
Lecture 20: 8 April, 2025

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning
January–April 2025

https://www.cmi.ac.in/~madhavan


Neural networks

Acyclic network of perceptrons with non-linear activation functions

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 2 / 18



Example: Recognizing handwritten digits

MNIST data set

1000 samples of 10 handwritten
digits

Assume input has been segmented

Each digit is 28× 28 pixels

Grayscale value, 0 to 1

784 pixels

Input x = (x1, x2, . . . , x784)

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 3 / 18



Example: Network structure

Input layer (x1, x2, . . . , x784)

Single hidden layer, 15 nodes

Output layer, 10 nodes

Decision aj for each digit
j ∈ {0, 1, . . . , 9}

Final output is best aj

Näıvely, argmax
j

aj

Softmax, argmax
j

eaj∑
j e

aj

“Smooth” version of argmax

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 4 / 18



Example: Extracting features

Hidden layers extract features

For instance, patterns in different quadrants

Combination of features determines output

Claim: Automatic identification of features is
strength of the model

Counter argument: implicitly extracted
features are impossible to interpret

Explainability

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 5 / 18



Training neural networks

Without loss of generality,
Assume the network is layered

All paths from input to output have the same length

Each layer is fully connected to the previous one
Set weight to 0 if connection is not needed

Structure of an individual neuron
Input weights w1, . . . ,wm, bias b, output z , activation value a

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 6 / 18



Notation

Layers ℓ ∈ {1, 2, . . . , L}
Inputs are connected first hidden layer, layer 1
Layer L is the output layer

Layer ℓ has mℓ nodes 1, 2, . . . ,mℓ

Node k in layer ℓ has bias bℓk , output z
ℓ
k and activation value aℓk

Weight on edge from node j in level ℓ−1 to node k in level ℓ is w ℓ
kj

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 7 / 18



Notation

Why the inversion of indices in the subscript w ℓ
kj?

zℓk = w ℓ
k1a

ℓ−1
1 + w ℓ

k2a
ℓ−1
2 + · · ·+ w ℓ

kmℓ−1
aℓ−1
mℓ−1

Let w ℓ
k = (w ℓ

k1,w
ℓ
k2, . . . ,w

ℓ
kmℓ−1

)

and aℓ−1 = (aℓ−1
1 , aℓ−1

2 , . . . , aℓ−1
mℓ−1

)

Then zℓk = w ℓ
k · aℓ−1

Assume all layers have same number of nodes
Let m = max

ℓ∈{1.2,...,L}
mℓ

For any layer i , for k > mi , we set all of w ℓ
kj , b

ℓ
k , z

ℓ
k , a

ℓ
k to 0

Matrix formulation
zℓ1
zℓ2
· · ·
zℓm

 =


w ℓ

1

w ℓ
2

· · ·
w ℓ

m




aℓ−1
1

aℓ−1
2

· · ·
aℓ−1
m


Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 8 / 18



Learning the parameters

Need to find optimum values for all weights w ℓ
kj

Use gradient descent

Cost function C , partial derivatives
∂C

∂w ℓ
kj

,
∂C

∂bℓk

Assumptions about the cost function

1 For input x , C (x) is a function of only the output layer activation, aL

For instance, for training input (xi , yi ), sum-squared error is (yi − aLi )
2

Note that xi , yi are fixed values, only aLi is a variable

2 Total cost is average of individual input costs

Each input xi incurs cost C(xi ), total cost is
1

n

n∑
i=1

C(xi )

For instance, mean sum-squared error
1

n

n∑
i=1

(yi − aLi )
2

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 9 / 18



Learning the parameters

Assumptions about the cost function

1 For input x , C (x) is a function of only the output layer activation, aL

2 Total cost is average of individual input costs

With these assumptions:

We can write
∂C

∂w ℓ
kj

,
∂C

∂bℓk
in terms of individual

∂aLi
∂w ℓ

kj

,
∂aLi
∂bℓk

Can extrapolate change in individual cost C (x) to change in overall cost C — stochastic
gradient descent

Complex dependency of C on w ℓ
kj , b

ℓ
k

Many intermediate layers

Many paths through these layers

Use chain rule to decompose into local dependencies

y = g(f (x)) ⇒ ∂g

∂x
=

∂g

∂f

∂f

∂x
Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 10 / 18



Calculating dependencies

If we perturb the output zℓj at node j in layer ℓ, what is the impact on final output,
overall cost?

Focus on
∂C

∂zℓj
— from these, we can compute

∂C

∂w ℓ
jk

,
∂C

∂bℓj

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 11 / 18



Computing partial derivatives

Use chain rule to run backpropagation algorithm

Given an input, execute the network from left to right to compute all outputs

Using the chain rule, work backwards from right to left to compute all values of
∂C

∂zℓj

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 12 / 18



Applying the chain rule

Let δℓj denote
∂C

∂zℓj

Base Case

ℓ = L, δLj

Chain rule:
∂C

∂zLj
=

∂C

∂aLj

∂aLj

∂zLj

For instance, if C =
1

n

n∑
i=1

(yi − aLi )
2, then

∂C

∂aLj
=

1

n
(2(yj − aLj )(−1)) =

2

n
(aLj − yj)

aLj = σ(zLj ), so
∂aLj

∂zLj
= σ′(zLj )

σ(u) =
1

1 + e−u
, σ′(u) =

∂σ(u)

∂u
= σ(u)(1− σ(u)) Work this out!

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 13 / 18



Applying the chain rule

Induction step

From δℓ+1
j to δℓj

δℓj =
∂C

∂zℓj
=

m∑
k=1

∂C

∂zℓ+1
k

∂zℓ+1
k

∂zℓj

First term inside summation:
∂C

∂zℓ+1
k

= δℓ+1
k

Second term: zℓ+1
k =

m∑
i=1

w ℓ+1
ki aℓi + bℓ+1

k =
m∑
i=1

w ℓ+1
ki σ(zℓi ) + bℓ+1

k

For i ̸= j ,
∂

∂zℓj
[w ℓ+1

ki σ(zℓi ) + bℓ+1
k ] = 0

For i = j ,
∂

∂zℓj
[w ℓ+1

kj σ(zℓj ) + bℓ+1
k ] = w ℓ+1

kj σ′(zℓj )

So
∂zℓ+1

k

∂zℓj
= w ℓ+1

kj σ′(zℓj )

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 14 / 18



Finishing touches

What we actually need to compute are
∂C

∂w ℓ
kj

,
∂C

∂bℓk
∂C

∂w ℓ
kj

=
∂C

∂zℓk

∂zℓk
∂w ℓ

kj

= δℓk
∂zℓk
∂w ℓ

kj

∂C

∂bℓk
=

∂C

∂zℓk

∂zℓk
∂bℓk

= δℓk
∂zℓk
∂bℓk

We have already computed δℓk , so what remains is
∂zℓk
∂w ℓ

kj

,
∂zℓk
∂bℓk

Since zℓk =
m∑
i=1

w ℓ
kia

ℓ−1
i + bℓk , it follows that

∂zℓk
∂w ℓ

kj

= aℓ−1
j — terms with i ̸= j vanish

∂zℓk
∂bℓk

= 1 — terms with i ̸= j vanish

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 15 / 18



Backpropagation

In the forward pass, compute all zℓk , a
ℓ
k

In the backward pass, compute all δℓk , from which we can get all
∂C

∂w ℓ
kj

,
∂C

∂bℓk

Increment each parameter by a step ∆ in the direction opposite the gradient

Typically, partition the training data into groups (mini batches)

Update parameters after each mini batch — stochastic gradient descent

Epoch — one pass through the entire training data

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 16 / 18



Challenges

Backpropagation dates from mid-1980’s

Learning representations by back-propagating errors
David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams
Nature, 323, 533–536 (1986)

Computationally infeasible till advent of modern parallel hardware, GPUs for vector
(tensor) calculations

Vanishing gradient problem — cascading derivatives make gradients in initial layers very
small, convergence is slow

In rare cases, exploding gradient also occurs

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 17 / 18



Pragmatics

Many heuristics to speed up gradient descent

Dynamically vary step size

Dampen positive-negative oscillations . . .

Libraries implementing neural networks have several hyperparameters that can be tuned

Network structure: Number of layers, type of activation function — RELU, tanh

Training: Mini-batch size, number of epochs

Heuristics: Choice of optimizer for gradient descent

Loss functions

As we have seen MSE is not a good choice

Cross entropy is better — corresponds to finding MLE

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan–Apr 2025 18 / 18


