	369
1416	232
3000	540
⋮	⋮



Linear predictors

- A richer set of input data

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
⋮	⋮	⋮

4

Linear predictors

- A richer set of input data
- Simplest case: fit a linear function with parameters
 $\theta = (\theta_0, \theta_1, \theta_2)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

↓

$$x = (x_1, x_2)$$

Find best

$$ax_1 + bx_2 + c$$

$$\theta_0, \theta_1, \theta_2$$

x_1	x_2	$f(x_1, x_2)$
Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
⋮	⋮	⋮

Linear predictors

- A richer set of input data
- Simplest case: fit a linear function with parameters $\theta = (\theta_0, \theta_1, \theta_2)$
$$h_\theta(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$
- Input x may have k features (x_1, x_2, \dots, x_k)

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
⋮	⋮	⋮

4

Linear predictors

- A richer set of input data
- Simplest case: fit a linear function with parameters
 $\theta = (\theta_0, \theta_1, \theta_2)$
$$h_\theta(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$
- Input x may have k features
(x_1, x_2, \dots, x_k)
- By convention, add a dummy feature $x_0 = 1$

Living area (feet ²)	#bedrooms	Price (1000\$)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
⋮	⋮	⋮

$$\theta_0 \cdot x_0 = \theta_0 \cdot 1 = \theta_0$$

Linear predictors

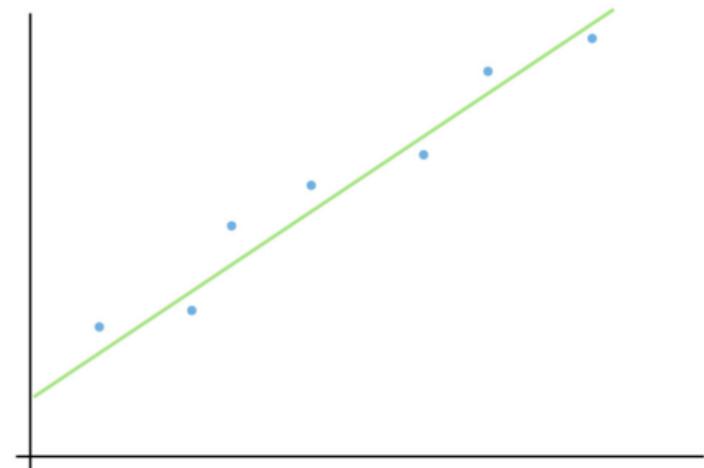
- A richer set of input data
- Simplest case: fit a linear function with parameters $\theta = (\theta_0, \theta_1, \theta_2)$
$$h_\theta(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$
- Input x may have k features (x_1, x_2, \dots, x_k)
- By convention, add a dummy feature $x_0 = 1$
- For k input features

$$h_\theta(x) = \sum_{i=0}^k \theta_i x_i$$

Living area (feet ²)	#bedrooms	Price (1000\$)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
⋮	⋮	⋮

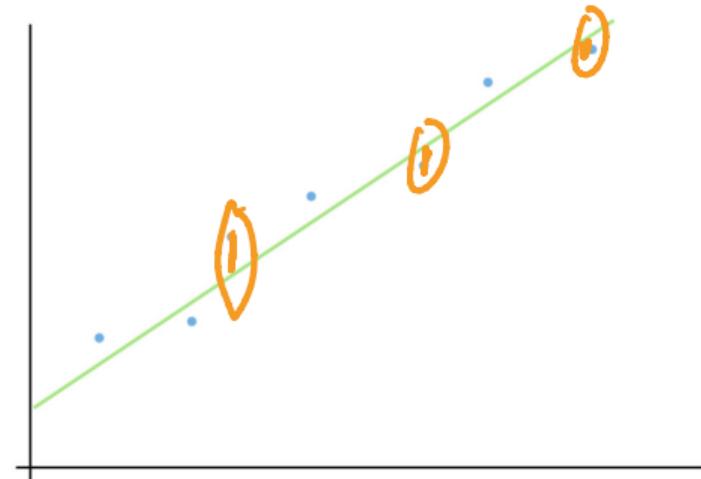
Finding the best fit line

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \dots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output



Finding the best fit line

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \dots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction $h_\theta(x_i)$ from the true answer y_i ?

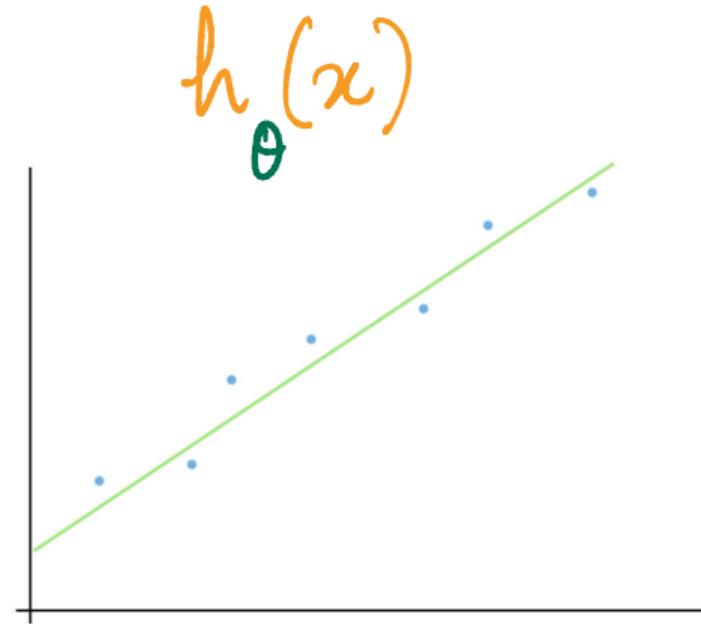


Finding the best fit line

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \dots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction $h_\theta(x_i)$ from the true answer y_i ?
- Define a cost (loss) function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^n (h_\theta(x_i) - y_i)^2$$

Technically, the difference between the prediction $h_\theta(x_i)$ and the actual value y_i is calculated.

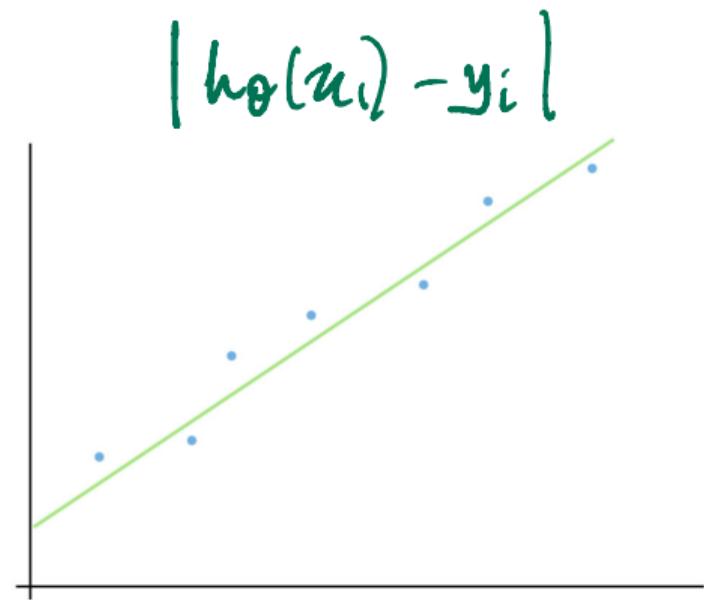


Finding the best fit line

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \dots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction $h_\theta(x_i)$ from the true answer y_i ?
- Define a cost (loss) function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^n (h_\theta(x_i) - y_i)^2$$

- Essentially, the sum squared error (SSE)

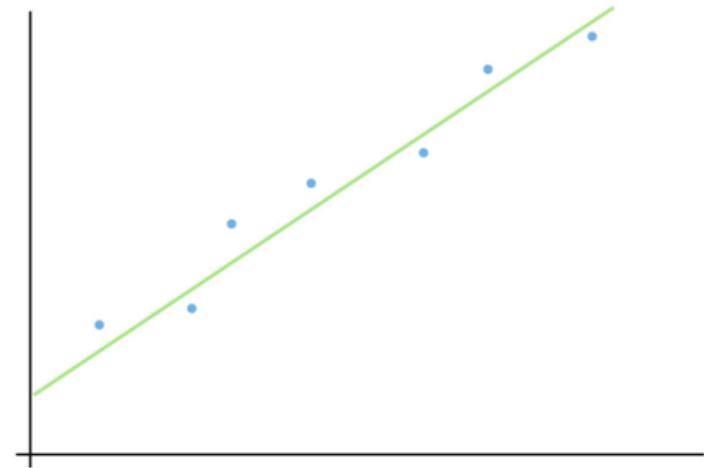


Finding the best fit line

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \dots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction $h_\theta(x_i)$ from the true answer y_i ?
- Define a cost (loss) function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^n (h_\theta(x_i) - y_i)^2$$

- Essentially, the sum squared error (SSE)
- Divide by n , mean squared error (MSE)



- Write x_i as row vector $\begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \end{bmatrix}$

x_i^0

Minimizing SSE

- Write x_i as row vector $[1 \ x_i^1 \ \dots \ x_i^k]$

$$\mathbf{X} = \begin{bmatrix} 1 & x_1^1 & \dots & x_1^k \\ 1 & x_2^1 & \dots & x_2^k \\ \dots & \dots & \dots & \dots \\ 1 & x_i^1 & \dots & x_i^k \\ \dots & \dots & \dots & \dots \\ 1 & x_n^1 & \dots & x_n^k \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_i \\ \dots \\ y_n \end{bmatrix}$$

- Write θ as column vector, $\theta^T = [\theta_0 \ \theta_1 \ \dots \ \theta_k]$

Minimizing SSE

- Write x_i as row vector $[1 \ x_i^1 \ \dots \ x_i^k]$

$$X = \begin{bmatrix} 1 & x_1^1 & \dots & x_1^k \\ 1 & x_2^1 & \dots & x_2^k \\ \dots & \dots & \dots & \dots \\ 1 & x_i^1 & \dots & x_i^k \\ \dots & \dots & \dots & \dots \\ 1 & x_n^1 & \dots & x_n^k \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_i \\ \dots \\ y_n \end{bmatrix}$$

$$X \cdot \theta$$

- Write θ as column vector, $\theta^T = [\theta_0 \ \theta_1 \ \dots \ \theta_k]$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^n (h_\theta(x_i) - y_i)^2 = \frac{1}{2} (X\theta - y)^T (X\theta - y)$$

$$J$$

Minimizing SSE

- Write x_i as row vector $[1 \ x_i^1 \ \cdots \ x_i^k]$

$$\mathbf{X} = \begin{bmatrix} 1 & x_1^1 & \cdots & x_1^k \\ 1 & x_2^1 & \cdots & x_2^k \\ \cdots & \cdots & \cdots & \cdots \\ 1 & x_i^1 & \cdots & x_i^k \\ \cdots & \cdots & \cdots & \cdots \\ 1 & x_n^1 & \cdots & x_n^k \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_i \\ \cdots \\ y_n \end{bmatrix}$$

- Write θ as column vector, $\theta^T = [\theta_0 \ \theta_1 \ \cdots \ \theta_k]$

$$\mathbf{J}(\theta) = \frac{1}{2} \sum_{i=1}^n (h_\theta(x_i) - y_i)^2 = \frac{1}{2} (\mathbf{X}\theta - \mathbf{y})^T (\mathbf{X}\theta - \mathbf{y})$$

- Minimize $\mathbf{J}(\theta)$ — set $\nabla_\theta \mathbf{J}(\theta) = 0$

Minimizing SSE

- $J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$
- $\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y)$
- To minimize, set $\nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y) = 0$

Minimizing SSE

- $J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$
- $\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y)$
- To minimize, set $\nabla_{\theta} \frac{1}{2}(\underline{X\theta} - y)^T(\underline{X\theta} - y) = 0$
- Expand, $\frac{1}{2}\nabla_{\theta} (\underline{\theta^T X^T X \theta} - \underline{y^T X \theta} - \underline{\theta^T X^T y} + \underline{y^T y}) = 0$

Minimizing SSE

- $J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$
- $\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y)$
- To minimize, set $\nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y) = 0$
- Expand, $\frac{1}{2}\nabla_{\theta} (\theta^T X^T X\theta - y^T X\theta - \theta^T X y + y^T y) = 0$
 - Check that $y^T X\theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$

$$\left[\begin{array}{c} \theta^T \\ \vdots \\ x_i^T \end{array} \right]$$

Minimizing SSE

- $J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$
- $\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y)$
- To minimize, set $\nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y) = 0$
- Expand, $\frac{1}{2}\nabla_{\theta} (\theta^T X^T X\theta - y^T X\theta - \theta^T X^T y + y^T y) = 0$
 - Check that $y^T X\theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$
- Combining terms, $\frac{1}{2}\nabla_{\theta} (\theta^T X^T X\theta - \underline{2\theta^T X^T y} + \underline{y^T y}) = 0$

Minimizing SSE

- $J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$
- $\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y)$
- To minimize, set $\nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y) = 0$
- Expand, $\frac{1}{2}\nabla_{\theta} (\theta^T X^T X\theta - y^T X\theta - \theta^T X^T y + y^T y) = 0$
 - Check that $y^T X\theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$
- Combining terms, $\frac{1}{2}\nabla_{\theta} (\theta^T X^T X\theta - 2\theta^T X^T y + y^T y) = 0$
- After differentiating, $X^T X\theta - X^T y = 0$

$$X^T X \theta = 0$$

$$\theta = 0$$

Minimizing SSE

- $J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$
- $\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y)$
- To minimize, set $\nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y) = 0$
- Expand, $\frac{1}{2}\nabla_{\theta} (\theta^T X^T X\theta - y^T X\theta - \theta^T X^T y + y^T y) = 0$
 - Check that $y^T X\theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$
- Combining terms, $\frac{1}{2}\nabla_{\theta} (\theta^T X^T X\theta - 2\theta^T X^T y + y^T y) = 0$
- After differentiating, $X^T X\theta - X^T y = 0$
- Solve to get **normal equation**, $\theta = \underbrace{(X^T X)^{-1}}_{\text{normal equation}} \underbrace{X^T y}_{\text{normal equation}}$

$$(y^T X\theta)^T = \theta^T X^T y$$

Minimizing SSE iteratively

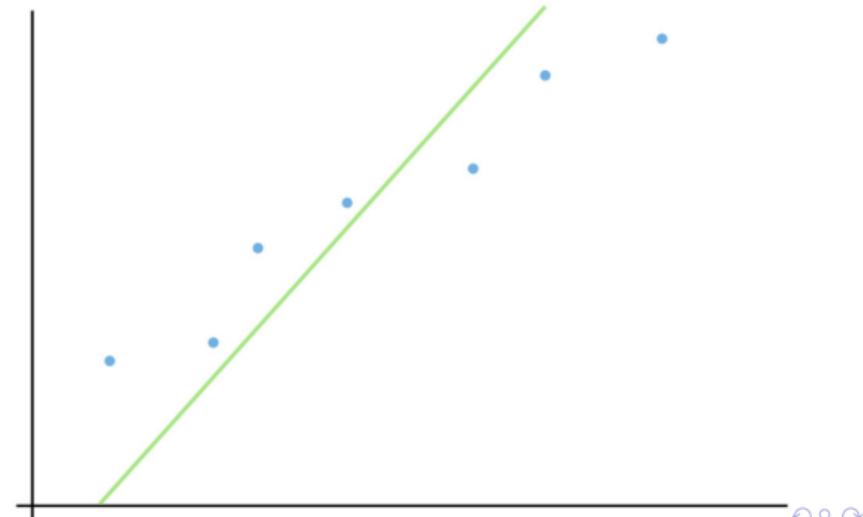
- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution

Minimizing SSE iteratively

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if n large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility

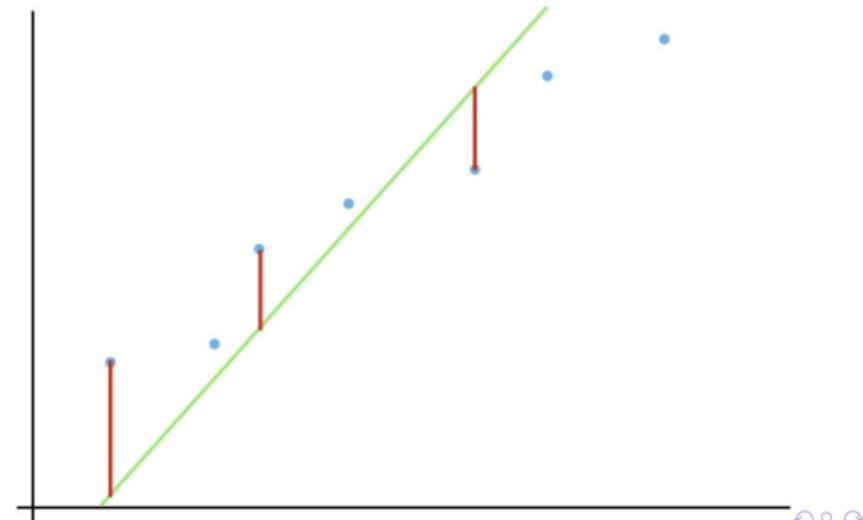
Minimizing SSE iteratively

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if n large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess



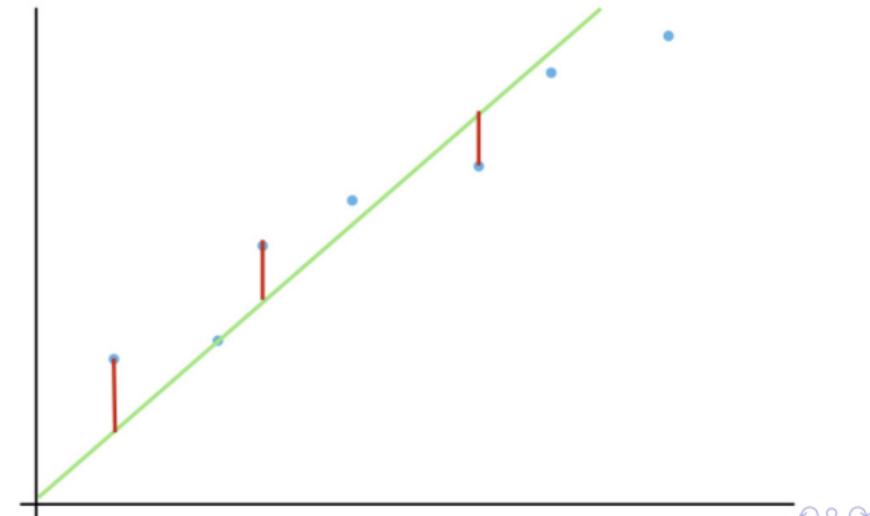
Minimizing SSE iteratively

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if n large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess



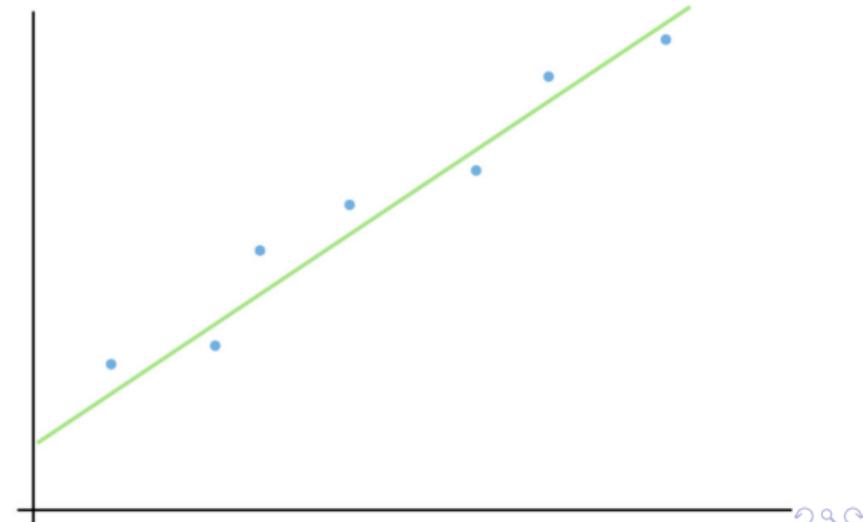
Minimizing SSE iteratively

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if n large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE



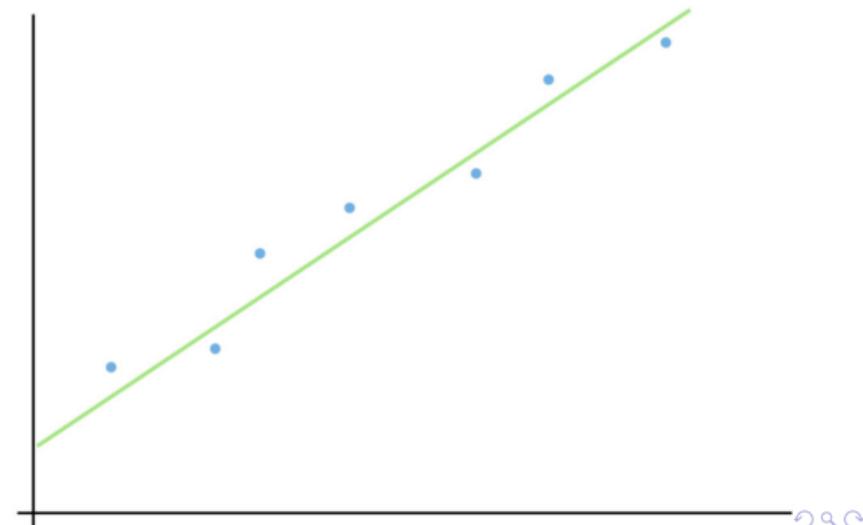
Minimizing SSE iteratively

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if n large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line



Minimizing SSE iteratively

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if n large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?

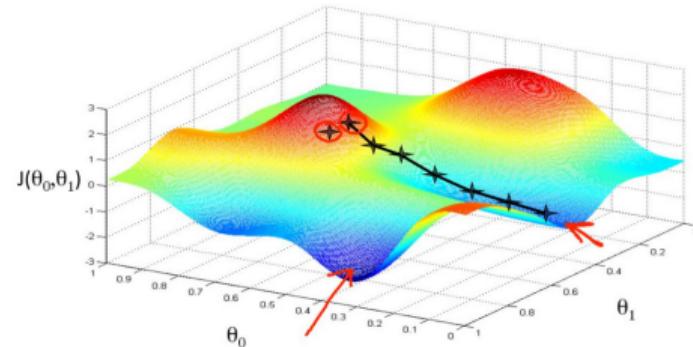
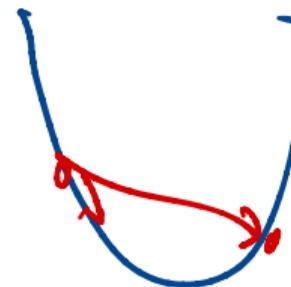


Gradient descent

- How does cost vary with parameters

$\theta = (\theta_0, \theta_1, \dots, \theta_k)$?

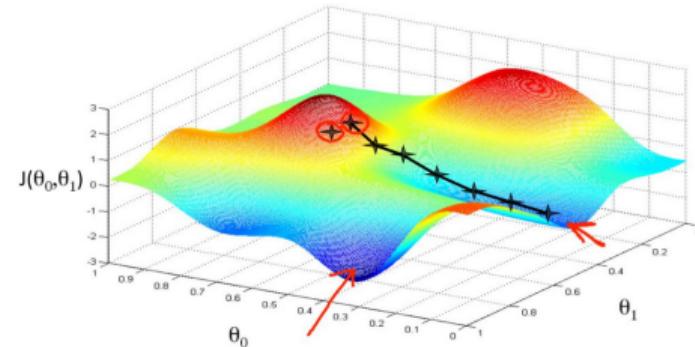
- Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$



Gradient descent

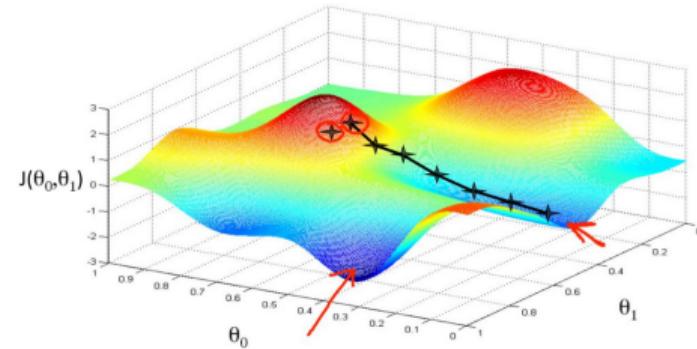
- How does cost vary with parameters $\theta = (\theta_0, \theta_1, \dots, \theta_k)$?
 - Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$
- Adjust each parameter against gradient
 - $\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$

step size



Gradient descent

- How does cost vary with parameters $\theta = (\theta_0, \theta_1, \dots, \theta_k)$?
 - Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$
- Adjust each parameter against gradient
 - $\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$
- For a single training sample (x, y)
$$\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_\theta(x) - y)^2$$



$$\theta_0 \cdot 1 + \theta_1 \cdot x$$

Gradient descent

- How does cost vary with parameters

$$\theta = (\theta_0, \theta_1, \dots, \theta_k)$$

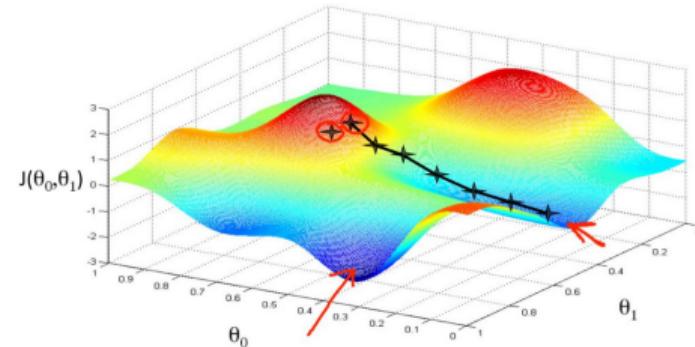
- Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$

- Adjust each parameter against gradient

- $\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$

- For a single training sample (x, y)

$$\begin{aligned}\frac{\partial}{\partial \theta_i} J(\theta) &= \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_\theta(x) - y)^2 \\ &= 2 \cdot \frac{1}{2} (h_\theta(x) - y) \frac{\partial}{\partial \theta_i} (h_\theta(x) - y)\end{aligned}$$



Gradient descent

- How does cost vary with parameters

$$\theta = (\theta_0, \theta_1, \dots, \theta_k)$$

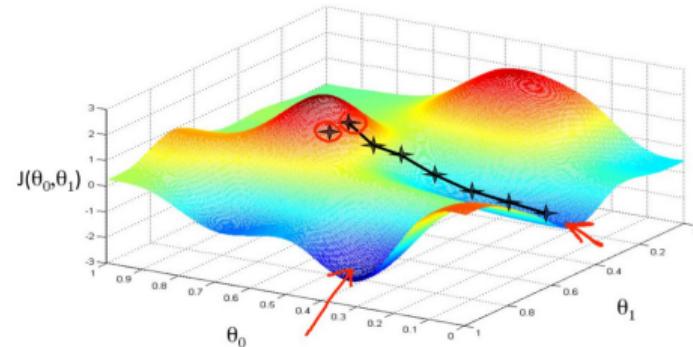
- Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$

- Adjust each parameter against gradient

- $\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$

- For a single training sample (x, y)

$$\begin{aligned}\frac{\partial}{\partial \theta_i} J(\theta) &= \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_{\theta}(x) - y)^2 \\ &= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} (h_{\theta}(x) - y) \\ &= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} \left[\left(\sum_{j=0}^k \theta_j x_j \right) - y \right]\end{aligned}$$



Gradient descent

- How does cost vary with parameters

$$\theta = (\theta_0, \theta_1, \dots, \theta_k)$$

- Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$

- Adjust each parameter against gradient

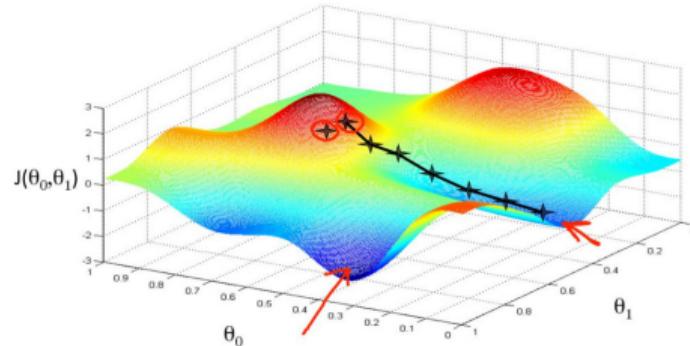
- $\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$

- For a single training sample (x, y)

$$\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_{\theta}(x) - y)^2$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} \left[\left(\sum_{j=0}^k \theta_j x_j \right) - y \right]$$



$$= (h_{\theta}(x) - y) \cdot x_i$$

↙ input

Gradient descent

- For a single training sample (x, y) , $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

Gradient descent

- For a single training sample (x, y) , $\frac{\partial}{\partial \theta_i} J(\theta) = (h_\theta(x) - y) \cdot x_i$
- Over the entire training set, $\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$

Gradient descent

- For a single training sample (x, y) , $\frac{\partial}{\partial \theta_i} J(\theta) = (h_\theta(x) - y) \cdot x_i$
- Over the entire training set, $\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$

Batch gradient descent

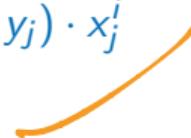
- Compute $h_\theta(x_j)$ for entire training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- Adjust each parameter

$$\begin{aligned}\theta_i &= \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta) \\ &= \theta_i - \alpha \cdot \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i\end{aligned}$$

- Repeat until convergence

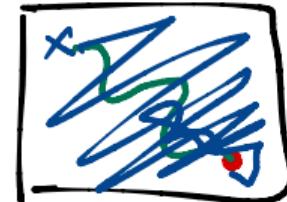
actual predictions

Optimum or $< \epsilon$ -change



Gradient descent

- For a single training sample (x, y) , $\frac{\partial}{\partial \theta_i} J(\theta) = (h_\theta(x) - y) \cdot x_i$
- Over the entire training set, $\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$



Batch gradient descent

- Compute $h_\theta(x_j)$ for entire training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- Adjust each parameter

$$\begin{aligned}\theta_i &= \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta) \\ &= \theta_i - \alpha \cdot \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i\end{aligned}$$

- Repeat until convergence

Stochastic gradient descent

- For each input x_j , compute $h_\theta(x_j)$
- Adjust each parameter —

$$\theta_i = \theta_i - \alpha \cdot (h_\theta(x_j) - y_j) \cdot x_j^i$$

Gradient descent

- For a single training sample (x, y) , $\frac{\partial}{\partial \theta_i} J(\theta) = (h_\theta(x) - y) \cdot x_i$
- Over the entire training set, $\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$

Batch gradient descent

- Compute $h_\theta(x_j)$ for entire training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- Adjust each parameter
$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$
$$= \theta_i - \alpha \cdot \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$$
- Repeat until convergence

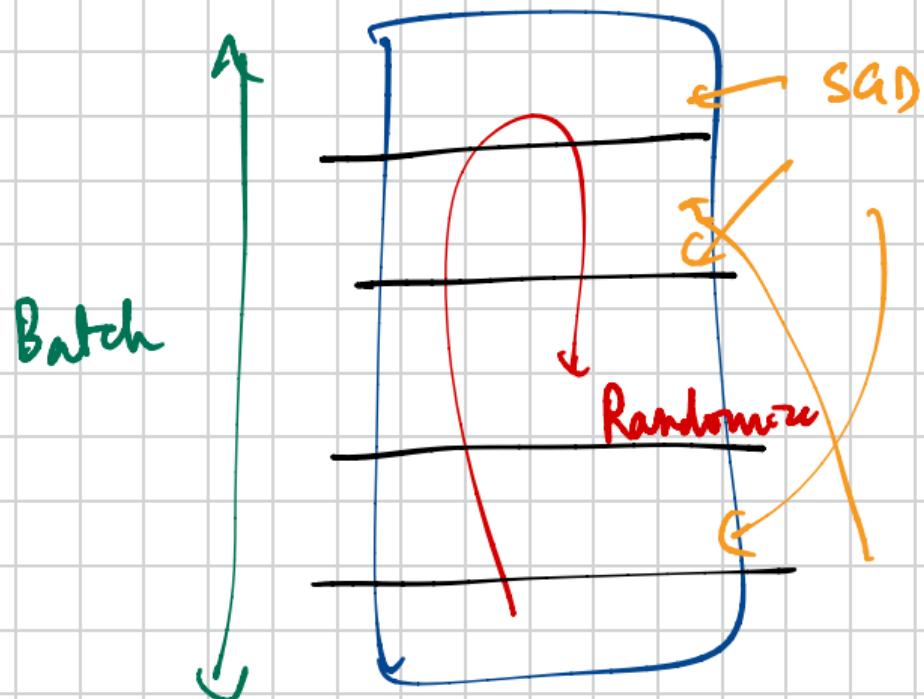
Stochastic gradient descent

- For each input x_j , compute $h_\theta(x_j)$
- Adjust each parameter —
$$\theta_i = \theta_i - \alpha \cdot (h_\theta(x_j) - y) \cdot x_j^i$$

Pros and cons

- Faster progress for large batch size
- May oscillate indefinitely

Mini-batch stochastic gradient descent

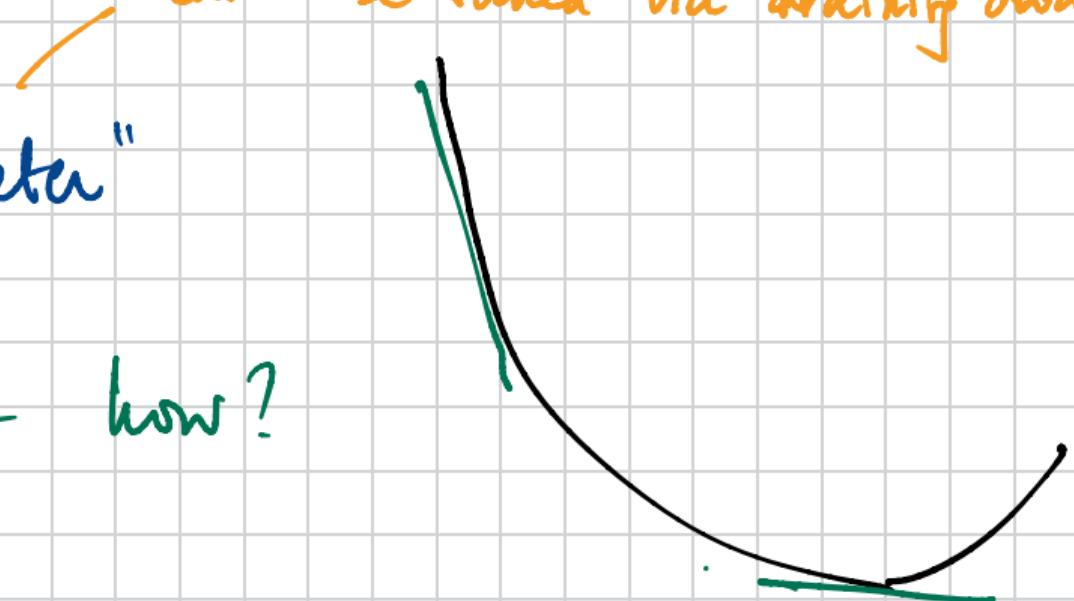


Choosing α ?

Cannot be tuned via training data

“Hyperparameter”

Variable λ - how?

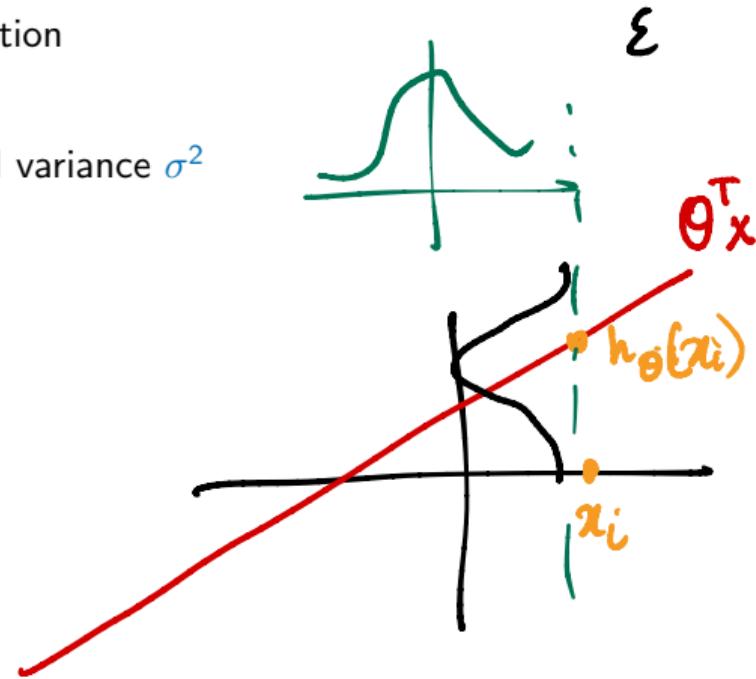


Regression and SSE loss

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$

Regression and SSE loss

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$, $\mu_i = \theta^T x_i$



Regression and SSE loss

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0 , fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$, $\mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i

Regression and SSE loss

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0 , fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$, $\mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i
- How good is our estimate?

Regression and SSE loss

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$, $\mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i
- How good is our estimate?
- **Likelihood** — probability of current observation given θ

$$\mathcal{L}(\theta) = \prod_{i=1}^n P(y_i | x_i; \theta)$$

Estimating $p(\text{heads})$ for a coin

1000 tosses \rightarrow 563 heads
437 tails

$p(\text{heads}) ? = 0.563$ Why?

Suppose I had coins with different values of p

Given $p \rightarrow \text{prob}(563/1000 \text{ heads})$

Maximizing likelihood

Likelihood

- How good is our estimate?

Likelihood

- How good is our estimate?
- Want Maximum Likelihood Estimator (MLE)

- Find θ that maximizes $\mathcal{L}(\theta) = \prod_{i=1}^n P(y_i | x_i; \theta)$

\Rightarrow loss function choice