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Unsupervised learning

Supervised learning requires labelled data

Vast majority of data is unlabelled

What insights can you get with unlabelled
data?

“If intelligence was a cake,
unsupervised learning would be the
cake, supervised learning would be
the icing on the cake . . . ”

– Yann LeCun
ACM Turing Award 2018
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Applications

Customer segmentation

Marketing campaigns

Anomaly detection

Outliers

Semi-supervised learning

Propagate limited labels

Image segmentation

Object detection
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Clustering for supervised learning

Labelling training data is a bottleneck of
supervised learning

Handwritten digits 0,1,. . . ,9

1797 images

8→ 8 pixels, grayscale

Each image is a 64-tuple (x1, x2, . . . , x64)

Standard logistic regression model has 96.9%
accuracy
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Clustering as preprocessing

Use K Means to make 50 clusters

Replace each input by its distance from the 50
centroids

Instead of (x1, x2, . . . , x64)

. . . (d1, d2, . . . , d50)

Logistic regression on this representation jumps
from 96.9% to 97.8% accuracy!

Varying the number of clusters changes the
accuracy

99 clusters is optimum, 98.2% accuracy
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Semi-supervised learning

1797 images of handwritten digits 0,1,. . . ,9

Standard logistic regression model has 96.9%
accuracy

What if we couldn’t label the entire training
set?

Suppose we take 50 random samples as
training set

Logistic regression gives 83.3% accuracy
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Semi-supervised learning

Instead of 50 random samples, 50 clusters
using K means

Use image nearest to each centroid as
training set

50 representative images

. . . but not randomly chosen 50

Logistic regression accuracy jumps to
92.2%
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Semi-supervised learning

Propagate representative image label to
entire cluster

Logistic regression improves to 93.3%

Propagage representive image label to
20% items closest to centroid

Logistic regression improves to 94%

Only 50 actual labels used, about 5 per
class!
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Image segmentation

An image is a matrix of pixels

Each pixel’s colour is a triple (R,G,B)

K means clustering on these values merges
colours

With 10 clusters, not much change

Same with 8

At 6 colours, ladybug red goes

4 colours

Finally 2 colours, flower and rest
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