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The curse of dimensionality

m ML data is often high dimensional — especially images €xg = 6“‘
m A 1000 x 1000 pixel image has 10° features
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The curse of dimensionality

m ML data is often high dimensional — especially images
m A 1000 x 1000 pixel image has 10° features

m Data behaves very differently in high dimensions

m 2D unit square, 0.4% probability of being near the border (within 0.001) 0.00
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The curse of dimensionality

m ML data is often high dimensional — especially images
m A 1000 x 1000 pixel image has 10° features
m Data behaves very differently in high dimensions

m 2D unit square, 0.4% probability of being near the border (within 0.001)
m 10*D hypercube, 99.999999% probability of being near the border
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The curse of dimensionality

m ML data is often high dimensional — especially images
m A 1000 x 1000 pixel image has 10° features
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m A 1000 x 1000 pixel image has 10° features

m Data behaves very differently in high dimensions
m 2D unit square, 0.4% probability of being near the border (within 0.001)
m 10*D hypercube, 99.999999% probability of being near the border

m Distances between items

m 2D unit square, mean distance between 2 random points is 0.52
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The curse of dimensionality

m ML data is often high dimensional — especially images
m A 1000 x 1000 pixel image has 10° features

m Data behaves very differently in high dimensions
m 2D unit square, 0.4% probability of being near the border (within 0.001)
m 10*D hypercube, 99.999999% probability of being near the border

m Distances between items
m 2D unit square, mean distance between 2 random points is 0.52

m 3D unit cube, mean distance between 2 random points is 0.66
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The curse of dimensionality

m ML data is often high dimensional — especially images
m A 1000 x 1000 pixel image has 10° features

m Data behaves very differently in high dimensions
m 2D unit square, 0.4% probability of being near the border (within 0.001)
m 10*D hypercube, 99.999999% probability of being near the border

m Distances between items
m 2D unit square, mean distance between 2 random points is 0.52
m 3D unit cube, mean distance between 2 random points is 0.66

m 10°D unit hypercube, mean distance between 2 random points is approximately 408.25
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The curse of dimensionality

m ML data is often high dimensional — especially images
m A 1000 x 1000 pixel image has 10° features

m Data behaves very differently in high dimensions
m 2D unit square, 0.4% probability of being near the border (within 0.001)
m 10*D hypercube, 99.999999% probability of being near the border

m Distances between items
m 2D unit square, mean distance between 2 random points is 0.52
m 3D unit cube, mean distance between 2 random points is 0.66
m 10°D unit hypercube, mean distance between 2 random points is approximately 408.25
m There's a lot of “space” in higher dimensions!

m Higher danger of overfitting
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Dimensionality reduction

m Remove unimportant features by
projecting to a smaller dimension
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Dimensionality reduction

m Remove unimportant features by
projecting to a smaller dimension

m Example: project blue points in
3D to black points in 2D plane
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Dimensionality reduction

m Remove unimportant features by
projecting to a smaller dimension

m Example: project blue points in
3D to black points in 2D plane

m Principal Component Analysis —
transform d-dimensional input to
k-dimensional input, preserving
essential features
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Singular Value Decomposition (SVD)

® Input matrix M, dimensions n x d

m Rows are items, columns are features
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Singular Value Decomposition (SVD)

® Input matrix M, dimensions n x d d 'A\W\ — lL"A\‘I\.

m Rows are items, columns are features

D
m Decompose M as UDV' " \ k L3

m Dis a k x k diagonal matrix, positive real entries g V kl >N

. . AN
m Uisnxk, Visd x k
m Columns of U, V are orthonormal — unit vectors, mutually orthogonal

VT kxd
' V-dxk
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Singular Value Decomposition (SVD)

® Input matrix M, dimensions n x d

m Rows are items, columns are features y
m Decompose M as UDV' " /

m D is a k x k diagonal matrix, positive real entries ) O
m Uisnxk, Visd x k
m Columns of U, V are orthonormal — unit vectors, mutually orthogonal

m Interpretation

m Columns of V correspond to new abstract features
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Singular Value Decomposition (SVD)

® Input matrix M, dimensions n x d

m Rows are items, columns are features

m Decompose M as UDV' "
m D is a k x k diagonal matrix, positive real entries
m Uisnxk, Visd x k

m Columns of U, V are orthonormal — unit vectors, mutually orthogonal

m Interpretation
m Columns of V correspond to new abstract features

m Rows of U describe decomposition of items across features
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Singular Value Decomposition (SVD)

® Input matrix M, dimensions n x d

m Rows are items, columns are features

m Decompose M as UDV' "
m D is a k x k diagonal matrix, positive real entries
m Uisnxk, Visd x k

m Columns of U, V are orthonormal — unit vectors, mutually orthogonal
. 0T
m Interpretation w v
m Columns of V correspond to new abstract features A od
. Cd
m Rows of U describe decomposition of items across features &
] M:ZI-D,','(U,"VI-T) \
L=t = \
nx| Woxd
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Singular Value Decomposition (SVD)

® Input matrix M, dimensions n x d

m Rows are items, columns are features

m Decompose M as UDV' "
m D is a k x k diagonal matrix, positive real entries
m Uisnxk, Visd x k

m Columns of U, V are orthonormal — unit vectors, mutually orthogonal

m Interpretation
m Columns of V correspond to new abstract features
m Rows of U describe decomposition of items across features
m M =3 Di(u; - v;)
-

m For columns u; of U and v; of V, u;- v, is an n x d matrix, like M
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Singular Value Decomposition (SVD)

® Input matrix M, dimensions n x d

m Rows are items, columns are features

m Decompose M as UDV' "
m D is a k x k diagonal matrix, positive real entries
m Uisnxk, Visd x k

m Columns of U, V are orthonormal — unit vectors, mutually orthogonal

m Interpretation
m Columns of V correspond to new abstract features
m Rows of U describe decomposition of items across features
M =37, Diiu; - v;")
-

m For columns u; of U and v; of V, u;- v, is an n x d matrix, like M

m u; - v;,' describes components of rows of M along direction v;
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Singular vectors

m Unit vectors passing through the
origin

Madhavan Mukund Lecture 15: 18 March, 2025 DMML Jan—Apr 2025



Singular vectors

m Unit vectors passing through the
origin

m Want to find “best” k singular
vectors to represent feature space
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Singular vectors

m Unit vectors passing through the
origin i

m Want to find “best” k singular

vectors to represent feature space — dist;

m Suppose we project
a; = (a,-l, ap, ..., a,-d) onto v

through origin prToji
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Singular vectors

m Unit vectors passing through the
origin -
m Want to find “best” k singular
vectors to represent feature space — dist;

m Suppose we project
a; = (3;1./ ap, ..., a,-d) onto v

through origin prToji

m Minimizing distance of a; from v is
equivalent to maximizing the
projection of a; onto v

m Length of the projection is a; - v

Madhavan Mukund Lecture 15: 18 March, 2025 DMML Jan—Apr 2025



Singular vectors . ..

m Sum of squares of lengths of projections of all rows in M onto v — |Mv|?

M ra,\
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Singular vectors . ..

m Sum of squares of lengths of projections of all rows in M onto v — |Mv|?

m First singular vector — unit vector through origin that maximizes the sum of
projections of all rows in M

v1 = arg max |Mv| NO" Wi“-&

v
V v Ll wok
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Singular vectors . ..

m Sum of squares of lengths of projections of all rows in M onto v — |Mv|?

m First singular vector — unit vector through origin that maximizes the sum of
projections of all rows in M

v; = arg max |[Mv|
v|=1

m Second singular vector — unit vector through origin, perpendicular to vy, that
maximizes the sum of projections of all rows in M

Vo = arge=max  |Myv|
vLlviyv|=1
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Singular vectors . ..

m Sum of squares of lengths of projections of all rows in M onto v — |Mv|?

m First singular vector — unit vector through origin that maximizes the sum of

projections of all rows in M
awub Gmsiwdha,

v; = arg max |[Mv|
[v|=1

m Second singular vector — unit vector through origin, perpendicular to vy, that

maximizes the sum of projections of all rows in M

vo =arg max |[My|
vlvy; |v|=1

m Third singular vector — unit vector through origin, perpendicular to v;, v», that
maximizes the sum of projections of all rows in M

V3 = arg_—max |Mv|
vL>lvi,w)|v|=1
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Singular vectors . ..

m With each singular vector v;, associated singular value is 0; = [My;|
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Singular vectors . ..

m With each singular vector v;, associated singular value is 0; = [My;|

m Repeat r times till max IMv| =0
vivi,va,..,v; |v[=1

m r turns out to be the rank of M

m Vectors {vq, vo,..., Vv, } are orthonormal right singular vectors
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Singular vectors . ..

m With each singular vector v;, associated singular value is 0; = [My;|
53 [Mv,)

m Repeat r times till max IMv| =0
vivi,va,..,v; |v[=1 l
m r turns out to be the rank of M MV‘L)
m Vectors {vq, vo,..., Vv, } are orthonormal right singular vectors 0-1 - (Mv;\

m Our greedy strategy provably produces "best-fit” dimension r subspace for M

¢ -

m Dimension r subspace that maximizes content of M projected onto it
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Singular vectors . ..

m With each singular vector v;, associated singular value is 0; = [My;|

m Repeat r times till max IMv| =0
vivi,va,..,v; |v[=1

m r turns out to be the rank of M

m Vectors {vq, vo,..., Vv, } are orthonormal right singular vectors
m Our greedy strategy provably produces "best-fit” dimension r subspace for M

m Dimension r subspace that maximizes content of M projected onto it

. . . 1
m Corresponding left singular vectors are given by u; = — My;
oj
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Singular vectors . ..

m With each singular vector v;, associated singular value is 0; = [My;|

m Repeat r times till max IMv| =0
vivi,va,..,v; |v[=1

m r turns out to be the rank of M

m Vectors {vq, vo,..., Vv, } are orthonormal right singular vectors

Our greedy strategy provably produces “best-fit” dimension r subspace for M

m Dimension r subspace that maximizes content of M projected onto it

. . . 1
Corresponding left singular vectors are given by u; = — My;
oj

Can show that {uy, uy, ... u,} are also orthonormal
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Singular Value Decomposition

m M, dimension n x d, of rank r uniquely decomposes as M = UDV "
m V =[vy v - - v,] are the right singular vectors

m D is a diagonal matrix with D[/, /] = o}, the singular values

m U=[u u - u,] are the left singular vectors
\/T
rxr rxd
M B U N
nxd nxr
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Rank-k approximation

m M has rank r, SVD gives rank r decomposition
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Rank-k approximation

m M has rank r, SVD gives rank r decomposition

m Singular values are non-increasing — o1 > 0o > -+ > 0,

Madhavan Mukund Lecture 15: 18 March, DMML Jan—Apr 2025



Rank-k approximation

m M has rank r, SVD gives rank r decomposition
m Singular values are non-increasing — o1 > 0o > -+ > 0,

m Suppose we retain only k largest ones
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Rank-k approximation

m M has rank r, SVD gives rank r decomposition
m Singular values are non-increasing — o1 > 0o > -+ > 0,

m Suppose we retain only k largest ones

m We have

m Matrix of first k right singular vectors Vi = [vi vo -+ vy,

m Corresponding singular values 01,05, ..., 0%

m Matrix of k left singular vectors Uy = [ty up -+ wy]
m Let Dy be the k x k diagonal matrix with entries 01,02, ...,0%
m Then U, Dy VkT is the best fit rank-k approximation of M
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Rank-k approximation

m M has rank r, SVD gives rank r decomposition
m Singular values are non-increasing — o1 > 0o > -+ > 0,
m Suppose we retain only k largest ones

m We have
m Matrix of first k right singular vectors Vi = [vi vo -+ vy,
m Corresponding singular values 01,05, ..., 0%

m Matrix of k left singular vectors Uy = [ty up -+ wy]
m Let Dy be the k x k diagonal matrix with entries 01,02, ...,0%
m Then U, Dy VkT is the best fit rank-k approximation of M

m In other words, by truncating the SVD, we can focus on k most significant features
implicit in M
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PCA and variance

m Interpret PCA in terms of preserving variance
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PCA and variance

m Interpret PCA in terms of preserving variance

m Different projections have different variance
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PCA and variance

m Interpret PCA in terms of preserving variance
m Different projections have different variance

m SVD orders projections in decreasing order of
variance

-10 -05 00 05 1.0
X1

-2 =1 0 1 2
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PCA and variance

m Interpret PCA in terms of preserving variance
m Different projections have different variance
m SVD orders projections in decreasing order of
variance
m Criterion for choosing when to stop R
1 n
m Choose k so that a desired fraction of the .
variance is “explained”
-2 -1 0 1 2
Z1
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Manifold learning

m Projection may not always help
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Manifold learning

m Projection may not always help

m Swiss roll dataset
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Manifold learning

m Projection may not always help
m Swiss roll dataset

m Projection onto 2 dimesions is not useful
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Manifold learning

m Projection may not always help

m Swiss roll dataset
m Projection onto 2 dimesions is not useful

m Better to unroll the image
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Manifold learning

m Projection may not always help
m Swiss roll dataset
m Projection onto 2 dimesions is not useful

m Better to unroll the image
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m Discover the manifold along which the data lies — - : -
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Locally linear embeddings (LLE)

m Describe each point x; as a linear combination of k nearest neighbours, assume
weight O for other neighbours
d. im\s

l

* 7 kb ding

m
Represent x; as =1 WijXj
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Locally linear embeddings (LLE)

m Describe each point x; as a linear combination of k nearest neighbours, assume
weight O for other neighbours

Represent x; as > 7 w;x;

m Choose weights to minimize the sum square distance

m m
arg min g Xj — E Wi X;
Wi =1

2
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Locally linear embeddings (LLE)

m Describe each point x; as a linear combination of k nearest neighbours, assume
weight O for other neighbours

Represent x; as > 7 w;x;

m Choose weights to minimize the sum square distance
m m
W = arg min g Xj — E Wi Xj
W= —
i=1 j=1

m Normalize weights — captures “local” geometry upto rotation, reflection, scaling

2
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Locally linear embeddings (LLE)

m Describe each point x; as a linear combination o 0 earest neighbours, assume
weight O for other neighbours A
Represent x; as > 7 w;x;

m Choose weights to minimize the sum square distance

i 2 A, —3 2,
= argmlnz X; —ZWUXJ

m Normalize weights — captures “local” geometry upto rotation, reflection, scaling

m Re-express each point in@limensions, Xj — Zj x\ l Z'.‘
m m ? Ko
Z = arg minz Z,'—ZW,'J'ZJ' ¢
4 - -
=1 =1
' ’ Km O oy
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Locally linear embeddings (LLE)

Original image Sampled points LLE reconstruction
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Locally linear embeddings (LLE)

Original image Sampled points LLE reconstruction

m Need enough samples to
discover the “curves”
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Locally linear embeddings (LLE)

LLE reconstruction preserves PCA distorts geometry

neighbourhood structure
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m Singular Value Decomposition (SVD) finds best fit k-dimensional subspace for any
matrix M

Principal Component Analysis uses SVD for dimensionality reduction

Unsupervised technique — often helps simplify the problem, but may not

SVD/PCA can only compress features that have a linear relationship

m More general t fques based on nelral networks — autoencoders

) LDSS [ﬂu)
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