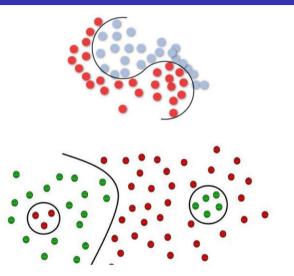
Lecture 17: 25 March, 2025

Madhavan Mukund https://www.cmi.ac.in/~madhavan

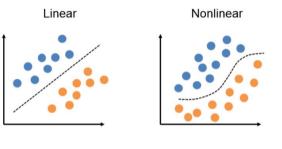
Data Mining and Machine Learning January–April 2025

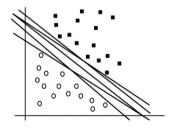
A geometric view of supervised learning

- Think of data as points in space
- Find a separating curve (surface)
- Separable case
 - Each class is a connected region
 - A single curve can separate them
- More complex scenario
 - Classes form multiple connected regions
 - Need multiple separators

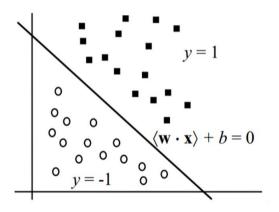


- Simplest case linearly separable data
- Dual of linear regression
 - Find a line that passes close to a set of points
 - Find a line that separates the two sets of points
- Many lines are possible
 - How do we find the best one?
 - What is a good notion of "cost" to optimize?

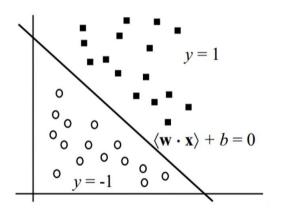




- Each input x has n attributes ⟨x₁, x₂,...,x_n⟩
- Linear separator has the form $w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$
- Classification criterion
 - $w_1 x_1 + w_2 x_2 + \cdots + w_n x_n + b > 0$, classify yes, +1
 - $w_1 x_1 + w_2 x_2 + \cdots + w_n x_n + b < 0$, classify no, -1



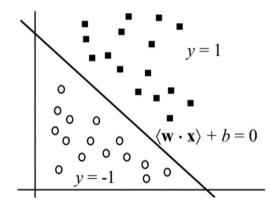
- Dot product $w \cdot x$ $\langle w_1, w_2, \dots, w_n \rangle \cdot \langle x_1, x_2, \dots, x_n \rangle =$ $w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
- Collapsed form $w \cdot x + b > 0, w \cdot x + b < 0$
- Rename bias b as w₀, create fictitious x₀ = 1
- Classification criteria become
 w · x > 0, w · x < 0



(Frank Rosenblatt, 1958)

- Each training input is (x_i, y_i) , where $x_i = \langle x_{i_1}, x_{i_2}, \dots, x_{i_n} \rangle$ and $y_i = +1$ or -1
- Need to find $w = \langle w_0, w_1, \dots, w_n \rangle$
 - Recall $x_{i_0} = 1$, always
 - Initialize $w = \langle 0, 0, \dots, 0 \rangle$

While there exists x_i , y_i such that $y_i = +1$ and $w \cdot x_i < 0$, or $y_i = -1$ and $w \cdot x_i > 0$



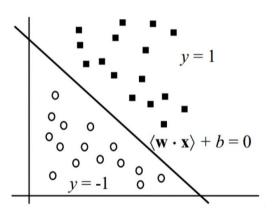
Update w to $w + x_i y_i$

Perceptron algorithm ...

- Keep updating w as long as some training data item is misclassified
- Update is an offset by misclassified input
- Need not stabilize, potentially an infinite loop

Theorem

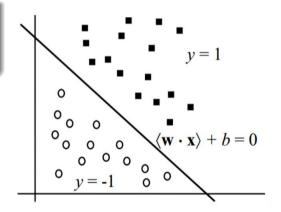
If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator



Theorem

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

- Termination time depends on two factors
 - Width of the band separating the positive and negative points
 - Narrow band takes longer to converge
 - Magnitude of the x values
 - Larger spread of points takes longer to converge



Theorem

If there is w^* satisfying $(w^* \cdot x_i)y_i \ge 1$ for all *i*, then the Perceptron Algorithm finds a solution *w* with $(w \cdot x_i)y_i > 0$ for all *i* in at most $r^2|w^*|^2$ updates, where $r = \max_i |x_i|$.

- Assume w^* exists. Keep track of two quantities: $w^{\top}w^*$, $|w|^2$.
- Each update increases $w^{\top}w^*$ by at least 1.

$$(w + x_i y_i)^{\top} w^* = w^{\top} w^* + x_i^{\top} y_i w^* \ge w^{\top} w^* + 1$$

• Each update increases $|w|^2$ by at most r^2

 $(w + x_i y_i)^{\top}(w + x_i y_i) = |w|^2 + 2x_i^{\top} y_i w + |x_i y_i|^2 \le |w|^2 + |x_i|^2 \le |w|^2 + r^2$

• Note that we update only when $x_i^\top y_i w < 0$

Perceptron Algorithm — Proof (cont'd)

- Assume Perceptron Algorithm makes *m* updates
- Then, $w^{\top}w^* \ge m$, $|w|^2 \le mr^2$

```
m \leq |w||w^*|, \text{ because } a \cdot b = |a||b|\cos\theta
m \leq |w||w^*|
m/|w^*| \leq |w|
m/|w^*| \leq r\sqrt{m}, \text{ because } |w|^2 \leq mr^2
m/|w^*| \leq r\sqrt{m}
\sqrt{m} \leq r|w^*|
m \leq r^2|w^*|^2
```

• Note (for later) that final w is of the form $\sum n_i x_i$

- Simplest case linearly separable data
- Perceptron algorithm is a simple procedure to find a linear separator, if one exists
- Many lines are possible
 - Does the Perceptron algorithm find the best one?
 - What is a good notion of "cost" to optimize?

