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A geometric view of supervised learning

Think of data as points in space

Find a separating curve (surface)

Separable case

Each class is a connected region

A single curve can separate them

Simplest case — linearly separable data

Dual of linear regression

Find a line that passes close to a set
of points

Find a line that separates the two sets
of points
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Perceptron algorithm

(Frank Rosenblatt, 1958)

Each training input is (xi , yi ), where
xi = →xi1 , xi2 , . . . , xin↑ and yi = +1 or ↓1

Need to find w = →w0,w1, . . . ,wn↑
Recall xi0 = 1, always

Initialize w = →0, 0, . . . , 0↑

While there exists xi , yi such that

yi = +1 and w · xi < 0, or

yi = ↓1 and w · xi > 0

Update w to w + xiyi
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Linear separators

Perceptron algorithm is a simple procedure
to find a linear separator, if one exists

Many lines are possible

Does the Perceptron algorithm find the
best one?

What is a good notion of “cost” to
optimize?
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Margin

Each separator defines a margin

Empty corridor separating the points

Separator is the centre line of the margin

Wider margin makes for a more robust
classifier

More gap between the classes

Optimum classifier is one that maximizes
the width of its margin

Margin is defined by the training data
points on the boundary

Support vectors
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Finding a maximum margin classifier

Recall our original linear classifier

w1x1 + w2x2 + · · ·wnxn + b > 0,
classify yes, +1

w1x1 + w2x2 + · · ·wnxn + b < 0,
classify no, ↓1

Scale margin so that separation is 1 on
either side

w1x1 + w2x2 + · · ·wnxn + b > 1,
classify yes, +1

w1x1 + w2x2 + · · ·wnxn + b < ↓1,
classify no, ↓1
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Finding a maximum margin classifier

Scale margin so that separation is 1 on
either side

w1x1 + w2x2 + · · ·wnxn + b > 1,
classify yes, +1

w1x1 + w2x2 + · · ·wnxn + b < ↓1,
classify no, ↓1

Using Pythagoras’s theorem,
perpendicular distance to nearest support

vector is
1

|w | , where

|w | =
√

w2
1 + w2

2 + · · ·+ w2
n
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Optimization problem

Want to maximize the overall margin
2

|w |

Equivalently, minimize
|w |
2

Also, w should classify each (xi , yi )
correctly

w1x i1 + w2x i2 + · · ·wnx in + b > 1,
if yi = 1

w1x i1 + w2x i2 + · · ·wnx in + b < ↓1,
if yi = ↓1
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Optimization problem

Minimize
|w |
2

Subject to

w1x i1 + w2x i2 + · · ·wnx in + b > 1, if yi = 1

w1x i1 + w2x i2 + · · ·wnx in + b < ↓1, if yi = ↓1

The constraints are linear

The objective function is not linear

|w | =
√

w2
1 + w2

2 + · · ·+ w2
n

This is a quadratic optimization problem,
not linear programming
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Solution to optimization problem

Rewrite as dual

Maximize

n∑

i=1

ωi ↓
1

2

n∑

i ,j=1

yiyjωiωj xi · xj

Subject to

ωi ↔ 0, i ↗ 1, 2, . . . n

Lagrange multipliers ω1, ω2, . . . , ωN , one
multiplier per training input
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Solution to optimization problem

Convex optimization theory

Can be solved using computational
techniques

Solution expressed in terms of Lagrange
multipliers ω1, ω2, . . . , ωN

ωi is non-zero i! xi is a support vector

Final classifier for new input z

sign

[
∑

i→sv
yiωi (xi · z) + b

]

sv is set of support vectors
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Support Vector Machine (SVM)

sign

[
∑

i→sv
yiωi (xi · z) + b

]

Solution depends only on support vectors

If we add more training data away from
support vectors, separator does not
change

Solution uses dot product of support
vectors with new point

Will be used later, in the non-linear case
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The non-linear case

Some points may lie on the wrong side of
the classifier

How do we account for these?

Add an error term to the classifier
requirement

Instead of

w · x + b > 1, if yi = 1
w · x + b < ↓1, if yi = ↓1

we have

w · x + b > 1↓ εi , if yi = 1
w · x + b < ↓1 + εi , if yi = ↓1
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Soft margin classifier

w · x + b > 1↓ εi , if yi = 1
w · x + b < ↓1 + εi , if yi = ↓1

Error term always non-negative,

If the point is correctly classified, error
term is 0

Soft margin — some points can drift
across the boundary

Need to account for the errors in the
objective function

Minimize the need for non-zero error
terms
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Soft margin optimization

Minimize
|w |
2

+
N∑

i=1

ε2i

Subject to

εi ↔ 0

w · xi + b > 1↓ εi , if yi = 1

w · xi + b < ↓1 + εi , if yi = ↓1

Constraints include requirement that error
terms are non-negative

Again the objective function is quadratic
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Soft margin optimization

Can again be solved using the dual

Form of the solution turns out to be the
same as the hard margin case

Expression in terms of Lagrange
multipliers ωi

Only terms corresponding to support
vectors are actively used

sign

[
∑

i→sv
yiωi (xi · z) + b

]
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The non-linear case

How do we deal with datasets where
the separator is a complex shape?

Geometrically transform the data

Typically, add dimensions

For instance, if we can “lift” one class,
we can find a planar separator between
levels
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Geometric tranformation

Consider two sets of points separated by
a circle of radius 1

Equation of circle is x2 + y2 = 1

Points inside the circle, x2 + y2 < 1

Points outside circle, x2 + y2 > 1

Transformation
ϑ : (x , y) ↘≃ (x , y , x2 + y2)

Points inside circle lie below z = 1

Point outside circle lifted above z = 1
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SVM after transformation

SVM in original space

sign

[
∑

i→sv
yiωi (xi · z) + b

]

After transformation

sign

[
∑

i→sv
yiωi (ϑ(xi ) · ϑ(z)) + b

]

Training: maximize
n∑

i=1

ωi ↓
1

2

n∑

i ,j=1

yiyjωiωj ϑ(xi ) · ϑ(xj)

All we need to know is how to compute
dot products in transformed space
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Dot products

Consider the transformation

ϑ : (x1, x2) ↘≃ (1,
⇐
2x1,

⇐
2x2, x21 ,

⇐
2x1x2, x22 )

Dot product in transformed space

ϑ(x) · ϑ(z) = 1 + 2x1z1 + 2x2z2 + x21 z
2
1

+2x1x2z1z2 + x22 z
2
2

= (1 + x1z1 + x2z2)2

Transformed dot product can be expressed
in terms of original inputs

ϑ(x) · ϑ(z) = K (x , z) = (1 + x1z1 + x2z2)2
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Kernels

K is a kernel for transformation ϑ if
K (x , z) = ϑ(x) · ϑ(z)

If we have a kernel, we don’t need to
explicitly compute transformed points

All dot products can be computed
implicitly using the kernel on original data
points
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Kernels

If we know K is a kernel for some
transformation ϑ, we can blindly use K
without even knowing what ϑ looks like!

When is a function a valid kernel?

Has been studied in mathematics —
Mercer’s Theorem

Criteria are non-constructive

Can define su”cient conditions from
linear algebra
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Kernels

Kernel over training data x1, x2, . . . , xN
can be represented as a gram matrix

K =

x1 x2 · · · xn
x1
x2
...
xn









Entries are values K (xi , xj)

Gram matrix should be positive
semi-definite for all x1, x2, . . . , xN
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Known kernels

Fortunately, there are many known
kernels

Polynomial kernels

K (x , z) = (1 + x · z)k

Any K (x , z) representing a similarity
measure

Gaussian radial basis function —
similarity based on inverse exponential
distance

K (x , z) = e↑c|x↑z|2
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mid 1990s - 2010

SVM+ Kernel was best knownclassified

Investment in finding good Kernels
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