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D-Separation

Check if X → Y | Z

Dependence should be blocked on

every trail from X to Y

Each undirected path from X to Y
is a sequence of basic trails

For (a), (b), (c), need Z present

For (d), need Z absent

In general, V-structure includes

descendants of the bottom node

x and y are D-separated given z if all trails are blocked

Variation of breadth first search (BFS) to check if y is reachable from x through

some trail

Extends to sets — each x ↑ X is D-separated from each y ↑ Y
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Markov blanket

MB(X ) — Markov blanket of X

Parents(X )

Children(X )

Parents of Children(X )

X → ¬MB(X ) | MB(X )
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Computing with probabilistic graphical models

John and Mary call Pearl. What is

the probability that there has been a

burglary?

Want P(b | m, j)

P(b,m, j)

P(m, j)

Use chain rule to evaluate joint

probabilities

Reorder variables appropriately,

topological order of graph

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 4 / 16



Computing with probabilistic graphical models

John and Mary call Pearl. What is

the probability that there has been a

burglary?

Want P(b | m, j)

P(b,m, j)

P(m, j)

Use chain rule to evaluate joint

probabilities

Reorder variables appropriately,

topological order of graph

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 4 / 16



Computing with probabilistic graphical models

John and Mary call Pearl. What is

the probability that there has been a

burglary?

Want P(b | m, j)

P(b,m, j)

P(m, j)

Use chain rule to evaluate joint

probabilities

Reorder variables appropriately,

topological order of graph

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 4 / 16



Computing with probabilistic graphical models

John and Mary call Pearl. What is

the probability that there has been a

burglary?

Want P(b | m, j)

P(b,m, j)

P(m, j)

Use chain rule to evaluate joint

probabilities

Reorder variables appropriately,

topological order of graph

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 4 / 16



Computing with probabilistic graphical models

John and Mary call Pearl. What is

the probability that there has been a

burglary?

Want P(b | m, j)

P(b,m, j)

P(m, j)

Use chain rule to evaluate joint

probabilities

Reorder variables appropriately,

topological order of graph

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 4 / 16



Computing with probabilistic graphical models

P(m, j , b) = P(b)
1∑

e=0

P(e)
1∑

a=0

P(a | b, e)P(m | a)P(j | a)

Construct the computation

tree

Use dynamic programming

to avoid duplicated

computations

However, exact inference is

NP-complete, in general

Instead, approximate

inference through sampling
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Approximate inference

Generate random samples

(b, e, a,m, j), count to estimate

probabilities

Random samples should respect

conditional probabilities

Fix parents of x before generating x

Generate in topological order

Generate b, e with probabilities

P(b) and P(e)

Generate a with probability

P(a | b, e)
Generate j , m with probabilities

P(j | a), P(m | a)
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Approximate inference

We are interested in P(b | j ,m)

Samples with ¬j or ¬m are useless

Can we sample more e!ciently?
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Rejection sampling

P(Rain | Cloudy ,Wet Grass)

Topological order

Generate Cloudy

Generate Sprinkler , Rain

Generate Wet Grass

If we start with ¬Cloudy , sample is

useless

Immediately stop and reject this

sample — rejection sampling

General problem with low probability

situation — many samples are

rejected
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Likelihood weighted sampling

P(Rain | Cloudy ,Wet Grass)

Fix evidence Cloudy ,Wet Grass true

Then generate the other variables

Suppose we generate c ,¬s, r ,w

Compute likelihood of evidence:

0.5↓ 0.9 = 0.45

0.45 is likelihood weight of sample

Samples s1, s2, . . . , sN with weights

w1,w2, . . .wN

P(r | c ,w) =

∑
si has rain wi∑
1→j→N wj

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 9 / 16

VT

T



Likelihood weighted sampling

P(Rain | Cloudy ,Wet Grass)

Fix evidence Cloudy ,Wet Grass true

Then generate the other variables

Suppose we generate c ,¬s, r ,w

Compute likelihood of evidence:

0.5↓ 0.9 = 0.45

0.45 is likelihood weight of sample

Samples s1, s2, . . . , sN with weights

w1,w2, . . .wN

P(r | c ,w) =

∑
si has rain wi∑
1→j→N wj

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 9 / 16



Likelihood weighted sampling

P(Rain | Cloudy ,Wet Grass)

Fix evidence Cloudy ,Wet Grass true

Then generate the other variables

Suppose we generate c ,¬s, r ,w

Compute likelihood of evidence:

0.5↓ 0.9 = 0.45

0.45 is likelihood weight of sample

Samples s1, s2, . . . , sN with weights

w1,w2, . . .wN

P(r | c ,w) =

∑
si has rain wi∑
1→j→N wj

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 9 / 16



Likelihood weighted sampling

P(Rain | Cloudy ,Wet Grass)

Fix evidence Cloudy ,Wet Grass true

Then generate the other variables

Suppose we generate c ,¬s, r ,w

Compute likelihood of evidence:

0.5↓ 0.9 = 0.45

0.45 is likelihood weight of sample

Samples s1, s2, . . . , sN with weights

w1,w2, . . .wN

P(r | c ,w) =

∑
si has rain wi∑
1→j→N wj

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 9 / 16

T

e -

T



Likelihood weighted sampling

P(Rain | Cloudy ,Wet Grass)

Fix evidence Cloudy ,Wet Grass true

Then generate the other variables

Suppose we generate c ,¬s, r ,w

Compute likelihood of evidence:

0.5↓ 0.9 = 0.45

0.45 is likelihood weight of sample

Samples s1, s2, . . . , sN with weights

w1,w2, . . .wN

P(r | c ,w) =

∑
si has rain wi∑
1→j→N wj

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 9 / 16

f *f

P(c) xP(w) given this sample
0 .54 0-9 O -

-



Likelihood weighted sampling

P(Rain | Cloudy ,Wet Grass)

Fix evidence Cloudy ,Wet Grass true

Then generate the other variables

Suppose we generate c ,¬s, r ,w

Compute likelihood of evidence:

0.5↓ 0.9 = 0.45

0.45 is likelihood weight of sample

Samples s1, s2, . . . , sN with weights

w1,w2, . . .wN

P(r | c ,w) =

∑
si has rain wi∑
1→j→N wj

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 9 / 16

Rice-

t t

0 .5 X0 .99



Likelihood weighted sampling

P(Rain | Cloudy ,Wet Grass)

Fix evidence Cloudy ,Wet Grass true

Then generate the other variables

Suppose we generate c ,¬s, r ,w

Compute likelihood of evidence:

0.5↓ 0.9 = 0.45

0.45 is likelihood weight of sample

Samples s1, s2, . . . , sN with weights

w1,w2, . . .wN

P(r | c ,w) =

∑
si has rain wi∑
1→j→N wj

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 9 / 16



Likelihood weighted sampling

P(Rain | Cloudy ,Wet Grass)

Fix evidence Cloudy ,Wet Grass true

Then generate the other variables

Suppose we generate c ,¬s, r ,w

Compute likelihood of evidence:

0.5↓ 0.9 = 0.45

0.45 is likelihood weight of sample

Samples s1, s2, . . . , sN with weights

w1,w2, . . .wN

P(r | c ,w) =

∑
si has rain wi∑
1→j→N wj

Madhavan Mukund Lecture 23: 17 April, 2025 DMML Jan–Apr 2025 9 / 16

0 .5X0.99
t

t t

11 -

t



Gibbs sampling

State of a Bayesian network is a valuation of variables (V1,V2, . . . ,Vn)

Move probabilistically from sj = (x1, x2, . . . , xn) to sk = (y1, y2, . . . , yn)

Allow such a move only when sj , sk di”er at exactly one position

sj = (x1, x2, . . . , xi→1, xi , xi+1, . . . , xn)

sk = (x1, x2, . . . , xi→1, yi , xi+1, . . . , xn)

Sampling algorithm

Current state is sj = (x1, x2, . . . , xn)

Choose i uniformly in [1, n]

Resample xi given current values (x1, x2, . . . , xi→1, xi+1, . . . , xn)

Random walk through state space — count number of visits to each state

Need to compute P[yi | x1, x2, . . . , xi↑1, xi+1, . . . , xn]

Why does this work at all?
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Approximate inference using Markov chains

Markov chains

Finite set of states, with transition probabilities between states

For us, a state will be an assignment of values to variables

A three state Markov Chain

1

2 3

1
2

1
2

1
1
2

1
2

Represent using a transition matrix — stochastic

A =





0
1
2

1
2

1 0 0

1
2

1
2 0





P[j ] is probability of being in state j

Start in state 1, so initially P =




1

0

0
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Markov chains . . .

After one step:

P→A =
[
1 0 0

]




0
1
2

1
2

1 0 0

1
2

1
2 0



 =
[
0

1
2

1
2

]

After second step:
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After k steps, P[j ] is probability of being in

state j

Continuing our example,
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Ergodicity

Is it the case that P[j ] > 0 for all j continuously,
after some point?

Markov chain A is ergodic if there is some t0 such

that for every P , for all t > t0, for every j ,
(P→At

)[j ] > 0.

No matter where we start, after t > t0 steps, every

state has a nonzero probability of being visited in

step t

Properties of ergodic Markov chains

There is a stationary distribution ω, ω→A = ω

ω is a left eigenvector of A

For any starting distribution P , lim
t↑↓

P→At
= ω
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Ergodicity . . .

How can ergodicity fail?

Starting from i , we reach a set of states from which

there is no path back to i

We have a cycle i → j → k → i → j → k · · ·, so we

can only visit some states periodically

Su!cient conditions for ergodicity

Irreducibility: When viewed as a directed graph, A
is strongly connected

For all states i , j , there is a path from i to j and a

path from j to i

Aperiodicity: For any pair of vertices i , j , the gcd of

the lengths of all paths from i to j is 1

In particular, paths (loops) from i to i do not all

have lengths that are multiples of some k ↑ 2 —

prevents bad cycles

1

2 3

1
2

1
2

1
1
2
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2
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Ergodicity . . .

Can e!ciently approximate lim
t→↑

P↓At

by repeated squaring: P↓A2
, P↓A4

,

P↓A8
, . . . , P↓A2k

, . . .

Mixing time — how fast this

converges to ω

Stationary distribution represents

fraction of visits to each state in a long

enough execution

Can we create a Markov chain from a

Bayesian network so that the stationary

distribution is meaningful?
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Approximate inference using Markov chains

Bayesian network has variables

v1, v2, . . . , vn

Each assignment of values to the variables

is a state

Set up a Markov chain on these states

Gibbs sampling — random walk through

state space, count visits to each state

Stationary distribution should assign to

state s the probability P(s) in the

Bayesian network

How to reverse engineer the transition

probabilities to achieve this?
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