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The curse of dimensionality

ML data is often high dimensional — especially images

A 1000→ 1000 pixel image has 106 features

Data behaves very di!erently in high dimensions

2D unit square, 0.4% probability of being near the border (within 0.001)

104D hypercube, 99.999999% probability of being near the border

Distances between items

2D unit square, mean distance between 2 random points is 0.52

3D unit cube, mean distance between 2 random points is 0.66

106D unit hypercube, mean distance between 2 random points is approximately 408.25

There’s a lot of “space” in higher dimensions!

Higher danger of overfitting
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Dimensionality reduction

Remove unimportant features by
projecting to a smaller dimension

Example: project blue points in
3D to black points in 2D plane

Principal Component Analysis —
transform d-dimensional input to
k-dimensional input, preserving
essential features
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Singular Value Decomposition (SVD)

Input matrix M, dimensions n → d

Rows are items, columns are features

Decompose M as UDV→

D is a k → k diagonal matrix, positive real entries

U is n → k , V is d → k

Columns of U, V are orthonormal — unit vectors, mutually orthogonal

Interpretation

Columns of V correspond to new abstract features

Rows of U describe decomposition of items across features

M =
∑

i Dii (ui · v→
i )

For columns ui of U and vi of V , ui · v→
i is an n → d matrix, like M

ui · v→
i describes components of rows of M along direction vi
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Singular vectors

Unit vectors passing through the
origin

Want to find “best” k singular
vectors to represent feature space

Suppose we project
ai = (ai1, ai2, . . . , aid) onto v
through origin

Minimizing distance of ai from v is
equivalent to maximizing the
projection of ai onto v

Length of the projection is ai · v
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Singular vectors . . .

Sum of squares of lengths of projections of all rows in M onto v — |Mv |2

First singular vector — unit vector through origin that maximizes the sum of
projections of all rows in M

v1 = arg max
|v |=1

|Mv |

Second singular vector — unit vector through origin, perpendicular to v1, that
maximizes the sum of projections of all rows in M

v2 = arg max
v↑v1; |v |=1

|Mv |

Third singular vector — unit vector through origin, perpendicular to v1, v2, that
maximizes the sum of projections of all rows in M

v3 = arg max
v↑v1,v2; |v |=1

|Mv |
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Singular vectors . . .

With each singular vector vj , associated singular value is ωj = |Mvj |

Repeat r times till max
v↑v1,v2,...,vr ; |v |=1

|Mv | = 0

r turns out to be the rank of M

Vectors {v1, v2, . . . , vr} are orthonormal right singular vectors

Our greedy strategy provably produces “best-fit” dimension r subspace for M

Dimension r subspace that maximizes content of M projected onto it

Corresponding left singular vectors are given by ui =
1

ωi
Mvi

Can show that {u1,u2, . . . ,ur} are also orthonormal
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Singular Value Decomposition

M, dimension n → d , of rank r uniquely decomposes as M = UDV→

V = [v1 v2 · · · vr ] are the right singular vectors

D is a diagonal matrix with D[i , i ] = ωi , the singular values

U = [u1 u2 · · · ur ] are the left singular vectors

M

n → d
=

U

n → r

D

r → r

V→

r → d
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Rank-k approximation

M has rank r , SVD gives rank r decomposition

Singular values are non-increasing — ω1 ↑ ω2 ↑ · · · ↑ ωr

Suppose we retain only k largest ones

We have

Matrix of first k right singular vectors Vk = [v1 v2 · · · vk ],
Corresponding singular values ω1,ω2, . . . ,ωk

Matrix of k left singular vectors Uk = [u1 u2 · · · uk ]

Let Dk be the k → k diagonal matrix with entries ω1,ω2, . . . ,ωk

Then UkDkV→
k is the best fit rank-k approximation of M

In other words, by truncating the SVD, we can focus on k most significant features
implicit in M
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PCA and variance

Interpret PCA in terms of preserving variance

Di!erent projections have di!erent variance

SVD orders projections in decreasing order of
variance

Criterion for choosing when to stop

Choose k so that a desired fraction of the
variance is “explained”
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Manifold learning

Projection may not always help

Swiss roll dataset

Projection onto 2 dimesions is not useful

Better to unroll the image

Discover the manifold along which the data lies
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Locally linear embeddings (LLE)

Describe each point xi as a linear combination of k nearest neighbours, assume
weight 0 for other neighbours

Represent xi as
∑m

j=1 wijxj

Choose weights to minimize the sum square distance

Ŵ = argmin
W

m∑

i=1



xi ↓
m∑

j=1

wijxj




2

Normalize weights — captures “local” geometry upto rotation, reflection, scaling

Re-express each point in J dimensions, xi ↔↗ zi

Ẑ = argmin
Z

m∑

i=1



zi ↓
m∑

j=1

wijzj




2
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Ŵ = argmin
W

m∑

i=1



xi ↓
m∑

j=1

wijxj




2

Normalize weights — captures “local” geometry upto rotation, reflection, scaling

Re-express each point in J dimensions, xi ↔↗ zi
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Locally linear embeddings (LLE)

Original image Sampled points

Need enough samples to
discover the “curves”

LLE reconstruction
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Locally linear embeddings (LLE)

LLE reconstruction preserves
neighbourhood structure

PCA distorts geometry
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Summary

Singular Value Decomposition (SVD) finds best fit k-dimensional subspace for any
matrix M

Principal Component Analysis uses SVD for dimensionality reduction

Unsupervised technique — often helps simplify the problem, but may not

SVD/PCA can only compress features that have a linear relationship

More general techniques based on neural networks — autoencoders
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