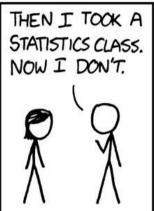
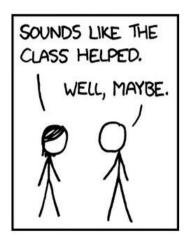
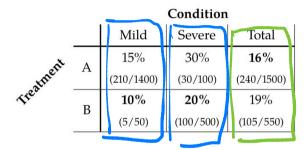

Lecture 25: 24 April, 2025


Madhavan Mukund


https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2025

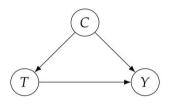
Correlation vs causality



https://xkcd.com/552

Simpson's paradox

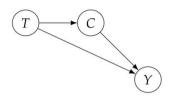
Should we prefer Treatment A or Treatment B?


Mortality rate

DMML Jan-Apr 2025

Simpson's paradox

Condition determines the treatment


- B is preferred for severe cases
- Choose B

Mortality rate

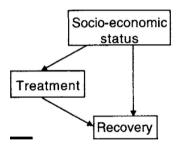
		Condition		
		Mild	Severe	Total
Treatment	A	15%	30%	16%
	А	(210/1400)	(30/100)	(240/1500)
	В	10%	20%	19%
	Ъ	(5/50)	(100/500)	(105/550)

Simpson's paradox

Treatment determines the condition

- B is in short supply, delays increase severity
- Choose A

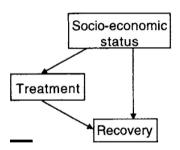
Mortality rate

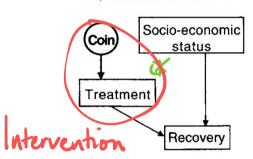

Treatment

Condition Mild Severe Total A 15% 30% 16% (210/1400) (30/100) (240/1500)

Impact of treatment

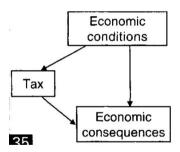
Uncontrolled conditions



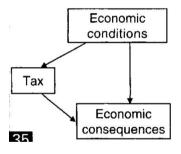

Impact of treatment

Confounding

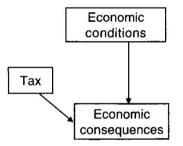
Uncontrolled conditions



Experimental conditions

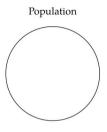

Tax policy

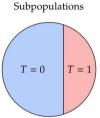
Model underlying data

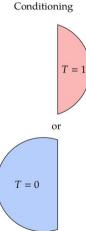


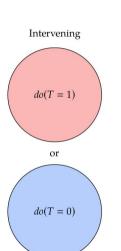
Tax policy

Model underlying data

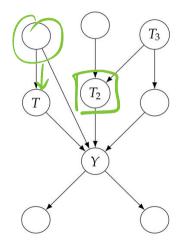

Model for policy evaluation

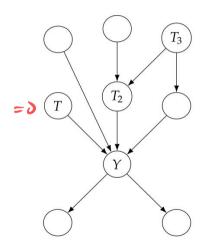


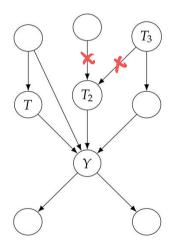

$$P(Y \mid T = 0)$$
 vs $P(Y \mid do(T = 0))$
Pearl's instatron

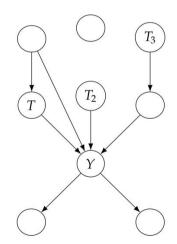

Madhavan Mukund Lecture 25: 24 April, 2025 DMML Jan-Apr 2025

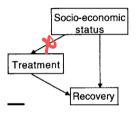

$$P(Y | T = 0) \text{ vs } P(Y | \text{do}(T = 0))$$



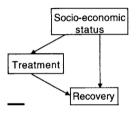



$$P(Y \mid do(T = 0))$$

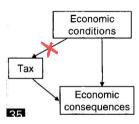

Intervene on *T*

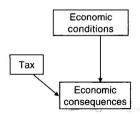

$$P(Y \mid do(T_2 = 1))$$

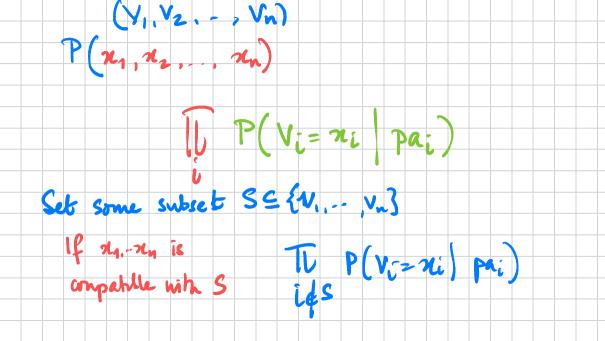
Intervene on T_2


Uncontrolled conditions

Experimental conditions


Uncontrolled conditions


Experimental conditions



Model underlying data

Model for policy evaluation

