Lecture 15: 18 March, 2025

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2025

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

ML data is often high dimensional — especially images

• A 1000×1000 pixel image has 10^6 features

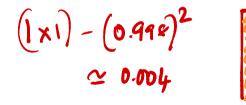
→

э

8x8 - 9 64

ML data is often high dimensional — especially images

- A 1000×1000 pixel image has 10^6 features
- Data behaves very differently in high dimensions
 - 2D unit square, 0.4% probability of being near the border (within 0.001)



0.001

- ML data is often high dimensional especially images
 - A 1000×1000 pixel image has 10^6 features
- Data behaves very differently in high dimensions
 - 2D unit square, 0.4% probability of being near the border (within 0.001)
 - $10^4 D$ hypercube, 99.999999% probability of being near the border

- ML data is often high dimensional especially images
 - A 1000×1000 pixel image has 10^6 features
- Data behaves very differently in high dimensions
 - 2D unit square, 0.4% probability of being near the border (within 0.001)
 - $10^4 D$ hypercube, 99.999999% probability of being near the border
- Distances between items

- ML data is often high dimensional especially images
 - A 1000×1000 pixel image has 10^6 features
- Data behaves very differently in high dimensions
 - 2D unit square, 0.4% probability of being near the border (within 0.001)
 - $10^4 D$ hypercube, 99.999999% probability of being near the border
- Distances between items
 - 2D unit square, mean distance between 2 random points is 0.52

- ML data is often high dimensional especially images
 - A 1000×1000 pixel image has 10^6 features
- Data behaves very differently in high dimensions
 - 2D unit square, 0.4% probability of being near the border (within 0.001)
 - 10⁴*D* hypercube, 99.999999% probability of being near the border
- Distances between items
 - 2D unit square, mean distance between 2 random points is 0.52
 - 3D unit cube, mean distance between 2 random points is 0.66

- ML data is often high dimensional especially images
 - A 1000×1000 pixel image has 10^6 features
- Data behaves very differently in high dimensions
 - 2D unit square, 0.4% probability of being near the border (within 0.001)
 - 10⁴*D* hypercube, 99.999999% probability of being near the border
- Distances between items
 - 2D unit square, mean distance between 2 random points is 0.52
 - 3D unit cube, mean distance between 2 random points is 0.66
 - $10^6 D$ unit hypercube, mean distance between 2 random points is approximately 408.25

- ML data is often high dimensional especially images
 - A 1000×1000 pixel image has 10^6 features
- Data behaves very differently in high dimensions
 - 2D unit square, 0.4% probability of being near the border (within 0.001)
 - 10⁴*D* hypercube, 99.999999% probability of being near the border
- Distances between items
 - 2D unit square, mean distance between 2 random points is 0.52
 - 3D unit cube, mean distance between 2 random points is 0.66
 - $10^6 D$ unit hypercube, mean distance between 2 random points is approximately 408.25
 - There's a lot of "space" in higher dimensions!
 - Higher danger of overfitting

Dimensionality reduction

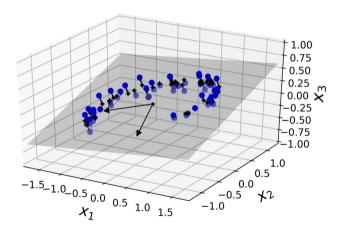
 Remove unimportant features by projecting to a smaller dimension

< ∃

э

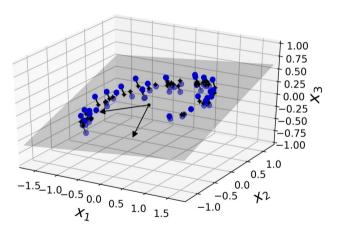
Dimensionality reduction

- Remove unimportant features by projecting to a smaller dimension
- Example: project blue points in 3D to black points in 2D plane



Dimensionality reduction

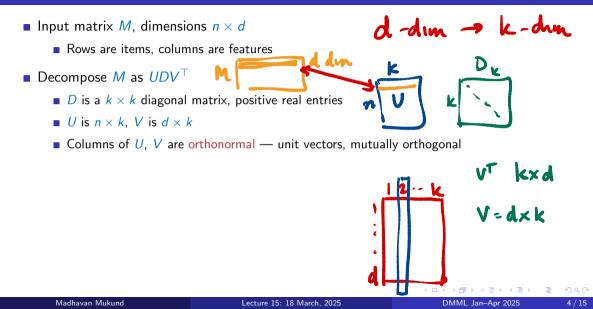
- Remove unimportant features by projecting to a smaller dimension
- Example: project blue points in 3D to black points in 2D plane
- Principal Component Analysis transform *d*-dimensional input to *k*-dimensional input, preserving essential features



• Input matrix M, dimensions $n \times d$

Rows are items, columns are features

< E



- Input matrix M, dimensions $n \times d$
 - Rows are items, columns are features
- Decompose M as UDV^{\top}
 - **D** is a $k \times k$ diagonal matrix, positive real entries
 - U is $n \times k$, V is $d \times k$
 - Columns of U, V are orthonormal unit vectors, mutually orthogonal
- Interpretation
 - Columns of V correspond to new abstract features

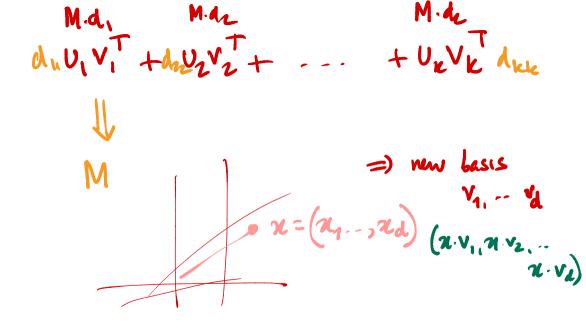
- Input matrix M, dimensions $n \times d$
 - Rows are items, columns are features
- Decompose M as UDV^{\top}
 - **D** is a $k \times k$ diagonal matrix, positive real entries
 - U is $n \times k$, V is $d \times k$
 - Columns of U, V are orthonormal unit vectors, mutually orthogonal
- Interpretation
 - Columns of V correspond to new abstract features
 - Rows of U describe decomposition of items across features

- Input matrix M, dimensions $n \times d$
 - Rows are items, columns are features
- Decompose M as UDV^{\top}
 - **D** is a $k \times k$ diagonal matrix, positive real entries
 - U is $n \times k$, V is $d \times k$
 - Columns of *U*, *V* are orthonormal unit vectors, mutually orthogonal

Interpretation

- Columns of V correspond to new abstract features
- Rows of U describe decomposition of items across features
- $M = \sum_{i}^{\infty} D_{ii} (\boldsymbol{u}_{i} \cdot \boldsymbol{v}_{i}^{\top})$

Nx1



- Input matrix M, dimensions $n \times d$
 - Rows are items, columns are features
- Decompose M as UDV^{\top}
 - **D** is a $k \times k$ diagonal matrix, positive real entries
 - U is $n \times k$, V is $d \times k$
 - Columns of U, V are orthonormal unit vectors, mutually orthogonal
- Interpretation
 - Columns of V correspond to new abstract features
 - Rows of U describe decomposition of items across features
 - $\bullet M = \sum_i D_{ii} (\boldsymbol{u}_i \cdot \boldsymbol{v}_i^{\top})$
 - For columns u_i of U and v_i of V, $u_i \cdot v_i^{\top}$ is an $n \times d$ matrix, like M

- Input matrix M, dimensions $n \times d$
 - Rows are items, columns are features
- Decompose M as UDV^{\top}
 - **D** is a $k \times k$ diagonal matrix, positive real entries
 - U is $n \times k$, V is $d \times k$
 - Columns of U, V are orthonormal unit vectors, mutually orthogonal
- Interpretation
 - Columns of V correspond to new abstract features
 - Rows of U describe decomposition of items across features
 - $\bullet M = \sum_i D_{ii} (\boldsymbol{u}_i \cdot \boldsymbol{v}_i^{\top})$
 - For columns u_i of U and v_i of V, $u_i \cdot v_i^{\top}$ is an $n \times d$ matrix, like M
 - **u**_i · \mathbf{v}_i^{\top} describes components of rows of M along direction \mathbf{v}_i

 Unit vectors passing through the origin

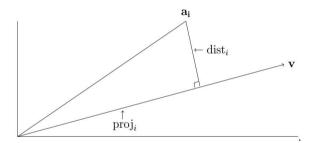
э

- Unit vectors passing through the origin
- Want to find "best" k singular vectors to represent feature space

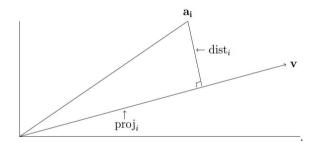
→

э

- Unit vectors passing through the origin
- Want to find "best" k singular vectors to represent feature space
- Suppose we project
 a_i = (a_{i1}, a_{i2}, ..., a_{id}) onto v
 through origin

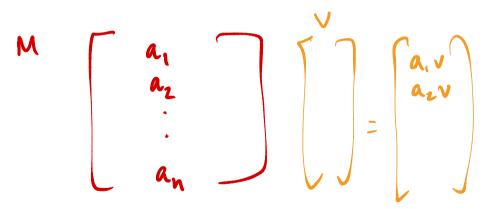


- Unit vectors passing through the origin
- Want to find "best" k singular vectors to represent feature space
- Suppose we project
 a_i = (a_{i1}, a_{i2}, ..., a_{id}) onto v
 through origin
- Minimizing distance of *a_i* from *v* is equivalent to maximizing the projection of *a_i* onto *v*
- Length of the projection is $a_i \cdot v$



5/15

• Sum of squares of lengths of projections of all rows in M onto $\mathbf{v} - |M\mathbf{v}|^2$



- Sum of squares of lengths of projections of all rows in M onto $\mathbf{v} |M\mathbf{v}|^2$
- First singular vector unit vector through origin that maximizes the sum of projections of all rows in M

 $v_1 = \arg \max_{|v|=1} |Mv|$ Not usique V, -V both work

Image: A image: A

- Sum of squares of lengths of projections of all rows in M onto $\mathbf{v} |M\mathbf{v}|^2$
- First singular vector unit vector through origin that maximizes the sum of projections of all rows in M

 $oldsymbol{v}_1 = rg\max_{|oldsymbol{v}|=1} |Moldsymbol{v}|$

Second singular vector — unit vector through origin, perpendicular to v₁, that maximizes the sum of projections of all rows in M

$$\mathbf{v}_2 = \arg\max_{\mathbf{v}\perp\mathbf{v}_1; |\mathbf{v}|=1} |M\mathbf{v}|$$

- Sum of squares of lengths of projections of all rows in M onto $\mathbf{v} |M\mathbf{v}|^2$
- First singular vector unit vector through origin that maximizes the sum of projections of all rows in M
 In arg max |Mx|

 $oldsymbol{
u}_1 = rg\max_{egin{smallmatrix} |oldsymbol{N}oldsymbol{
u}| = 1 \end{bmatrix}} |oldsymbol{M}oldsymbol{
u}|$

Second singular vector — unit vector through origin, perpendicular to v₁, that maximizes the sum of projections of all rows in M

 $oldsymbol{v}_2 = rg\max_{oldsymbol{v} \perp oldsymbol{v}_1; \ |oldsymbol{v}|=1} |Moldsymbol{v}|$

Third singular vector — unit vector through origin, perpendicular to v_1 , v_2 , that maximizes the sum of projections of all rows in M

$$\mathbf{v}_3 = \arg \max_{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2; |\mathbf{v}|=1} |M\mathbf{v}|$$

Lecture 5: 18 March 2025

6/15

• With each singular vector \mathbf{v}_j , associated singular value is $\sigma_j = |M\mathbf{v}_j|$

→ < Ξ →</p>

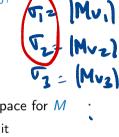
э

- With each singular vector \mathbf{v}_j , associated singular value is $\sigma_j = |M\mathbf{v}_j|$
- Repeat *r* times till $\max_{\boldsymbol{\nu} \perp \boldsymbol{\nu}_1, \boldsymbol{\nu}_2, \dots, \boldsymbol{\nu}_r; \ |\boldsymbol{\nu}|=1} |M\boldsymbol{\nu}| = 0$
 - r turns out to be the rank of M
 - Vectors $\{v_1, v_2, \dots, v_r\}$ are orthonormal right singular vectors

• • = •

3

- With each singular vector \mathbf{v}_i , associated singular value is $\sigma_i = |M\mathbf{v}_i|$
- Repeat *r* times till $\max_{\boldsymbol{\nu} \perp \boldsymbol{\nu}_1, \boldsymbol{\nu}_2, \dots, \boldsymbol{\nu}_r; \ |\boldsymbol{\nu}|=1} |M\boldsymbol{\nu}| = 0$
 - r turns out to be the rank of M
 - Vectors $\{v_1, v_2, \dots, v_r\}$ are orthonormal right singular vectors
- Our greedy strategy provably produces "best-fit" dimension r subspace for M ·
 - Dimension r subspace that maximizes content of M projected onto it



525232-

- With each singular vector \mathbf{v}_j , associated singular value is $\sigma_j = |M\mathbf{v}_j|$
- Repeat *r* times till $\max_{\boldsymbol{\nu} \perp \boldsymbol{\nu}_1, \boldsymbol{\nu}_2, \dots, \boldsymbol{\nu}_r; \ |\boldsymbol{\nu}|=1} |M\boldsymbol{\nu}| = 0$
 - r turns out to be the rank of M
 - Vectors $\{v_1, v_2, \dots, v_r\}$ are orthonormal right singular vectors
- Our greedy strategy provably produces "best-fit" dimension r subspace for M
 - Dimension r subspace that maximizes content of M projected onto it
- Corresponding left singular vectors are given by $\boldsymbol{u}_i = \frac{1}{\sigma_i} M \boldsymbol{v}_i$

- With each singular vector \mathbf{v}_j , associated singular value is $\sigma_j = |M\mathbf{v}_j|$
- Repeat *r* times till $\max_{\boldsymbol{\nu} \perp \boldsymbol{\nu}_1, \boldsymbol{\nu}_2, \dots, \boldsymbol{\nu}_r; \ |\boldsymbol{\nu}|=1} |M\boldsymbol{\nu}| = 0$
 - r turns out to be the rank of M
 - Vectors $\{v_1, v_2, \dots, v_r\}$ are orthonormal right singular vectors
- Our greedy strategy provably produces "best-fit" dimension r subspace for M
 - Dimension r subspace that maximizes content of M projected onto it
- Corresponding left singular vectors are given by $\boldsymbol{u}_i = \frac{1}{\sigma_i} M \boldsymbol{v}_i$
- Can show that $\{u_1, u_2, \dots, u_r\}$ are also orthonormal

- *M*, dimension $n \times d$, of rank *r* uniquely decomposes as $M = UDV^{\top}$
 - $V = [v_1 \ v_2 \ \cdots \ v_r]$ are the right singular vectors
 - D is a diagonal matrix with $D[i, i] = \sigma_i$, the singular values
 - $U = [u_1 \ u_2 \ \cdots \ u_r]$ are the left singular vectors



Rank-k approximation

M has rank r, SVD gives rank r decomposition

→

э

Rank-k approximation

- *M* has rank *r*, SVD gives rank *r* decomposition
- Singular values are non-increasing $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$

→

э

Rank-k approximation

- M has rank r, SVD gives rank r decomposition
- Singular values are non-increasing $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$
- Suppose we retain only k largest ones

< ∃ ▶

Rank-k approximation

- M has rank r, SVD gives rank r decomposition
- Singular values are non-increasing $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$
- Suppose we retain only k largest ones

We have

- Matrix of first k right singular vectors $V_k = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_k]$,
- Corresponding singular values $\sigma_1, \sigma_2, \ldots, \sigma_k$
- Matrix of k left singular vectors $U_k = [u_1 \ u_2 \ \cdots \ u_k]$
- Let D_k be the $k \times k$ diagonal matrix with entries $\sigma_1, \sigma_2, \ldots, \sigma_k$
- Then $U_k D_k V_k^{\top}$ is the best fit rank-k approximation of M

э.

9/15

Rank-k approximation

- M has rank r, SVD gives rank r decomposition
- Singular values are non-increasing $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$
- Suppose we retain only k largest ones

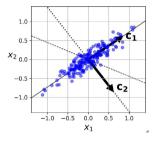
We have

- Matrix of first k right singular vectors $V_k = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_k]$,
- Corresponding singular values $\sigma_1, \sigma_2, \ldots, \sigma_k$
- Matrix of k left singular vectors $U_k = [u_1 \ u_2 \ \cdots \ u_k]$
- Let D_k be the $k \times k$ diagonal matrix with entries $\sigma_1, \sigma_2, \ldots, \sigma_k$
- Then $U_k D_k V_k^{\top}$ is the best fit rank-k approximation of M
- In other words, by truncating the SVD, we can focus on k most significant features implicit in M

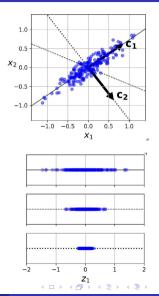
Interpret PCA in terms of preserving variance

▶ < ∃ ▶</p>

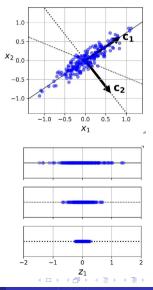
- Interpret PCA in terms of preserving variance
- Different projections have different variance



- Interpret PCA in terms of preserving variance
- Different projections have different variance
- SVD orders projections in decreasing order of variance

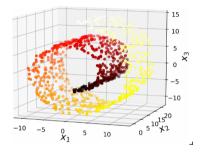


- Interpret PCA in terms of preserving variance
- Different projections have different variance
- SVD orders projections in decreasing order of variance
- Criterion for choosing when to stop
 - Choose k so that a desired fraction of the variance is "explained"



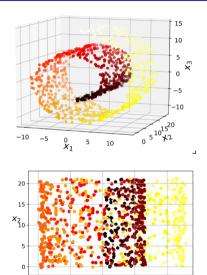
Projection may not always help

- Projection may not always help
- Swiss roll dataset



< ∃ ▶

- Projection may not always help
- Swiss roll dataset
- Projection onto 2 dimesions is not useful



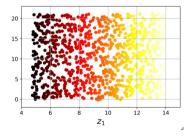
-10

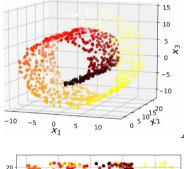
-5

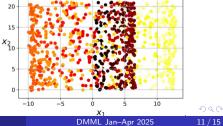
10

11 / 15

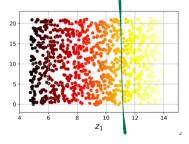
- Projection may not always help
- Swiss roll dataset
- Projection onto 2 dimesions is not useful
- Better to unroll the image



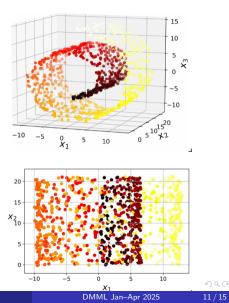


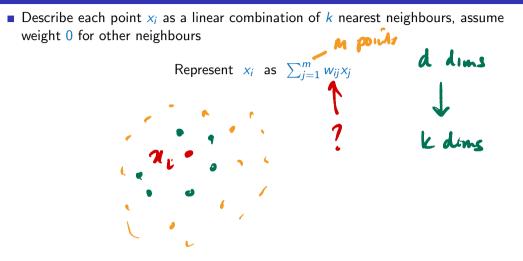


- Projection may not always help
- Swiss roll dataset
- Projection onto 2 dimesions is not useful
- Better to unroll the image



Discover the manifold along which the data lies





 Describe each point x_i as a linear combination of k nearest neighbours, assume weight 0 for other neighbours

Represent x_i as $\sum_{j=1}^m w_{ij} x_j$

Choose weights to minimize the sum square distance

$$\widehat{W} = \arg\min_{W} \sum_{i=1}^{m} \left(x_i - \sum_{j=1}^{m} w_{ij} x_j \right)^2$$

 Describe each point x_i as a linear combination of k nearest neighbours, assume weight 0 for other neighbours

Represent x_i as $\sum_{j=1}^m w_{ij} x_j$

• Choose weights to minimize the sum square distance

$$\hat{W} = \underset{W}{\arg\min} \sum_{i=1}^{m} \left(x_i - \sum_{j=1}^{m} w_{ij} x_j \right)^2$$

■ Normalize weights — captures "local" geometry upto rotation, reflection, scaling

Describe each point x_i as a linear combination of k hearest neighbours, assume weight 0 for other neighbours

Represent x_i as $\sum_{j=1}^m w_{ij} x_j$

× 2

2

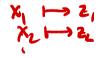
• Choose weights to minimize the sum square distance

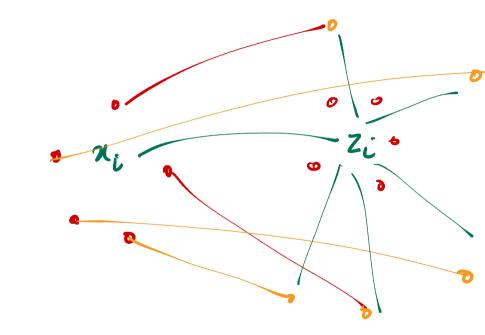
$$\hat{W} = \operatorname*{arg\,min}_{W} \sum_{i=1}^{m} \left(x_i - \sum_{j=1}^{m} w_{ij} x_j \right)$$

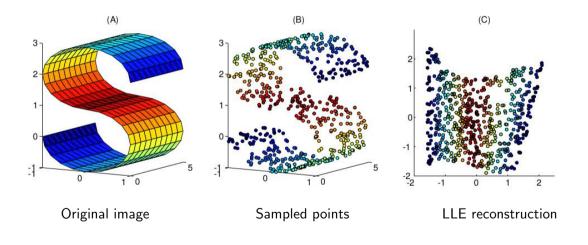
Normalize weights — captures "local" geometry upto rotation, reflection, scaling

• Re-express each point in \int limensions, $x_i \mapsto z_i$

$$\hat{Z} = \operatorname*{arg\,min}_{Z} \sum_{i=1}^{m} \left(z_i - \sum_{j=1}^{m} w_{ij} z_j \right)$$

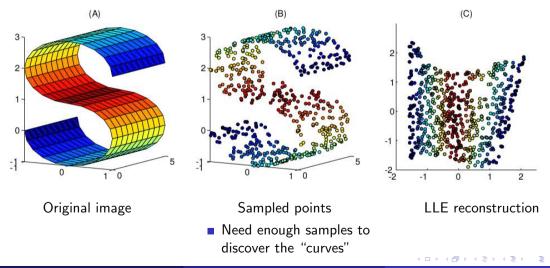






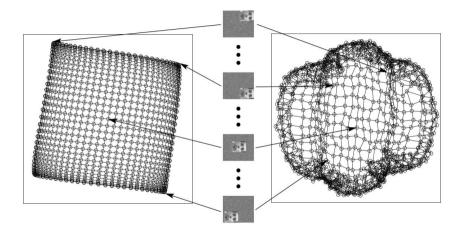
< ∃

13/15



Madhavan Mukund

Lecture 15: 18 March, 2025



LLE reconstruction preserves

neighbourhood structure

Madhavan Mukund

Lecture 15: 18 March, 2025

PCA distorts geometry

DMML Jan-Apr 2025

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

14 / 15

- Singular Value Decomposition (SVD) finds best fit k-dimensional subspace for any matrix M
- Principal Component Analysis uses SVD for dimensionality reduction
- Unsupervised technique often helps simplify the problem, but may not
- SVD/PCA can only compress features that have a linear relationship
- More general techniques based on neural networks autoencoders

Loss (n,n')