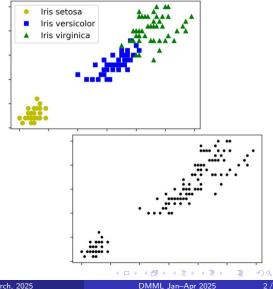
Lecture 14: 13 March, 2025

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2025


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

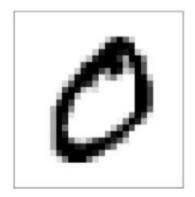
Unsupervised learning

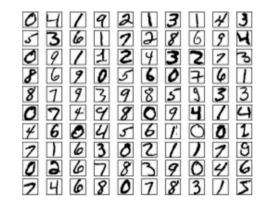
- Supervised learning requires labelled data
- Vast majority of data is unlabelled
- What insights can you get with unlabelled data?

"If intelligence was a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake"

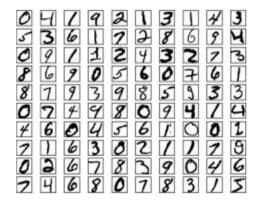
> - Yann LeCun ACM Turing Award 2018

Applications

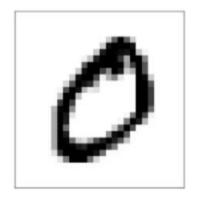

- Customer segmentation
 - Marketing campaigns
- Anomaly detection
 - Outliers
- Semi-supervised learning
 - Propagate limited labels
- Image segmentation
 - Object detection


Clustering for supervised learning

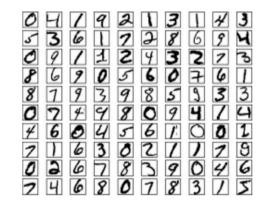
- Labelling training data is a bottleneck of supervised learning
- Handwritten digits 0,1,...,9
 - 1797 images
 - **8** \times 8 pixels, grayscale
 - Each image is a 64-tuple $(x_1, x_2, \ldots, x_{64})$


Clustering for supervised learning

- Labelling training data is a bottleneck of supervised learning
- Handwritten digits 0,1,...,9
 - 1797 images
 - **8** \times 8 pixels, grayscale
 - Each image is a 64-tuple $(x_1, x_2, \ldots, x_{64})$
- Standard logistic regression model has 96.9% accuracy



Clustering as preprocessing


- Use K Means to make 50 clusters
- Replace each input by its distance from the 50 centroids
 - Instead of (*x*₁, *x*₂, ..., *x*₆₄)
 - $\bullet \ldots (d_1, d_2, \ldots, d_{50})$
- Logistic regression on this representation jumps from 96.9% to 97.8% accuracy!
- Varying the number of clusters changes the accuracy
 - 99 clusters is optimum, 98.2% accuracy

- 1797 images of handwritten digits 0,1,...,9
- Standard logistic regression model has 96.9% accuracy
- What if we couldn't label the entire training set?

- 1797 images of handwritten digits 0,1,...,9
- Standard logistic regression model has 96.9% accuracy
- What if we couldn't label the entire training set?
- Suppose we take 50 random samples as training set
- Logistic regression gives 83.3% accuracy

- Instead of 50 random samples, 50 clusters using K means
- Use image nearest to each centroid as training set
- 50 representative images
 - ... but not randomly chosen 50
- Logistic regression accuracy jumps to 92.2%

4	8	0	6	8
5	5	8	5	2
1	6	9	0	8
6	5	2	4	1
4	2	9	4	7
3	856527706	7	9	ないのイチュューマ
1	2	5	6	7
3	0	7	4	1
8	6	3	9	2
516431386	2	0~9~~~~~~~	6504496491	ı

- Propagate representative image label to entire cluster
- Logistic regression improves to 93.3%
- Propagage representive image label to 20% items closest to centroid
- Logistic regression improves to 94%
- Only 50 actual labels used, about 5 per class!

4	8	0	6	8
5	5		5	2
1	6	9	0	8
454643138	652700	80N97977	650449649	828172112
4	2	9	4	7
3	7	7	9	1
1	2	5	6	7
3	0	7	4	1
8	6	3	9	2
6	2	3	ł	ı

- An image is a matrix of pixels
- Each pixel's colour is a triple (R,G,B)
- K means clustering on these values merges colours

- An image is a matrix of pixels
- Each pixel's colour is a triple (R,G,B)
- K means clustering on these values merges colours
- With 10 clusters, not much change

- An image is a matrix of pixels
- Each pixel's colour is a triple (R,G,B)
- K means clustering on these values merges colours
- With 10 clusters, not much change
- Same with 8

- An image is a matrix of pixels
- Each pixel's colour is a triple (R,G,B)
- K means clustering on these values merges colours
- With 10 clusters, not much change
- Same with 8
- At 6 colours, ladybug red goes

- An image is a matrix of pixels
- Each pixel's colour is a triple (R,G,B)
- K means clustering on these values merges colours
- With 10 clusters, not much change
- Same with 8
- At 6 colours, ladybug red goes
- 4 colours

- An image is a matrix of pixels
- Each pixel's colour is a triple (R,G,B)
- K means clustering on these values merges colours
- With 10 clusters, not much change
- Same with 8
- At 6 colours, ladybug red goes
- 4 colours
- Finally 2 colours, flower and rest

