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Market-Basket Analysis

People who buy X also tend to buy Y

Rearrange products on display based on
customer patterns

The diapers and beer legend

The true story, http://www.dssresources.
com/newsletters/66.php

Applies in more abstract settings

Items are concepts, basket is a set of concepts
in which a student does badly

Students with di!culties in concept A also
tend to misunderstand concept B

Items are words, transactions are documents
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Formal setting

Set of items I = {i1, i2, . . . , iN}

A transaction is a set t → I of items

Set of transactions T = {t1, t2, . . . , tM}

Identify association rules X ↑ Y

X ,Y → I , X ↓ Y = ↔
If X → tj then it is likely that Y → tj

Two thresholds

How frequently does X → tj imply Y → tj?

How significant is this pattern overall?
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Setting thresholds

For Z → I , Z .count = |{tj | Z → tj}|

How frequently does X → tj imply Y → tj?

Fix a confidence level ω

Want
(X ↗ Y ).count

X .count
↘ ω

How significant is this pattern overall?

Fix a support level ε

Want
(X ↗ Y ).count

M
↘ ε

Given sets of items I and transactions T , with
confidence ω and support ε, find all valid
association rules X ↑ Y
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Frequent itemsets

X ↑ Y is interesting only if (X ↗ Y ).count ↘ ε ·M

First identify all frequent itemsets

Z → I such that Z .count ↘ ε ·M

Näıve strategy: maintain a counter for each Z

For each tj ≃ T
For each Z → tj

Increment the counter for Z

After scanning all transactions, keep Z with
Z .count ↘ ε ·M

Need to maintain 2|I | counters

Infeasible amount of memory

Can we do better?
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Sample calculation

Let’s assume a bound on each ti ≃ T

No transacation has more than 10 items

Say N = |I | = 106, M = |T | = 109, ε = 0.01

Number of possible subsets to count is
10∑

i=1

(
106

i

)

A singleton subset that is frequent is an item that
appears in at least 107 transactions

Totally, T contains at most 1010 items

At most 1010/107 = 1000 items are frequent!

How can we exploit this?
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Apriori

Clearly, if Z is frequent, so is every subset Y → Z

We exploit the contrapositive

Apriori observation

If Z is not a frequent itemset, no superset Y ⇐ Z can be
frequent

For instance, in our earlier example, every frequent
itemset must be built from the 1000 frequent items

In particular, for any frequent pair {x , y}, both {x} and
{y} must be frequent

Build frequent itemsets bottom up, size 1,2,. . .
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Apriori algorithm

Fi : frequent itemsets of size i — Level i

F1: Scan T , maintain a counter for each x ≃ I

C2 = {{x , y} | x , y ≃ F1}: Candidates in level 2

F2: Scan T , maintain a counter for each X ≃ C2

C3 = {{x , y , z} | {x , y}, {x , z}, {y , z} ≃ F2}

F3: Scan T , maintain a counter for each X ≃ C3

. . .

Ck = subsets of size k , every (k⇒1)-subset is in Fk→1

Fk : Scan T , maintain a counter for each X ≃ Ck

. . .
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Apriori algorithm

Ck = subsets of size k , every (k⇒1)-subset is in Fk→1

How do we generate Ck?

Näıve: enumerate subsets of size k and check each one

Expensive!

Observation: Any C ↑
k ⇐ Ck will do as a candidate set

Items are ordered: i1 < i2 < · · · < iN

List each itemset in ascending order — canonical representation

Merge two (k⇒1)-subsets if they di!er in last element

X = {i1, i2, . . . , ik→2, ik→1}
X ↑ = {i1, i2, . . . , ik→2, i ↑k→1}
Merge(X ,X ↑) = {i1, i2, . . . , ik→2, ik→1, i ↑k→1}
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Näıve: enumerate subsets of size k and check each one

Expensive!

Observation: Any C ↑
k ⇐ Ck will do as a candidate set

Items are ordered: i1 < i2 < · · · < iN

List each itemset in ascending order — canonical representation

Merge two (k⇒1)-subsets if they di!er in last element

X = {i1, i2, . . . , ik→2, ik→1}
X ↑ = {i1, i2, . . . , ik→2, i ↑k→1}
Merge(X ,X ↑) = {i1, i2, . . . , ik→2, ik→1, i ↑k→1}

Madhavan Mukund Lecture 2: 8 January, 2026 DMML Jan–Apr 2026 9 / 11

&



Apriori algorithm

Ck = subsets of size k , every (k⇒1)-subset is in Fk→1

How do we generate Ck?
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Apriori algorithm

Merge(X ,X ↑) = {i1, i2, . . . , ik→2, ik→1, i ↑k→1}
X = {i1, i2, . . . , ik→2, ik→1}
X ↑ = {i1, i2, . . . , ik→2, i ↑k→1}

C ↑
k = {Merge(X ,X ↑) | X ,X ↑ ≃ Fk→1}

Claim Ck → C ↑
k

Suppose Y = {i1, i2, . . . , ik→1, ik} ≃ Ck

X = {i1, i2, . . . , ik→2, ik→1} ≃ Fk→1 and
X ↑ = {i1, i2, . . . , ik→2, ik} ≃ Fk→1

Y = Merge(X ,X ↑) ≃ C ↑
k

Can generate C ↑
k e”ciently

Arrange Fk→1 in dictionary order

Split into blocks that di!er on last element

Merge all pairs within each block
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Apriori algorithm

C1 = {{x} | x ≃ I}

F1 = {Z | Z ≃ C1,Z .count ↘ ε ·M}

For k ≃ {2, 3, . . .}
C ↑
k = {Merge(X ,X ↑) | X ,X ↑ ≃ Fk→1}

Fk = {Z | Z ≃ C ↑
k ,Z .count ↘ ε ·M}

When do we stop?

k exceeds the size of the largest transaction

Fk is empty

Next step: From frequent itemsets to association rules
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