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m Check if X LY |Z

m Dependence should be blocked on
every trail from X to Y
m Each undirected path from X to Y

is a sequence of basic trails
m For (a), (b), (c), need Z present
m For (d), need Z absent
m In general, V-structure includes (a) (b) (c) (d)
descendants of the bottom node
m x and y are D-separated given z if all trails are blocked

m Variation of breadth first search (BFS) to check if y is reachable from x through
some trail

m Extends to sets — each x € X is D-separated from each y € Y
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Markov blanket

m MB(X) — Markov blanket of X
m Parents(X)
m Children(X)
m Parents of Children(X)

m X L ~MB(X)| MB(X)
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Computing with probabilistic graphical models

m John and Mary call Pearl. What is
the probability that there has been a

P(E)
.002

burglary?
. E| Pu
m Want P(b| m,)) ‘ _9(5)
. I 94
. Pb,m.j) | 2o
P(m,j) S ool
m Use chain rule to evaluate joint
probabilities

A [P
7|01

m Reorder variables appropriately,
topological order of graph
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Computing with probabilistic graphical models

1 1
m P(m,j,b) = P(b)Y_ P(e)) P(a|be)P(m|a)P(|a)
e=0

a=0

m Construct the computation P(b)
tree 001

m Use dynamic programming
to avoid duplicated
computations

m However, exact inference is
NP-complete, in general

m Instead, approximate
inference through sampling
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Approximate inference
m Generate random samples .
Earthquake

(b,e,a, m,j), count to estimate
probabilities

P(E)
.002

Burglary

m Random samples should respect

E | P
conditional probabilities t | 95

Sl o94

m Fix parents of x before generating x J", o

m Generate in topological order

m Generate b, e with probabilities
P(b) and P(e)

m Generate a with probability
P(a|b,e)

m Generate j, m with probabilities
PG la), P(m|a)

A [P
7|01
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Approximate in ce

m We are interested in P(b | j, m)

P(E)
.002

Burglary

m Samples with —j or =m are useless

Earthquake

m Can we sample more efficiently?

E | P
t 95
f 94

t 29
Sl oot

A [P
7|01
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Rejection sampling

m P(Rain | Cloudy, Wet Grass)

m Topological order

m Generate Cloudy @

m Generate Sprinkler, Rain
C | PO C [P(R)
m Generate Wet Grass t| .10 @ @ t| .80
7| 50 71 20
m If we start with —Cloudy, sample is
useless

. . . S _R| P
m Immediately stop and reject this 11 .99
sample — rejection sampling t f| .90
£ 90
m General problem with low probability S f] 00

situation — many samples are
rejected
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Likelihood weighted sampling

m P(Rain | Cloudy, Wet Grass)

Fix evidence Cloudy, Wet Grass true

Then generate the other variables
Suppose we generate ¢, —s, r, w

Compute likelihood of evidence:

0.5x09=0.45

C | PS)
t | .10
7| 50

0.45 is likelihood weight of sample

Samples s1, s, ..

Wi, Wo, ... Wy

P(r|c,w)=

Madhavan Mukund

Zs,- has rain Wi

213’9\/ wj

., S5y with weights
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Gibbs sampling

State of a Bayesian network is a valuation of variables (V1, Vs, ..., V)

)

Move probabilistically from s; = (x1,x2,...,X,) to sc = (y1,¥2,....¥n)

m Allow such a move only when s;, s, differ at exactly one position

L S_j - (X].',X23 sy Xie 1y Xiy Xig 1y e e :Xn)

B oS, = (X1, X0, oy Xi—1, Viy Xit1y - - 5 Xn)
m Sampling algorithm

m Current state is 5; = (x1, %2, ..., X,)

m Choose i uniformly in [1, n]

m Resample x; given current values (x1, X2, ..., Xi—1,Xj11, -, Xn)

m Random walk through state space — count number of visits to each state
m Need to compute Ply; | X1, X2, ..., Xj—1, Xit1s .- s Xn)
m Why does this work at all?
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Approximate inference using Markov chains

Markov chains
m Finite set of states, with transition probabilities between states

m For us, a state will be an assignment of values to variables

m A three state Markov Chain
m Represent using a transition matrix — stochastic
0

1
2
A= 0
0

Ni= O NI

1
1
2

m P[j] is probability of being in state j

1
m Start in state 1, so initially P= | 0
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Markov chains . ..

m After one step:

0 3 3
PTA=[100]|100|=[01% 1]
2 2 0
m After second step:
0 3 3
[0 3 3]j1 00 =[3 % 0]
119
2 2

m After k steps, P[j] is probability of being in
state j

m Continuing our example,

(3 2 0]—-[4 5 5l2lw% i 5]
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Ergodicity

m Is it the case that P[j] > 0 for all j continuously,
after some point?

m Markov chain A is ergodic if there is some tg such
that for every P, for all t > ty, for every j,
(PTAH[j] > o.

m No matter where we start, after t > t steps, every

state has a nonzero probability of being visited in
step t

m Properties of ergodic Markov chains
m There is a stationary distribution 7, 7' A = 7
B 7 is a left eigenvector of A

m For any starting distribution P, lim PTA! =7

t—o0

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan—Apr 2025



Ergodicity . ..

m How can ergodicity fail?
m Starting from /, we reach a set of states from which
there is no path back to /

m We haveacycle/ —j—k—i—j— k-, sowe
can only visit some states periodically

m Sufficient conditions for ergodicity
m Irreducibility: When viewed as a directed graph, A
is strongly connected

m For all states /,/, there is a path from / to j and a
path from j to /

m Aperiodicity: For any pair of vertices /, j, the gcd of
the lengths of all paths from / to j is 1

m In particular, paths (loops) from i to i do not all
have lengths that are multiples of some kK > 2 —
prevents bad cycles
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Ergodicity . ..

m Can efficiently approximate I|m PT At
by repeated squaring: PTA2 PTA4
PTAR, .., PTA

m Mixing time — how fast this
converges to 7

m Stationary distribution represents
fraction of visits to each state in a long
enough execution

m Can we create a Markov chain from a
Bayesian network so that the stationary
distribution is meaningful?
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Approximate inference using Markov chains

m Bayesian network has variables
Vi,V2,...,Vp

m Each assignment of values to the variables
is a state

m Set up a Markov chain on these states

m Gibbs sampling — random walk through
state space, count visits to each state

m Stationary distribution should assign to
state s the probability P(s) in the
Bayesian network

m How to reverse engineer the transition
probabilities to achieve this?
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