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Approximate inference

Exact inference is NP-complete

Generate random samples, count to

estimate probabilities

Respect conditional probabilities —

generate in topological order

Suppose we are interested in

P(b | j ,m)

Samples with ¬j or ¬m are useless

Can we sample more e!ciently?
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Rejection sampling

P(Rain | Cloudy ,Wet Grass)

If we start with ¬Cloudy , sample is

useless

Immediately stop and reject this

sample — rejection sampling

General problem with low probability

situation — many samples are

rejected
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Likelihood weighted sampling

P(Rain | Cloudy ,Wet Grass)

Fix evidence Cloudy ,Wet Grass true

Then generate the other variables

Compute likelihood of evidence

Samples s1, s2, . . . , sN with weights

w1,w2, . . .wN

P(r | c ,w) =

∑
si has rain wi∑
1→j→N wj
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Approximate inference using Markov chains

Markov chains

Finite set of states, with transition probabilities between states

For us, a state will be an assignment of values to variables

A three state Markov Chain
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Represent using a transition matrix — stochastic

A =
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P[j ] is probability of being in state j
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Ergodicity

Markov chain A is ergodic if there is some t0 such

that for every P , for all t > t0, for every j ,
(P↑At

)[j ] > 0.

Ergodic Markov chain has a stationary distribution

ω, ω↑A = ω

For any starting distribution P , lim
t↓↔

P↑At
= ω

Stationary distribution represents fraction of visits

to each state in a long enough execution

Su!cient conditions for ergodicity

Irreducible (strong connected)

Aperiodic (paths of all lengths between states)
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Approximate inference using Markov chains

Bayesian network has variables

V1,V2, . . . ,Vn

Each assignment of values to the

variables is a state

Set up a Markov chain based on these

states

Stationary distribution should assign to

state s the probability P(s) in the

Bayesian network

How to reverse engineer the transition

probabilities to achieve this?
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Reversible Markov chains

Ergodic Markov chain with stationary distribution ω

Transition matrix A, write pjk for A[j ][k]

Probability of transition from state j to state k

Reversibility : ωj · pjk = ωk · pkj , for all j ,k (balance equations)

In steady state, probability of being in state j and then moving to k same as

probability of being in state k and then moving to j

Derivation of balance equations

Given an evolution x1x2 . . ., for large n, P[xn = j | xn→1 = k] = P[xn→1 = j | xn = k]

P[xn→1 = j | xn = k] = P[xn = k | xn→1 = j ]·

pkj = pjk
ωj

ωk
, so ωj · pjk = ωk · pkj
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Reversible Markov chains

Ergodic Markov chain

Suppose a↑ = (a1, a2, . . . , an) satifies reversibility balance equations for all j ,k

aj · pjk = ak · pkj
∑

k

aj · pjk =

∑

k

ak · pkj

aj
∑

k

pjk =

∑

k

ak · pkj

aj · 1 =

∑

k

ak · pkj

a↑ = a↑A, so a↑ is the stationary distribution of A
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Gibbs sampling

State of a Bayesian network is a valuation of variables (V1,V2, . . . ,Vn)

Move probabilistically from sj = (x1, x2, . . . , xn) to sk = (y1, y2, . . . , yn)

Allow such a move only when sj , sk di”er at exactly one position

sj = (x1, x2, . . . , xi→1, xi , xi+1, . . . , xn)

sk = (x1, x2, . . . , xi→1, yi , xi+1, . . . , xn)

Sampling algorithm

Current state is sj = (x1, x2, . . . , xn)

Choose i uniformly in [1, n]

Resample xi given current values (x1, x2, . . . , xi→1, xi+1, . . . , xn)

Need to compute P[yi | x1, x2, . . . , xi↗1, xi+1, . . . , xn]
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Markov blanket

Recall MB(X ) — Markov blanket of X

Parents(X )

Children(X )

Parents of Children(X )

X → ¬MB(X ) | MB(X )

Need to compute

P[yi | x1, x2, . . . , xi↗1, xi+1, . . . , xn]

x1, x2, . . . , xi↗1, xi+1, . . . , xn fix MB(Vi )

Can compute

P[yi | x1, x2, . . . , xi↗1, xi+1, . . . , xn] given
conditional probability tables in the

network
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Gibbs sampling

Move from sj = (x1, x2, . . . , xi↗1, xi , xi+1, . . . , xn) to
sk = (x1, x2, . . . , xi↗1, yi , xi+1, . . . , xn)

Let x̄ = (x1, x2, . . . , xi↗1, xi+1, . . . , xn)

pjk =
1

n
P[yi | x̄ ]

=
1

n

P(sk)

P(x̄)

Likewise pkj =
1

n
P[xi | x̄ ] =

1

n

P(sj)

P(x̄)

Therefore,
pjk
pkj

=
P(sk)

P(sj)
, so P(sj) · pjk = P(sk) · pkj and this chain is reversible

By our previous observation about any vector a↑ satisfying balance equations, we

must have (P(s1),P(s2), . . . ,P(sn)) = (ω1,ω2, . . . ,ωn) for the current Markov chain
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Gibbs sampling

Move from sj = (x1, x2, . . . , xi↗1, xi , xi+1, . . . , xn) to
sk = (x1, x2, . . . , xi↗1, yi , xi+1, . . . , xn)

ωj · pjk = ωk · pkj

We have created a reversible Markov chain whose stationary distribution provides

the true probabilities of the original Bayesian network!

Gibbs sampling is a special case of the more general Metropolis-Hastings algorithm
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Gibbs sampling

Since we are dealing with steady state probabilities, it is not necessary to change

just one variable at a time

Generate an entirely new sample state (y1, y2, . . . , yn)

First generate y1, given x2, x3, . . . , xn

Then generate y2, given y1, x3, . . . , xn

. . .

Then generate yn, given y1, y2, . . . , yn→1

Standard Gibbs sampler — again a reversible Markov chain
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Approximate inference using Markov chains

Bayesian network has variables

V1,V2, . . . ,Vn

Use Gibbs sampling to set up a

reversible Markov chain

Stationary distribution will assign to

each state s its probability P(s) in the

Bayesian network
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