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Neural networks

m Acyclic network of perceptrons with non-linear activation functions

>0
2
/[
W-x+b

output layer

input layer
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m Assume input has been segmented

m 1000 samples of 10 handwritten
digits

m MNIST data set




Example: Recognizing handwritten digits

m MNIST data set D]qmmzlmg]—l]mm
[ 1990 samples of 10 handwritten E ?] [Z] m ?l m m —6] m RI
digits 242y B3R >Z 3
m Assume input has been segmented ?] _G] m m 3‘] m Iv] 5—] m m

m Each digit is 28 x 28 pixels (2] (71 (9] (3] [9] [R] [s] 8] (3] [3]
m Grayscale value, 0 to 1 a j] E] E lz] m m g

m 784 pixels EE@Z@EQ@@
21 1] [&] (3] 8] [& [Z] (2] [Z]

g8l & 7] 18 1 g 0 ¢/ @

=2l Ml [é] [7] (0] (7] (&1 (3] [/]




Example: Recognizing handwritten digits

m MNIST data set D]qmmzlmg]—l]mm
[ 1990 samples of 10 handwritten E ?] [Z] m ?l m m —6] m RI
digits 242y B3R >Z 3
m Assume input has been segmented ?] _G] m m 3‘] m Iv] 5—] m m

m Each digit is 28 x 28 pixels (2] (71 (9] (3] [9] [R] [s] 8] (3] [3]
m Grayscale value, 0 to 1 a j] E] E lz] m m g

m 784 pixels EE@Z@EQ@@

m Input x = (x1, %0, ..., x784) z :D @ [5] E [Zl E @
g8l & 7] 18 1 g 0 ¢/ @

=2l Ml [é] [7] (0] (7] (&1 (3] [/]




Example: Network structure

hidden layer

(n = 15 neurons)

m Input layer (x1,x, ..., x784)

output layer

input layer

(784 neurons)
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Example: Network structure

hidden layer

(n = 15 neurons)

m Input layer (x1,x, ..., x784)

m Single hidden layer, 15 nodes

input layer

(784 neurons)

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan—Apr 2025



Example: Network structure

hidden layer

(n = 15 neurons)

m Input layer (x1,x, ..., x784)

m Single hidden layer, 15 nodes

m Qutput layer, 10 nodes
m Decision a; for each digit
j€{0,1,...,9}

input layer

(784 neurons)
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Example: Network structure

hidden layer

(n = 15 neurons)

Input layer (x1,x2, ..., Xx784)

Single hidden layer, 15 nodes

Output layer, 10 nodes
m Decision a; for each digit
j€{0,1,...,9}

input layer

m Final output is best a; (784 neurons)
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Example: Network structure

hidden layer

(n = 15 neurons)

Input layer (x1,x2, ..., Xx784)

Single hidden layer, 15 nodes

Output layer, 10 nodes

m Decision a; for each digit
je€{0,1,...,9}

input layer

m Final output is best a; (784 neurons)

m Naively, arg mjax aj
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Example: Network structure

hidden layer

(n = 15 neurons)

Input layer (x1,x2, ..., Xx784)

Single hidden layer, 15 nodes

Output layer, 10 nodes

m Decision a; for each digit
je€{0,1,...,9}

input layer

m Final output is best a; (784 neurons)
m Naively, arg max a;
J
e
m Softmax, arg max

J ZJ ed

® “Smooth” version of arg max
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Example: Extracting features

m Hidden layers extract features J
m For instance, patterns in different quadrants

T
h"
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Example: Extracting features

m Hidden layers extract features J ﬂ

m For instance, patterns in different quadrants

m Combination of features determines output

L /
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Example: Extracting features

m Hidden layers extract features J ﬂ

m For instance, patterns in different quadrants

m Combination of features determines output

m Claim: Automatic identification of features is
strength of the model

L /
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Example: Extracting features

m Hidden layers extract features J ﬂ

m For instance, patterns in different quadrants

m Combination of features determines output =

m Claim: Automatic identification of features is
strength of the model

m Counter argument: implicitly extracted
features are impossible to interpret
m Explainability
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Training neural networks

m Without loss of generality,
m Assume the network is layered

m All paths from input to output have the same length e
m Each layer is fully connected to the previous one
® Set weight to 0 if connection is not needed
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Training neural networks

m Without loss of generality, Z = Uﬁ +L =

o
m Assume the network is layered L
m All paths from input to output have the same length w

m Each layer is fully connected to the previous one
B Set weight to 0 if connection is not needed ’x’ - ’b_

m Structure of an individual neuron
m Input weights wy, ..., W, bias b, output z, activation value a
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m Layers (€ {1,2,... L}
m Inputs are connected first hidden layer, layer 1 1 2— l"
m Layer L is the output layer } ‘

m Layer / has my nodes 1,2,..., my
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Notation

m Layers (€ {1,2,... L} L
m Inputs are connected first hidden layer, layer 1 e

m Layer L is the output layer '
m Layer / has my nodes 1,2,..., my .
m Node k in layer / has bias bﬁ, output zf and activaltion value af( !
m Weight on edge from node j in level /—1 to node A in level ¢ i k
! W b J
AN A\.a o L
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m Why the inversion of indices in the subscript W,fj?

0 0 0—1 ¢ -1 ‘ -1
B Zp = Wgna "t Weay, W, an T
— (0 p )
mLet Wy = (W, Weo, -+ o Wiy, )
-1 _ -1 (-1 -1
and 3 =(a; *,a, .,...,amFl)

0l
m Thenz, =w, -3

(-1

0—2%
Wb

Wi ol by

W Ayr !

Madhavan Mukund
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m Why the inversion of indices in the subscript W,fj?

0 0 0—1 ¢ -1 ‘ -1
B Zp = Wgna "t Weay, W, an T
— (0 p ¢
mLet Wy = (W, Weo, -+ o Wiy, )
-1 _(—1 /—1
and (a1 " & .,...,amFl)

m Assume all"layers have same number of nodes

mletm= max my
re{1.2,...,L}

m For any layer /, for k > m;, we set all of ij7 by, zl,a, to 0

m Matrix formulation

5 alES
2 | wh || !
szém an af,? 1 fM m— e'

Madhavan Mukund
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Learning the parameters

L

m Need to find optimum values for all weights W,fj ) & bk
m Use gradient descent

m Cost function C, partial derivatives £ O—C,
0Wk'j b,
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Learning the parameters

m Need to find optimum values for all weights w,fj
m Use gradient descent

m Cost function C, partial derivatives £ O—C,
Owk'j b,

m Assumptions about the cost function
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Learning the parameters

m Need to find optimum values for all weights W,fj
m Use gradient descent = -
oCc 0C
m Cost function C, partial derivatives —-, 7 —
Owk'j b,

m Assumptions about the cost function
For input x, C(x) is a function of only the output layer activatior|, a*
m For instance, for training input (x;, y;), sum-squared error is (y; — a,-L)2

m Note that x;, y; are fixed values, only a* is a variable
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Learning the parameters

m Need to find optimum values for all weights W,fj
m Use gradient descent

oCc  oC
m Cost function C, partial derivatives —, ——
Owk'j b,

m Assumptions about the cost function

For input x, C(x) is a function of only the output layer activation, a*

m For instance, for training input (x;, y;), sum-squared error is (y; — a,-L)2

m Note that x;, y; are fixed values, only a* is a variable
Total cost is average of individual input costs

: , 1y
m Each input x; incurs cost C(x;), total cost is — E C(xi)
i3
1 n
m For instance, mean sum-squared error — E (vi—a)
n
i=1
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Learning the parameters

m Assumptions about the cost function

For input x, C(x) is a function of only the output layer activation, a*

Total cost is average of individual input costs

m With these assumptions:

oc ocC dat  9at

dwy;" by dwy;" Oby,

m Can extrapolate change in individual cost C(x) to change in overall cost C — stochastic
gradient descent

m We can write in terms of individual
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Learning the parameters

m Assumptions about the cost function

For input x, C(x) is a function of only the output layer activation, a* 0
Total cost is average of individual input costs W o L
m With these assumptions: 3 a

oc ocC dat  9at )

dwy;" by dwy;" Oby,

m Can extrapolate change in individual cost C(x) to change in overall cost C — stochastic
gradient descent

m We can write in terms of individual

m Complex dependency of C on ij, bﬁ
m Many intermediate layers
m Many paths through these layers

m Use chain rule to decompose into local dependencies
B 0g Ogof
"y =&l =5, = orox
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Calculating dependencies

m If we perturb the output zf at node j in layer 7, what is the impact on final output,

overall cost? -
’ W+ =2

)
Y

Z

—>

}
¢

(
+A2.J

m Focus on

oC

—— —~ from these, we can compute ——

¢
awjk

¢ Hc
w L

— 6+
| L
C+7? Ve Bq

- 9z D=z
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Computing partial derivatives

m Use chain rule to run backpropagation algorithm

m Given an input, execute the network from left to right to compute all outputs

m Using the chain rule, work backwards from right to left to compute all values of —;
Ve
J

Comrvdcc Z.0

—>

‘57‘,3 W

<Cv\«fuh .D—c (4 A
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Applying the chain rule

oC
Let (5f denote =7
0zt

J
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Applying the chain rule

Let 5f denote

4
97

Base Case
(=1L, 0t J

9C Oat
m Chain rule: 8—C = Eif
82} ((‘)aJ.L asz
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Applying the chain rule

Let 5f denote

4
97

Base Case
(=1L, 0t J

9C\Oat
m Chain rule: 8—C = Eil
82} ((‘)aJ.L asz

n

1 ocC
For instance, if C = = > (y; — af)?, th
m For instance, | . (yi —a;) en

, =@~ (1) = (e~ )
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Applying the chain rule

Let 5f denote

4
97

Base Case
(=1L, 0t J

9C Oat
m Chain rule: 8—C = Eif
82} ((‘)aJ.L asz

n

. . 1 [\2 oC 1 . 2,
m For instance, if C = . ;l(y,- — a;)°, then 8ajL = ;(Q(yj —ah)(-1) = ;(aj _—
dat
L L J L
m a; = 0(z), so GZJ.L _ U’(zj)
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Applying the chain rule

oC
Let 5f denote =7
0zt

J
Base Case
0=L, 5t J
: A
9C Oat
m Chain rule: 8—C — Eif
82} ((‘)aJ.L asz

n

m For instance, if C = . igl(y,- — aj)°, then 8ajL = ;(2()/1- —a)(-1) = ;(aj )
Dat
L_ (L i L
m a; = 0(z), so (97sz =0'(z)
B 1 iy Oo(u) B . :
mo(u)= Te” (u) = S o(u)(1 — o(u)) Work this out!
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Applying the chain rule

Induction step J

From 5f+1 to (5f
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Applying the chain rule

Induction step
From 5f+1 to (5f \/ J
T 2
/ 821-5 — ozt azf -
— W
Z2
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Applying the chain rule

Induction step J

From 5f+1 to (5f

léf:—

m First term inside summation: = 5i+1

/+1
0z,

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan—Apr 2025



Applying the chain rule

Induction step J

From 5f+1 to (5f

, 9C < 9C 9z
o= = > 5T 0s7
J k=1 Y%k J
m First term inside summation: T = §ett
ozt
k
m Second term: zﬁ“ Z ”132—1— bffl Z ”1 )+ bHl

V
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Applying the chain rule

Induction step J

From 5f+1 to (5f

zm: oC 02“'1
! f)z,f+1 azj

. 6€+1
/+1
0z,

m First term inside summation:

m Second term: zﬁ“ Z ”132—1— bffl Z ”1 + bHl

- FOI’I'#], o, 1/[ 1/+1 ( ) b1/+1]
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Applying the chain rule

Induction step J

From 5f+1 to (5f

0C < 9C 9z
mil=— = Z
J 82{ aZEJrl az_
i k=1 Y%k J <
m First term inside summation: 1= §ett
0z, X B
m Second term: zﬁ“ Z (+1 '—|—bi+1 Z ”1 bHl Py
. 041 /41
lFor/;zréJ,a[[w+ ( O+ b = r
m For =], 5 f [wiito(z) + B = wi o' (2f) Y
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Applying the chain rule

Induction step J

From 5f+1 to (5f

0C < 9C 9z
'5}5:@:25“1 a7
j k=1 9% i
m First term inside summation: T = §ett
ozt
k
m Second term: zﬁ“ Z ”132—1— bffl Z ”1 )+ bHl
. 041 /41
« Fori#), o [[ (e +
- Fori— ], 8()[ [w”lo( )+ b = ”10’(2]’)
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Finishing touches

oC

What we actually need to compute are —-, —
8ij Oby
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Finishing touches

oC
What we actually need to compute are —-, —
awkj Oby
oCc  0C 9z 0z
" ol T ot owt.  “kowl
Wy 0z, Owkj Owkj
oC  9Cozf 0z

" 95l " ozl ob,  kob.
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Finishing touches

oC
What we actually need to compute are —-, —
8ij Oby
oCc  0C 9z 0z
" ol T ot owt.  “kowl
Wy 0z, Oij (?ij
oC  9Cozf 0z

" 95l " ozl ob,  kob.

o0 ¢
0z, 0z,

We have already computed ¢, so what remains is 7 Al
(9ij db,
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Finishing touches

oC
What we actually need to compute are —-, —
8ij Oby
oCc  0C 9z 0z
" owl " ozl ow!,  “Fow!
ij Zk ij ij
oC  9Cozf 0z
" o6, ~ ozl abl  kob.
k 2 9Dy k , ,
, . . 0z, 0z
We have already computed &, so what remains is —’2 —’2
(9ij db,
m
m Since 7| = Z wi by, it follows that
, =l
[82,} = at~! — terms with / # j vanish
owy; J
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Finishing touches

oCc o0cC
What we actually need to compute are —-, —
8ij Oby

oC  9C 9z, 0z

waj N a?ﬁwfi N k(?wfj
oC  9Cozf 0z

" 95l " ozl ob,  kob.

y é)zﬁ Oz}
We have already computed d;, so what remains is 7
kaj db,
m
m Since 7| = Z wiat ; L by, it follows that
i=1
oz}
Zk — 5'~1 — terms with i = j vanish
deJ %
oz}

m — — 1 — terms with / # j vanish
55! #J
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Backpropagation

m In the forward pass, compute all z, a,

oc 0C

m In the backward pass, compute all 5£, from which we can get all —-, —
8ij ob,

m Increment each parameter by a step A in the direction opposite the gradient

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan—Apr 2025



Backpropagation

m In the forward pass, compute all z, a,

) : oCc o0cC
m In the backward pass, compute all 5£, from which we can get all —-, —
(9ij ob,
m Increment each parameter by a step A in the direction opposite the gradient

Typically, partition the training data into groups (mini batches)

m Update parameters after each mini batch — stochastic gradient descent

m Epoch — one pass through the entire training data

Madhavan Mukund Lecture 20: 8 April, 2025 DMML Jan—Apr 2025



Challenges

m Backpropagation dates from mid-1980's

Learning representations by back-propagating errors
David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams
Nature, 323, 533-536 (1986)
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Challenges

m Backpropagation dates from mid-1980's

Learning representations by back-propagating errors
David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams
Nature, 323, 533-536 (1986)

m Computationally infeasible till advent of modern parallel hardware, GPUs for vector
(tensor) calculations
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Challenges

m Backpropagation dates from mid-1980's

Learning representations by back-propagating errors
David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams
Nature, 323, 533-536 (1986)

m Computationally infeasible till advent of modern parallel hardware, GPUs for vector
(tensor) calculations

m Vanishing gradient problem — cascading derivatives make gradients in initial layers very
small, convergence is slow

m In rare cases, exploding gradient also occurs

Feedlaole
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Pragmatics

m Many heuristics to speed up gradient descent

m Dynamically vary step size A

m Dampen positive-negative oscillations ...
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m Many heuristics to speed up gradient descent

m Dynamically vary step size

\\} s
m Dampen positive-negative oscillations ... == MVW\-QN\XU
m Libraries implementing neural networks have several hyperparameters that can be tuned

m Network structure: Number of layers, type of activation function — RELU, tanh
m Training: Mini-batch size, number of epochs

m Heuristics: Choice of optimizer for gradient descent
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m Many heuristics to speed up gradient descent
m Dynamically vary step size

m Dampen positive-negative oscillations . . .
m Libraries implementing neural networks have several hyperparameters that can be tuned
m Network structure: Number of layers, type of activation function — RELU, tanh
m Training: Mini-batch size, number of epochs
m Heuristics: Choice of optimizer for gradient descent
m Loss functions

m As we have seen MSE is not a good choice

m Cross entropy is better — corresponds to finding MLE
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