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Market-basket analysis

Set of items I = {i1, i2, . . . , iN}

A transaction is a set t → I of items, set of transactions T = {t1, t2, . . . , tM}

Identify association rules X ↑ Y

X ,Y → I , X ↓ Y = ↔
If X → tj then it is likely that Y → tj

How frequently does X → tj imply Y → tj?

Want
(X ↗ Y ).count

X .count
↘ ω (Confidence)

How significant is this pattern overall?

Want
(X ↗ Y ).count

M
↘ ε (support)

Given sets of items I and transactions T , with confidence ω and support ε, find all
valid association rules X ↑ Y
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Apriori

Apriori observation

If Z is not a frequent itemset, no superset Y ≃ Z can be frequent

For any frequent pair {x , y}, both {x} and {y} must be frequent

Build frequent itemsets bottom up, size 1,2,. . .

Fi : frequent itemsets of size i — Level i

F1: Scan T , maintain a counter for each x ⇐ I

Ck = subsets of size k , every (k⇒1)-subset is in Fk→1

Fk : Scan T , maintain a counter for each X ⇐ Ck
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Association rules

Given sets of items I and transactions T , with
confidence ω and support ε, find all valid association
rules X ↑ Y

X ,Y → I , X ↓ Y = ↔

(X ↗ Y ).count

X .count
↘ ω

(X ↗ Y ).count

M
↘ ε

For a rule X ↑ Y to be valid, X ↗ Y should be a
frequent itemset

Apriori algorithm finds all Z → I such that
Z .count ↘ ε ·M
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Association rules

Näıve strategy

For every frequent itemset Z

Enumerate all pairs X ,Y → Z , X ↓ Y = ↔

Check
(X ↗ Y ).count

X .count
↘ ω

Can we do better?

Su!cient to check all partitions of Z

If X ,Y → Z , X ↗ Y is also a frequent itemset
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Association rules

Su!cient to check all partitions of Z

Suppose Z = X ⇑ Y , X ↑ Y is a valid rule and y ⇐ Y

What about (X ↗ {y}) ↑ Y \ {y}?

Know
(X ↗ Y ).count

X .count
↘ ω

Check
(X ↗ Y ).count

(X ↗ {y}).count ↘ ω

X .count ↘ (X ↗ {y}).count, always

Second fraction has smaller denominator, so
(X ↗ {y}) ↑ Y \ {y} is also a valid rule

Observation: Can use apriori principle again!
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Apriori for association rules

If X ↑ Y is a valid rule, and y ⇐ Y ,
(X ↗ {y}) ↑ Y \ {y} must also be a valid rule

If X ↑ Y is not a valid rule, and x ⇐ X ,
(X \ {x}) ↑ Y ↗ {x} cannot be a valid rule

Start by checking rules with single element on the right

Z \ z ↑ {z}

For X ↑ {x , y} to be a valid rule, both
(X ↗ {x}) ↑ {y} and (X ↗ {y}) ↑ {x} must be valid

Explore partitions of each frequent itemset “level by
level”
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Association rules for classification

Classify documents by topic

Consider the table on the right

Items are regular words and topics

Documents are transactions — set of
words and one topic

Look for association rules of a special
form

{student, school} ↑ {Education}
{game, team} ↑ {Sports}

Right hand side always a single topic

Class Association Rules

Words in document Topic
student, teach, school Education
student, school Education
teach, school, city, game Education
cricket, football Sports
football, player, spectator Sports
cricket, coach, game, team Sports
football, team, city, game Sports
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Summary

Market-basket analysis searches for correlated items across transactions

Formalized as association rules

Apriori principle helps us to e!ciently

identify frequent itemsets, and

split these itemsets into valid rules

Class association rules — simple supervised learning model
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Supervised learning

A set of items
Each item is characterized by attributes (a1, a2, . . . , ak)

Each item is assigned a class or category c

Given a set of examples, predict c for a new item with attributes (a↑1, a
↑
2, . . . , a

↑
k)

Examples provided are called training data

Aim is to learn a mathematical model that generalizes the training data

Model built from training data should extend to previously unseen inputs

Classification problem

Usually assumed to binary — two classes
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Example: Loan application data set
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Basic assumptions

Fundamental assumption of machine learning

Distribution of training examples is identical to distribution of unseen data

What does it mean to learn from the data?

Build a model that does better than random guessing

In the loan data set, always saying Yes would be correct about 9/15 of the time

Performance should ideally improve with more training data

How do we evaluate the performance of a model?

Model is optimized for the training data. How well does it work for unseen data?

Don’t know the correct answers in advance to compare — di”erent from normal software
verification
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The road ahead

Many di”erent models

Decision trees

Probabilistic models — näıve Bayes classifiers

Models based on geometric separators

Support vector machines (SVM)

Neural networks

Important issues related to supervised learning

Evaluating models

Ensuring that models generalize well to unseen data

A theoretical framework to provide some guarantees

Strategies to deal with the training data bottleneck
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Decision trees
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20 Questions
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Decision tree algorithm
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How to choose questions ? 96
Level-
Level 2

i

How long do I continue? 2003 3-00-1

-Tell I run out of questions (..e no . Of colums)
- If we reach a "uniform" answer



Comparing decision trees
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Prefer "less complex"
All 4 attributes

are used

model

"Simplest explanation
is test"

Occam's Razor Age,
CreditRatin

areWilliam of Ockham redundant



Comparing decision trees
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NP complete
Simplest is best No shortcut to

enumerating
Simplest? a lot

-

No of questions overall T possibitu
- No of levels in tree
Bed news Building "simplest"
-

model is computationally As
Intractable

, foray reasonable measure
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Greedy heuristic — impurity
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