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Predicting numerical values

Living area (feet?) | Price (10008s)
- : 2104 400
m D housing pri
ata about housing prices 4660 e
. . . 2400 369
m Predict house price from living area 1416 939
3000 540
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Predicting numerical values

Living area (feet?) | Price (10008s)
m Data about housing prices ?égg ggg
m Predict house price from living area ﬁ?g ggg
3000 540
m Scatterplot corresponding to the data e -
m Fit a function to the points il
300 A e

square feet
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Linear predictors

m A richer set of input data

Living area (feet?) | #bedrooms | Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540
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Linear predictors

m A richer set of input data 9‘-7. ‘Fl”la ;7(1.)
_ _ ) Living area (feet?) | #bedrooms | Price (1000$s)
m Simplest case: fit a linear 2104 3 200
function with parameters 1600 3 330
0 = (6, 01.6>) 2400 3 369
1416 2 232
4

hg(x) = 0o + O1x1 + 20 3000

540

X= )
(24,%,) qj"% Lol R, L, +

‘90, G7,9z
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Linear predictors

m A richer set of input data

_ ) Living area (feet?) | #bedrooms | Price (1000$s)
m Simplest case: fit a linear 2104 3 400
function with parameters 1600 3 330
6 = (6o, 01,65) 2400 3 369
1416 2 232
ho(x) = 6o + O1x1 + boxo 3000 4 540
m Input x may have k features : E : 4
(X1, X2y« -+, Xk)
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Linear predictors

m A richer set of input data

_ _ ) Living area (feet?) | #bedrooms | Price (1000$s)
m Simplest case: fit a linear 2104 3 200
function with parameters 1600 3 330
0 = (6, 01, 6>) 2400 3 369
1416 2 232
4

ho(x) =t} O1x1 + box2 3000
m Input x may have k features .
(X1, X2y« -+, Xk)

m By convention, add a dummy

feature xp = 1
N —

540

@0‘10 = 9‘(),’// 90
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Linear predictors

m A richer set of input data

_ _ ) Living area (feet?) | #bedrooms | Price (1000$s)
m Simplest case: fit a linear 2104 3 400
function with parameters 1600 3 330
6 = (6o, 01,65) 2400 3 369
1416 2 232
ho(x) = 6 + O1x1 + O2x2 3000 4 540
m Input x may have k features : E 5 B
(X1, X2y« -+, Xk)

m By convention, add a dummy
feature xp = 1

m For k input features

k
he(x) = Z 0;x;
i=0
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Finding the best fit line

m Training input is
{(x1,31), (x2,52), -+ (Xn, yn)}
m Each input x; is a vector (x, ..., xX)

m Add x? = 1 by convention

m y; is actual output
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m Training input is
{(X17y1),(X27y2),...,(X,,,yn)}
LX)

m Each input x; is a vector (x/, .
m Add x? = 1 by convention
m y; is actual output
m How far away is our prediction hy(x;) from
the true answer y;?
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Finding the best fit line

m Training input is
{(x1,31), (x2,52), -+, (Xn, yn) }
m Each input x; is a vector (x, ..., xX) 9
m Add x? = 1 by convention
m y; is actual output

m How far away is our prediction hy(x;) from
the true answer y;?

m Define a cost (Ioss) function PWW
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Finding the best fit line

m Training input is

{Gao), G2, - Con ) | kgl -v: |

m Each input x; is a vector (x, ..., xX)
m Add x? = 1 by convention

m y; is actual output

m How far away is our prediction hy(x;) from
the true answer y;?

m Define a cost (loss) function

@6) = 2 D (holo) — i)
i=1
T loss fu

m Essentially, the sum squared error (SSE)
Jv)
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Finding the best fit line

m Training input is
{(Xl-/yl)v (X27y2)7 ) (men)}
m Each input x; is a vector (x, ..., xX)

m Add x? = 1 by convention

m y; is actual output

m How far away is our prediction hy(x;) from
the true answer y;?

m Define a cost (loss) function
1< 2
J(0) = 5 > (ho(xi) = vi)

i=1

m Essentially, the sum squared error (SSE)

m Divide by n, mean squared error (MSE)
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Minimizing SSE fnd B do muwmimize T[9>

m Write x; as row vector [ 1 x,-1 x,-k ]
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Minimizing SSE

m Write x; as row vector [ 1 x,-1 x,-k]
(1 xt - xK ] (v )]
1 x -~ ys
.X: . ,y:
1ot e xf Yi
L1 Xy o Xy ] [ Yo
m Write 6 as column vector, GT:[HO 01 --- 9,(}
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Minimizing SSE

m Write x; as row vector [ 1 x,-1 x,-k ]

_1 X% ... X]l-(- __yl T ‘
1 L Qik Vo
L X =
1 Xil cee X Vi
L1 X X B
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Minimizing SSE

m Write x; as row vector [ 1 x,-1 x,-k ]
(1 xt o X ] [ v ]
1 x3 - xXF y2
L .
1 Xil Xik y yi
L1 Xy o xp L o
m Write 0 as column vector, GT:[HO 01 --- Hk}
1< 2 1 T
n J(0) = 5 > (ho(x) 1) = H(X0— ) T(X0~ y)
i=1

m Minimize J(6) — set Vy J(0) =0
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Minimizing SSE

= J(0) = 5(X0—y) (X0~ y)

m Vo J(0) = Vo 5(X0—y)T (X0 - y)
= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0
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Minimizing SSE

1
. J0) = (X0 )T (X0 y)
m Vo J(0) = Vg (X0 - y)T (X0 - y)
m To minimize, set Vy %(X@ — y)T(ﬁ— y)=20
m Expand, 1V, (7TXTX0 —y"™X0 —0TXTy+yTy)=0
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Minimizing SSE
T T
" J(O) = S(X8- )T (X0 ) © (8
m Vp J(0) = Vo 3(X0 - y)T (X0 - y) t 3
= To minimize, set Vy 5(X0 — y) (X0 —y) =0
m Expand, 1V, (07XTX0 — y'f @ y+yTly)=0

m Check that y " X0 = 07Xy =" hy(x) - y;
i=1
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Minimizing SSE

= J(0) = 5(X0—y) (X0~ y)

m Vo J(0) = Vo 5(X0—y)T (X0 - y)
= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0

Expand, 1V, (0TXTX0—yTX0—0TXTy +yTy)=0

m Check that y " X0 = 07Xy =" hy(x) - y;
i=1

Combining terms, %Vg (OTXTXO—20"XTy +yTy)=0
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Minimizing SSE

= J(0) = 5(X0—y) (X0~ y)

m Vo J(0) = Vo 5(X0—y)T (X0 - y)
= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0

T laT
m Expand, 1V, (7TXTX0 —y"™X0 —0TXTy+yTy)=0 XxP G
n g}?,
m Check that y " X0 = 07 XTy =" hy(x) - v
10

Combining terms, %Vg OTXTXO0Y 20" XTy +yTy)=0
m After differentiating, X' X0 — X"y =0

Madhavan Mukund Lecture 6: 27 January, 2026 DMML Jan—Apr 2026



Minimizing SSE

= J(0) = 5(X0—y) (X0~ y)

m Vo J(0) = Vo 5(X0—y)T (X0 - y)
= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0

Expand, 1V, (0TXTX0—yTX0—0TXTy +yTy)=0

m Check that y " X0 = 07Xy =" hy(x) - y;
i=1

Combining terms, %Vg (OTXTXO—20"XTy +yTy)=0
m After differentiatingl X" X6 — X7y =0

Solve to get normal equation, § = (X" X)"1XTy
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

Madhavan Mukund Lecture 6: 27 January, 2026 DMML Jan—Apr 2026



Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*
m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*
m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess

m Keep adjusting the line to reduce SSE
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess

m Keep adjusting the line to reduce SSE

m Stop when we find the best fit line
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE
m Stop when we find the best fit line

m How do we adjust the line?
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Gradient desce

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(6
m Gradients 80,-'/( )

20,6,)
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

| 9,’ = 9,‘ — O/aielj(e)

th sizo
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

| 9,’ = 9,‘ — O/aielj(e)

m For a single training sample (x, y)

0 01
50 = 555 (ho(x) = y)?
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

| 9,’ = 9,‘ — O/aielj(e)

m For a single training sample (x, y)
0 01

09;J(9) = OG;E(hQ(X) —Y)zr
= A %(hg(x) — )/)adal(hﬁ(x) - )/)
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

w0, =0 — aa%J(f))

20,6,)

m For a single training sample (x, y)

0 01
05, 70) = 200 vy
d
3(le) =y cTe ol
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

w0, =0 — aa%J(f))

20,6,)

m For a single training sample (x, y)

0 01
05, 70) = 200 vy
d
3(le) =y cTe ol
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i

: . 0 . .
m Over the entire training set, a—gij(e) = Z}(hg(xj-) = Yj) X
J:
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Gradient descent
: . 0
m For a single training sample (x, y), ﬁJ(é) = (ho(x) — y) - xi
o) t : v

m Over the entire training set, a—gfj(@) = Z}(hg(xj-) —Yj) X —
J:
Batch gradient descent
m Compute hy(x;) for entire training set
{(Xl;)/l), ) (Xn‘/yn)}
m Adjust each parameter

0
0 = 0 — g J(0)

m Repeat until convergence

Madhavan Mukund Lecture 6: 27 January, 2026 DMML Jan—Apr 2026



Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i

n

: . 0 .
m Over the entire training set, a—gij(e) = Z(hg()(j) = Yj) X

j=1
Batch gradient descent Stochastic gradient descent
m Compute hy(x;) for entire training set m For each input x;, compute hy(x;)
{Gas), - Gcn, )} m Adjust each parameter —
m Adjust each parameter 0i =0;i —a-(ho(x5) — y) - X
0
n
=0i—a-Y (ho(x) —yj) -
j=1

m Repeat until convergence
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i

n

: . 0 .
m Over the entire training set, a—gij(e) = Z(hg()(j) = Yj) X

j=1
Batch gradient descent Stochastic gradient descent

m Compute hy(x;) for entire training set m For each input x;, compute hy(x;)

{Gas), - Gcn, )} m Adjust each parameter —

m Adjust each paarameter 0i =0;i —a-(ho(x5) — y) - X

=0 aa—einJ(é’) Pros and cons
=0, —a- Z(hﬁ(xf) —y)- XJ' m Faster progress for large batch size
j=1

m May oscillate indefinitely
m Repeat until convergence
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Regression and SSE loss

m Training input is {(x1,y1), (x2,¥2), -, (X, ¥n)}
m Outputs are noisy samples from a linear function

[ ] y;:OTX;+e
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Regression and SSE loss

m Training input is {(x1,y1), (x2.y2), ..., (Xn, ¥n)}

m Outputs are noisy samples from a linear function 2

my = 0Tx; + ¢ '

m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o ‘ T
m oy~ N(ui,0?), pi=0"x 9x

e

P —
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Regression and SSE loss

m Training input is {(x1,y1), (x2,y2), ..., (Xn, ¥n)}

m Outputs are noisy samples from a linear function

my = 0T x; + €

m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o
m yi ~ N (i, 0?), pi =07 x

m Model gives us an estimate for ¢, so regression learns 1i; for each x;
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Regression and SSE loss

m Training input is {(x1,y1), (x2,y2), ..., (Xn, ¥n)}
m Outputs are noisy samples from a linear function
my = 0T x; + €
m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o
m yi ~ N (i, 0?), pi =07 x

m Model gives us an estimate for ¢, so regression learns 1i; for each x;

m How good is our estimate?
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Regression and SSE loss

m Training input is {(x1, 1), (x2,¥2), .-, (X0, ¥n)}
m Outputs are noisy samples from a linear function
my = 0T x; + €
m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o

m oy~ N(pi,0?), pi =07
m Model gives us an estimate for ¢, so regression learns 1i; for each x;
m How good is our estimate?

m Likelihood — probability of current observation given 6

£(0) =[] P | xi:6)
=1
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Likelihood

m How good is our estimate?
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Likelihood

m How good is our estimate?

m Want Maximum Likelihood Estimator (MLE)

= Find 0 that maximizes £(0) = [ [ P(yi | x:0)

i=1

= loss Ww o ce
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