

Lecture 2: 8 January, 2026

Madhavan Mukund

<https://www.cmi.ac.in/~madhavan>

Data Mining and Machine Learning
January–April 2026

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns

DATA MINING
VS
MACHINE LEARNING

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
 - The diapers and beer legend
 - The true story, <http://www.dssresources.com/newsletters/66.php>

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
 - The diapers and beer legend
 - The true story, <http://www.dssresources.com/newsletters/66.php>
- Applies in more abstract settings
 - Items are concepts, basket is a set of concepts in which a student does badly
 - Students with difficulties in concept A also tend to misunderstand concept B
 - Items are words, transactions are documents

Formal setting

- Set of items $I = \{i_1, i_2, \dots, i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$

Formal setting

- Set of items $I = \{i_1, i_2, \dots, i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$

X, Y are sets

$X \rightarrow Y$

Actual transaction has $X \cup Y$

Formal setting

- Set of items $I = \{i_1, i_2, \dots, i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$
- Two thresholds
 - How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$? *Likelihood*
 - How significant is this pattern overall?

Setting thresholds

- For $Z \subseteq I$, $Z.\text{count} = |\{t_j \mid Z \subseteq t_j\}|$

Number of transactions containing Z

Setting thresholds

- For $Z \subseteq I$, $Z.\text{count} = |\{t_j \mid Z \subseteq t_j\}|$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - Fix a confidence level χ
 - Want $\frac{(X \cup Y).\text{count}}{X.\text{count}} \geq \chi$

Setting thresholds

- For $Z \subseteq I$, $Z.\text{count} = |\{t_j \mid Z \subseteq t_j\}|$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - Fix a confidence level χ
 - Want $\frac{(X \cup Y).\text{count}}{X.\text{count}} \geq \chi$
- How significant is this pattern overall?
 - Fix a support level σ
 - Want $\frac{(X \cup Y).\text{count}}{M} \geq \sigma$

$\frac{(X \cup Y).\text{count}}{M}$ total no of transactions

Setting thresholds

- For $Z \subseteq I$, $Z.\text{count} = |\{t_j \mid Z \subseteq t_j\}|$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - Fix a confidence level χ
 - Want $\frac{(X \cup Y).\text{count}}{X.\text{count}} \geq \chi$
- How significant is this pattern overall?
 - Fix a support level σ
 - Want $\frac{(X \cup Y).\text{count}}{M} \geq \sigma$
- Given sets of items I and transactions T , with confidence χ and support σ , find all valid association rules $X \rightarrow Y$

$$I = \{i_1, \dots, i_N\}$$
$$T = \{t_1, \dots, t_M\}$$

$$X.\text{count} \leq \frac{(X \cup Y).\text{count}}{\chi}$$

Frequent itemsets

- $X \rightarrow Y$ is interesting only if $(X \cup Y).count \geq \sigma \cdot M$

- First identify all frequent itemsets
 - $Z \subseteq I$ such that $Z.count \geq \sigma \cdot M$

set of items

$$\frac{Z.count}{M} \geq \sigma$$

Frequent itemsets

- $X \rightarrow Y$ is interesting only if $(X \cup Y).count \geq \sigma \cdot M$
- First identify all frequent itemsets
 - $Z \subseteq I$ such that $Z.count \geq \sigma \cdot M$
- Naïve strategy: maintain a counter for each Z
 - For each $t_j \in T$
 - For each $Z \subseteq t_j$
 - Increment the counter for Z
 - After scanning all transactions, keep Z with $Z.count \geq \sigma \cdot M$

Dictionary

||

$Z \subseteq I$

10^7 items

2^{10^7} subsets

Frequent itemsets

- $X \rightarrow Y$ is interesting only if $(X \cup Y).count \geq \sigma \cdot M$
- First identify all frequent itemsets
 - $Z \subseteq I$ such that $Z.count \geq \sigma \cdot M$
- Naïve strategy: maintain a counter for each Z
 - For each $t_j \in T$
 - For each $Z \subseteq t_j$
 - Increment the counter for Z
 - After scanning all transactions, keep Z with $Z.count \geq \sigma \cdot M$
- Need to maintain $2^{|I|}$ counters
 - Infeasible amount of memory
 - Can we do better?

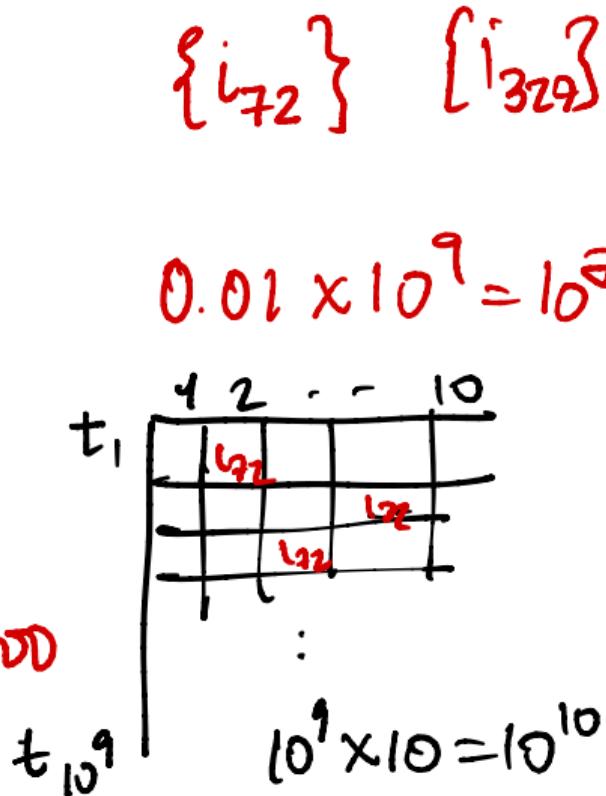
Sample calculation

- Let's assume a bound on each $t_i \in T$
 - No transaction has more than 10 items
- Say $N = |I| = 10^6$, $M = |T| = 10^9$, $\sigma = 0.01$
 - Number of possible subsets to count is $\sum_{i=1}^{10} \binom{10^6}{i}$

Sample calculation

- Let's assume a bound on each $t_i \in T$
 - No transaction has more than 10 items
- Say $N = |I| = 10^6$, $M = |T| = 10^9$, $\sigma = 0.01$
 - Number of possible subsets to count is $\sum_{i=1}^{10} \binom{10^6}{i}$
- A singleton subset that is frequent is an item that appears in at least 10^7 transactions

$$\frac{10^{10}}{10^7} = 1000$$



Sample calculation

- Let's assume a bound on each $t_i \in T$
 - No transaction has more than 10 items
- Say $N = |I| = 10^6$, $M = |T| = 10^9$, $\sigma = 0.01$
 - Number of possible subsets to count is $\sum_{i=1}^{10} \binom{10^6}{i}$
- A singleton subset that is frequent is an item that appears in at least 10^7 transactions
- Totally, T contains at most 10^{10} items
- At most $10^{10}/10^7 = 1000$ items are frequent!
- How can we exploit this?

- Clearly, if Z is frequent, so is every subset $Y \subseteq Z$

- Clearly, if Z is frequent, so is every subset $Y \subseteq Z$
- We exploit the contrapositive

Apriori observation

If Z is not a frequent itemset, no superset $Y \supseteq Z$ can be frequent

- Clearly, if Z is frequent, so is every subset $Y \subseteq Z$
- We exploit the contrapositive

Apriori observation

If Z is not a frequent itemset, no superset $Y \supseteq Z$ can be frequent

- For instance, in our earlier example, every frequent itemset must be built from the 1000 frequent items
- In particular, for any frequent pair $\{x, y\}$, both $\{x\}$ and $\{y\}$ must be frequent
- Build frequent itemsets bottom up, size 1, 2, ...

Apriori algorithm

- F_i : frequent itemsets of size i — **Level i**

Apriori algorithm

- F_i : frequent itemsets of size i — **Level i**
- F_1 : Scan T , maintain a counter for each $x \in I$

Apriori algorithm

- F_i : frequent itemsets of size i — **Level i**
- F_1 : Scan T , maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: **Candidates** in level 2

$x \neq y$

$10^3 \times 10^3$

Apriori algorithm

- F_i : frequent itemsets of size i — **Level i**
- F_1 : Scan T , maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: **Candidates** in level 2
- F_2 : Scan T , maintain a counter for each $X \in C_2$

Apriori algorithm

- F_i : frequent itemsets of size i — **Level i**
- F_1 : Scan T , maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: **Candidates** in level 2
- F_2 : Scan T , maintain a counter for each $X \in C_2$
- $C_3 = \{\{x, y, z\} \mid \{x, y\}, \{x, z\}, \{y, z\} \in F_2\} \Rightarrow x \in F_1, y \in F_1, z \in F_1$
- F_3 : Scan T , maintain a counter for each $X \in C_3$

Implication

Apriori algorithm

- F_i : frequent itemsets of size i — Level i
- F_1 : Scan T , maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: Candidates in level 2
- F_2 : Scan T , maintain a counter for each $X \in C_2$
- $C_3 = \{\{x, y, z\} \mid \{x, y\}, \{x, z\}, \{y, z\} \in F_2\}$ — Naively check $(10^7)^3$ triples
- F_3 : Scan T , maintain a counter for each $X \in C_3$
- ...
- C_k = subsets of size k , every $(k-1)$ -subset is in F_{k-1}
- F_k : Scan T , maintain a counter for each $X \in C_k$
- ...

Bottleneck

$$C_2 \approx F_1 \times F_1$$

$$F_2 \times F_2 \times F_2$$

Apriori algorithm

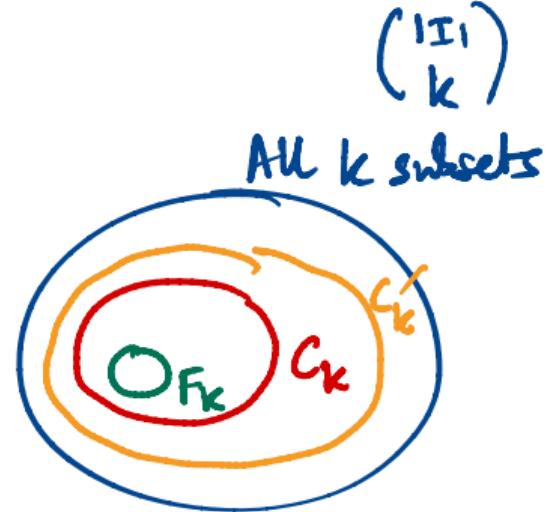
- C_k = subsets of size k , every $(k-1)$ -subset is in F_{k-1}
- How do we generate C_k ?

Apriori algorithm

- C_k = subsets of size k , every $(k-1)$ -subset is in F_{k-1}
- How do we generate C_k ?
- Naïve: enumerate subsets of size k and check each one
 - Expensive!

Apriori algorithm

- C_k = subsets of size k , every $(k-1)$ -subset is in F_{k-1}
- How do we generate C_k ?
- Naïve: enumerate subsets of size k and check each one
 - Expensive!
- **Observation:** Any $C'_k \supseteq C_k$ will do as a candidate set



Apriori algorithm

- C_k = subsets of size k , every $(k-1)$ -subset is in F_{k-1}
- How do we generate C_k ?
- Naïve: enumerate subsets of size k and check each one
 - Expensive!
- Observation: Any $C'_k \supseteq C_k$ will do as a candidate set
- Items are ordered: $i_1 < i_2 < \dots < i_N$
- List each itemset in ascending order — canonical representation

Apriori algorithm

- C_k = subsets of size k , every $(k-1)$ -subset is in F_{k-1}
- How do we generate C_k ?
- Naïve: enumerate subsets of size k and check each one
 - Expensive!
- Observation: Any $C'_k \supseteq C_k$ will do as a candidate set
- Items are ordered: $i_1 < i_2 < \dots < i_N$
- List each itemset in ascending order — canonical representation
- Merge two $(k-1)$ -subsets if they differ in last element

- $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$
- $X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$
- $\text{Merge}(X, X') = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}, i'_{k-1}\}$

Only 2 $k-1$ subsets are guaranteed to be in F_{k-1}

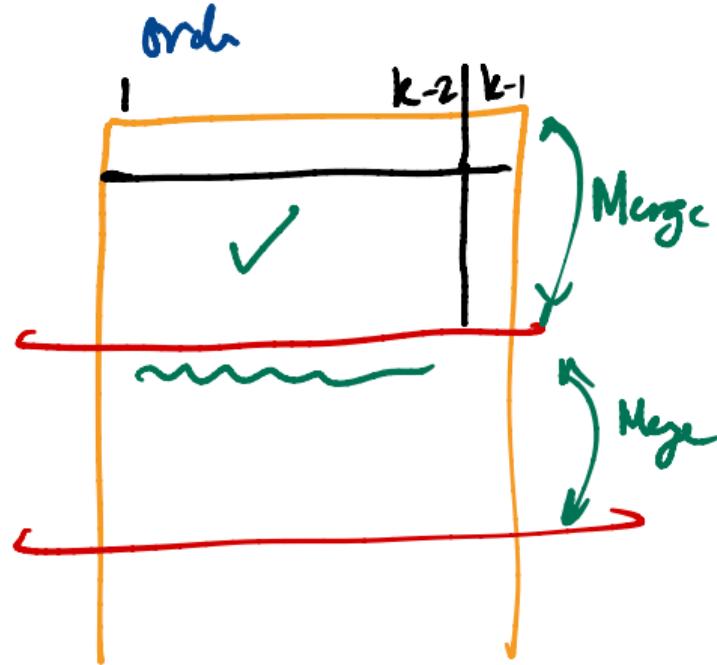
Apriori algorithm

- $\text{Merge}(X, X') = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}, i'_{k-1}\}$
 - $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$
 - $X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$

Apriori algorithm

- $\text{Merge}(X, X') = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}, i'_{k-1}\}$
 - $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$
 - $X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$
- $C'_k = \{\text{Merge}(X, X') \mid X, X' \in F_{k-1}\}$

Write F_{k-1} in dictionary order



Apriori algorithm

- $\text{Merge}(X, X') = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}, i'_{k-1}\}$
 - $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$
 - $X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$
- $C'_k = \{\text{Merge}(X, X') \mid X, X' \in F_{k-1}\}$
- **Claim** $C_k \subseteq C'_k$
 - Suppose $Y = \{i_1, i_2, \dots, i_{k-1}, i_k\} \in C_k$
 - $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\} \in F_{k-1}$ and $X' = \{i_1, i_2, \dots, i_{k-2}, i_k\} \in F_{k-1}$
 - $Y = \text{Merge}(X, X') \in C'_k$

Apriori algorithm

- $\text{Merge}(X, X') = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}, i'_{k-1}\}$
 - $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$
 - $X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$
- $C'_k = \{\text{Merge}(X, X') \mid X, X' \in F_{k-1}\}$
- **Claim** $C_k \subseteq C'_k$
 - Suppose $Y = \{i_1, i_2, \dots, i_{k-1}, i_k\} \in C_k$
 - $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\} \in F_{k-1}$ and $X' = \{i_1, i_2, \dots, i_{k-2}, i_k\} \in F_{k-1}$
 - $Y = \text{Merge}(X, X') \in C'_k$
- Can generate C'_k efficiently
 - Arrange F_{k-1} in dictionary order
 - Split into blocks that differ on last element
 - Merge all pairs within each block

Apriori algorithm

- $C_1 = \{\{x\} \mid x \in I\}$
- $F_1 = \{Z \mid Z \in C_1, Z.\text{count} \geq \sigma \cdot M\}$
- For $k \in \{2, 3, \dots\}$
 - $C'_k = \{\text{Merge}(X, X') \mid X, X' \in F_{k-1}\}$
 - $F_k = \{Z \mid Z \in C'_k, Z.\text{count} \geq \sigma \cdot M\}$

F_1 $\{\cancel{x}\}$
 $\{\cancel{y}\}$
 $\{\cancel{z}\}$

$\{x, y\}$

Apriori algorithm

- $C_1 = \{\{x\} \mid x \in I\}$
- $F_1 = \{Z \mid Z \in C_1, Z.\text{count} \geq \sigma \cdot M\}$
- For $k \in \{2, 3, \dots\}$
 - $C'_k = \{\text{Merge}(X, X') \mid X, X' \in F_{k-1}\}$
 - $F_k = \{Z \mid Z \in C'_k, Z.\text{count} \geq \sigma \cdot M\}$
- When do we stop?

Apriori algorithm

- $C_1 = \{\{x\} \mid x \in I\}$
- $F_1 = \{Z \mid Z \in C_1, Z.\text{count} \geq \sigma \cdot M\}$
- For $k \in \{2, 3, \dots\}$
 - $C'_k = \{\text{Merge}(X, X') \mid X, X' \in F_{k-1}\}$
 - $F_k = \{Z \mid Z \in C'_k, Z.\text{count} \geq \sigma \cdot M\}$
- When do we stop?
 - k exceeds the size of the largest transaction
 - F_k is empty

Apriori algorithm

- $C_1 = \{\{x\} \mid x \in I\}$
- $F_1 = \{Z \mid Z \in C_1, Z.\text{count} \geq \sigma \cdot M\}$
- For $k \in \{2, 3, \dots\}$
 - $C'_k = \{\text{Merge}(X, X') \mid X, X' \in F_{k-1}\}$
 - $F_k = \{Z \mid Z \in C'_k, Z.\text{count} \geq \sigma \cdot M\}$
- When do we stop?
 - k exceeds the size of the largest transaction
 - F_k is empty

"Exact" computation

Next step: From frequent itemsets to association rules