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Limitations of classification models

Bias : Expressiveness of model limits classification

For instance, linear separators

Variance: Variation in model based on sample of training data

Shape of a decision tree varies with distribution of training inputs

Models with high variance are expressive but unstable

In principle, a decision tree can capture an arbitrarily complex classification
criterion

Actual structure of the tree depends on impurity calculation

Danger of overfitting: model tied too closely to training set

Is there an alternative to pruning?
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Ensemble models

Sequence of independent training data sets D1, D2, . . . , Dk

Generate models M1, M2, . . . , Mk

Take this ensemble of models and “average” them

For regression, take the mean of the predictions

For classification, take a vote among the results and choose the most popular one

Challenge: Infeasible to get large number of independent training samples

Can we build independent models from a single training data set?

Strategy to build the model is fixed

Same data will produce same model
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Bootstrap Aggregating = Bagging

Training data has N items

TD = {d1, d2, . . . , dN}

Pick a random sample with replacement

Pick an item at random (probability 1
N )

Put it back into the set

Repeat K times

Some items in the sample will be repeated

If sample size is same as data size (K = N), expected number of distinct items

is (1→ 1

e
) · N

Approx 63.2%
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Bootstrap Aggregating = Bagging

Sample with replacement of size N : bootstrap sample

Approx 2/3 of full training data

Take k such samples

Build a model for each sample

Models will vary because each uses di!erent training data

Final classifier: report the majority answer

Assumptions: binary classifier, k odd

Provably reduces variance
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Bagging with decision trees
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Bagging with decision trees
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When to use bagging

Bagging improves performance when there is high variance

Independent samples produce su”ciently di!erent models

A model with low variance will not show improvement

k-nearest neighbour classifier

Given an unknown input, find k nearest neighbours and choose majority

Across di!erent subsets of training data, variation in k nearest neighbours is
relatively small

Bootstrap samples will produce similar models
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Random Forest

Applying bagging to decision trees with a further twist

As before, k bootstrap samples D1, D2, . . . , Dk

For each Di , build decision tree Ti as follows

Each data item has M attributes

Normally, choose maximum impurity gain among M attributes, then best among
remaining M → 1, . . .

Instead, fix a small limit m < M — say m = log2 M + 1

At each level, choose a random subset of available attributes of size m

Evaluate only these m attributes to choose next query

No pruning — build each tree to the maximum

Final classifier: vote on the results returned by T1, T2, . . . , Tk
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Another option-
"Decision stumps"
L
One mode trees



Random Forest . . .

Theoretically, overall error rate depends on two factors

Correlation between pairs of trees — higher correlation results in higher overall
error rate

Strength (accuracy) of each tree — higher strength of individual trees results in
lower overall error rate

Reducing m, the number of attributes examined at each level, reduces
correlation and strength

Both changes influence the error rate in opposite directions

Increasing m increases both correlation and strength

Search for a value of m that optimizes overall error rate
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Out of bag error estimate

Each bootstrap sample omits about 1/3 of the data items

Hence, each data item is omitted by about 1/3 of the samples

If data item d does not appear in bootstrap sample Di , d is out of bag (oob)
for Di

Oob classification — for each d , vote only among those Ti where d is oob for
Di

Use oob samples to validate the model

Estimate generalization error rate of overall model based on error rate of oob
classification

Do not require a separate test data set
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Feature importance

What is the impurity gain of a feature across trees in ensemble?

Variation due to randomness of samples

Even greater variation in a random forest

Compute weighted average of impurity gain

Weight is given by number of training samples at the node
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