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D-Separation

Check if X ⊥ Y | Z

Dependence should be blocked on
every trail from X to Y

Each undirected path from X to Y
is a sequence of basic trails

For (a), (b), (c), need Z present

For (d), need Z absent

In general, V-structure includes
descendants of the bottom node

x and y are D-separated given z if all trails are blocked

Variation of breadth first search (BFS) to check if y is reachable from x through
some trail

Extends to sets — each x ∈ X is D-separated from each y ∈ Y
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Markov blanket

MB(X ) — Markov blanket of X

Parents(X )

Children(X )

Parents of Children(X )

X ⊥ ¬MB(X ) | MB(X )
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Computing with probabilistic graphical models

John and Mary call Pearl. What is
the probability that there has been a
burglary?

Want P(b | m, j)

P(b,m, j)

P(m, j)

Use chain rule to evaluate joint
probabilities

Reorder variables appropriately,
topological order of graph
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Computing with probabilistic graphical models

P(m, j , b) = P(b)
1∑

e=0

P(e)
1∑

a=0

P(a | b, e)P(m | a)P(j | a)

Construct the computation
tree

Use dynamic programming
to avoid duplicated
computations

However, exact inference is
NP-complete, in general

Instead, approximate
inference through sampling
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Approximate inference

Generate random samples
(b, e, a,m, j), count to estimate
probabilities

Random samples should respect
conditional probabilities

Fix parents of x before generating x

Generate in topological order

Generate b, e with probabilities
P(b) and P(e)

Generate a with probability
P(a | b, e)
Generate j , m with probabilities
P(j | a), P(m | a)
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Approximate inference

We are interested in P(b | j ,m)

Samples with ¬j or ¬m are useless

Can we sample more efficiently?
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Rejection sampling

P(Rain | Cloudy ,Wet Grass)

Topological order

Generate Cloudy

Generate Sprinkler , Rain

Generate Wet Grass

If we start with ¬Cloudy , sample is
useless

Immediately stop and reject this
sample — rejection sampling

General problem with low probability
situation — many samples are
rejected
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Likelihood weighted sampling

P(Rain | Cloudy ,Wet Grass)

Fix evidence Cloudy ,Wet Grass true

Then generate the other variables

Suppose we generate c ,¬s, r ,w

Compute likelihood of evidence:
0.5× 0.9 = 0.45

0.45 is likelihood weight of sample

Samples s1, s2, . . . , sN with weights
w1,w2, . . .wN

P(r | c ,w) =

∑
si has rain wi∑
1≤j≤N wj

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 9 / 16



Gibbs sampling

State of a Bayesian network is a valuation of variables (V1,V2, . . . ,Vn)

Move probabilistically from sj = (x1, x2, . . . , xn) to sk = (y1, y2, . . . , yn)

Allow such a move only when sj , sk differ at exactly one position

sj = (x1, x2, . . . , xi−1, xi , xi+1, . . . , xn)

sk = (x1, x2, . . . , xi−1, yi , xi+1, . . . , xn)

Sampling algorithm

Current state is sj = (x1, x2, . . . , xn)

Choose i uniformly in [1, n]

Resample xi given current values (x1, x2, . . . , xi−1, xi+1, . . . , xn)

Random walk through state space — count number of visits to each state

Need to compute P[yi | x1, x2, . . . , xi−1, xi+1, . . . , xn]

Why does this work at all?
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Approximate inference using Markov chains

Markov chains

Finite set of states, with transition probabilities between states

For us, a state will be an assignment of values to variables

A three state Markov Chain

1

2 3

1
2

1
2

1
1
2

1
2

Represent using a transition matrix — stochastic

A =

 0 1
2

1
2

1 0 0

1
2

1
2 0


P[j ] is probability of being in state j

Start in state 1, so initially P =

 1
0
0


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Markov chains . . .

After one step:

P⊤A =
[
1 0 0

]  0 1
2

1
2

1 0 0

1
2

1
2 0

 =
[
0 1

2
1
2

]

After second step:

[
0 1

2
1
2

]  0 1
2

1
2

1 0 0

1
2

1
2 0

 =
[

3
4

1
4 0

]
After k steps, P[j ] is probability of being in
state j

Continuing our example,[
3
4

1
4 0

]
→

[
1
4

3
8

3
8

]
→

[
9
16

5
16

1
8

]
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Ergodicity

Is it the case that P[j ] > 0 for all j continuously,
after some point?

Markov chain A is ergodic if there is some t0 such
that for every P, for all t > t0, for every j ,
(P⊤At)[j ] > 0.

No matter where we start, after t > t0 steps, every
state has a nonzero probability of being visited in
step t

Properties of ergodic Markov chains

There is a stationary distribution π, π⊤A = π

π is a left eigenvector of A

For any starting distribution P, lim
t→∞

P⊤At = π
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Ergodicity . . .

How can ergodicity fail?

Starting from i , we reach a set of states from which
there is no path back to i

We have a cycle i → j → k → i → j → k · · ·, so we
can only visit some states periodically

Sufficient conditions for ergodicity

Irreducibility: When viewed as a directed graph, A
is strongly connected

For all states i , j , there is a path from i to j and a
path from j to i

Aperiodicity: For any pair of vertices i , j , the gcd of
the lengths of all paths from i to j is 1

In particular, paths (loops) from i to i do not all
have lengths that are multiples of some k ≥ 2 —
prevents bad cycles
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Ergodicity . . .

Can efficiently approximate lim
t→∞

P⊤At

by repeated squaring: P⊤A2, P⊤A4,
P⊤A8, . . . , P⊤A2k , . . .

Mixing time — how fast this
converges to π

Stationary distribution represents
fraction of visits to each state in a long
enough execution

Can we create a Markov chain from a
Bayesian network so that the stationary
distribution is meaningful?
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Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 15 / 16



Approximate inference using Markov chains

Bayesian network has variables
v1, v2, . . . , vn

Each assignment of values to the variables
is a state

Set up a Markov chain on these states

Gibbs sampling — random walk through
state space, count visits to each state

Stationary distribution should assign to
state s the probability P(s) in the
Bayesian network

How to reverse engineer the transition
probabilities to achieve this?
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