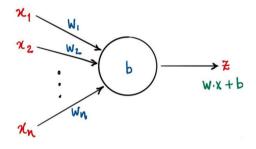
Lecture 19: 23 March, 2023

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2023

- Perceptrons define linear separators $w \cdot x + b$
 - $w \cdot x + b > 0$, classify Yes (+1)
 - $w \cdot x + b < 0$, classify No (-1)



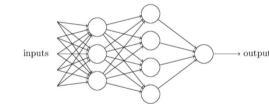
2/16

Madhavan Mukund Lecture 19: 23 March, 2023 DMML Jan-Apr 2023

- Perceptrons define linear separators $w \cdot x + b$
 - $w \cdot x + b > 0$, classify Yes (+1)
 - $w \cdot x + b < 0$, classify No (-1)
- What if we cascade perceptrons?

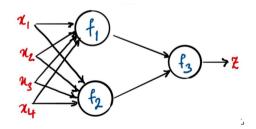
Madhavan Mukund Lecture 19: 23 March, 2023 DMML Jan-Apr 2023 2 / 16

- Perceptrons define linear separators $w \cdot x + b$
 - $w \cdot x + b > 0$, classify Yes (+1)
 - $w \cdot x + b < 0$, classify No (-1)
- What if we cascade perceptrons?
- Result is still a linear separator

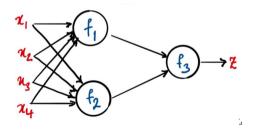


Madhavan Mukund Lecture 19: 23 March, 2023 DMML Jan-Apr 2023 2 / 16

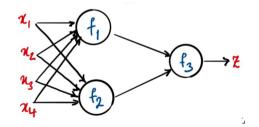
- Perceptrons define linear separators $w \cdot x + b$
 - $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} > 0$, classify Yes (+1)
 - $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} < \mathbf{0}$, classify No (-1)
- What if we cascade perceptrons?
- Result is still a linear separator
 - $f_1 = w_1 \cdot x + b_1, f_2 = w_2 \cdot x + b_2$



- Perceptrons define linear separators $w \cdot x + b$
 - $w \cdot x + b > 0$, classify Yes (+1)
 - $w \cdot x + b < 0$, classify No (-1)
- What if we cascade perceptrons?
- Result is still a linear separator
 - $f_1 = w_1 \cdot x + b_1, f_2 = w_2 \cdot x + b_2$

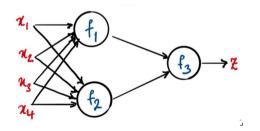


- Perceptrons define linear separators $w \cdot x + b$
 - $w \cdot x + b > 0$, classify Yes (+1)
 - $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} < \mathbf{0}$, classify No (-1)
- What if we cascade perceptrons?
- Result is still a linear separator
 - $f_1 = w_1 \cdot x + b_1, f_2 = w_2 \cdot x + b_2$

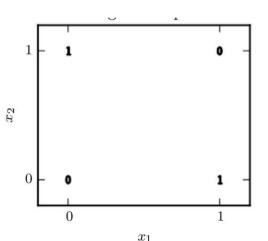


- Perceptrons define linear separators $w \cdot x + b$
 - $w \cdot x + b > 0$, classify Yes (+1)
 - $w \cdot x + b < 0$, classify No (-1)
- What if we cascade perceptrons?
- Result is still a linear separator
 - $f_1 = w_1 \cdot x + b_1, f_2 = w_2 \cdot x + b_2$

 - $f_3 = \sum_{i=1}^4 (w_{3_1}w_{1_i} + w_{3_2}w_{2_i}) \cdot x_i$ $+ (w_{3_1}b_1 + w_{3_2}b_2 + b_3)$

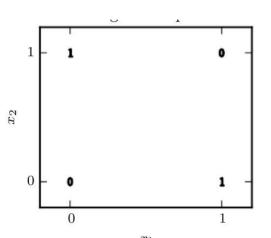


- Cannot compute *exclusive-or* (XOR)
- $XOR(x_1, x_2)$ is true if exactly one of x_1, x_2 is true (not both)



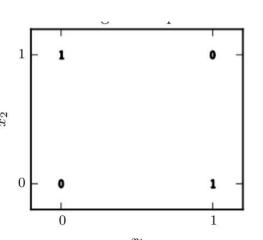
#1 ←□→←□→←≣→←≣→ ■ ★○へ○

- Cannot compute exclusive-or (XOR)
- $XOR(x_1, x_2)$ is true if exactly one of x_1, x_2 is true (not both)
- Suppose $XOR(x_1, x_2) = ux_1 + vx_2 + b$



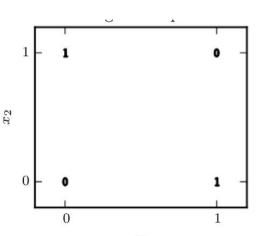
*x*₁ ←□ → ←□ → ← ≥ → → ← ≥ → → ← ←

- Cannot compute *exclusive-or* (XOR)
- $XOR(x_1, x_2)$ is true if exactly one of x_1, x_2 is true (not both)
- Suppose $XOR(x_1, x_2) = ux_1 + vx_2 + b$
- $x_2 = 0$: As x_1 goes from 0 to 1, output goes from 0 to 1, so u > 0



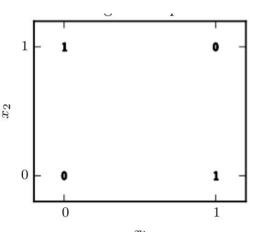
*x*₁ ←□ → ←□ → ←□ → ←□ → □ → ↑ へ ○

- Cannot compute exclusive-or (XOR)
- $XOR(x_1, x_2)$ is true if exactly one of x_1, x_2 is true (not both)
- Suppose $XOR(x_1, x_2) = ux_1 + vx_2 + b$
- $x_2 = 0$: As x_1 goes from 0 to 1, output goes from 0 to 1, so u > 0
- $x_2 = 1$: As x_1 goes from 0 to 1, output goes from 1 to 0, so u < 0

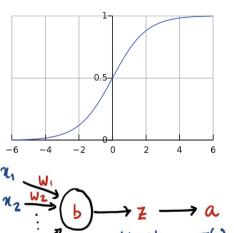


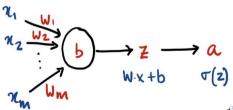
*x*₁ ←□→←□→←□→←□→□→□→□→□←

- Cannot compute exclusive-or (XOR)
- $XOR(x_1, x_2)$ is true if exactly one of x_1, x_2 is true (not both)
- Suppose $XOR(x_1, x_2) = ux_1 + vx_2 + b$
- $x_2 = 0$: As x_1 goes from 0 to 1, output goes from 0 to 1, so u > 0
- $x_2 = 1$: As x_1 goes from 0 to 1, output goes from 1 to 0, so u < 0
- Observed by Minsky and Papert, 1969, first "Al Winter"

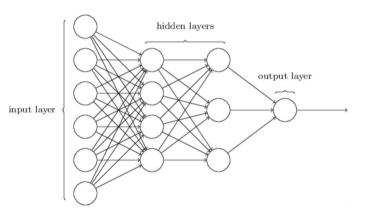


- Transform linear output z through a non-linear activation function
- Sigmoid function $\frac{1}{1+e^{-z}}$

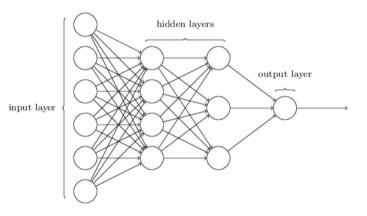




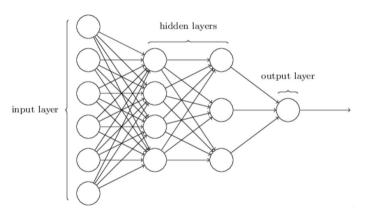
- Acyclic
- Input layer, hidden layers, output layer



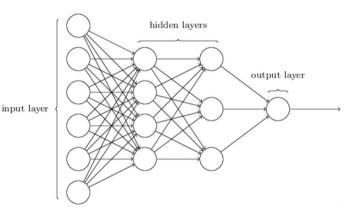
- Acyclic
- Input layer, hidden layers, output layer
- Assumptions



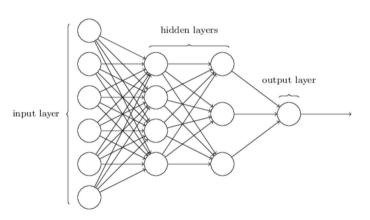
- Acyclic
- Input layer, hidden layers, output layer
- Assumptions
 - Hidden neurons are arranged in layers



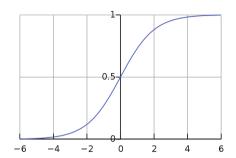
- Acyclic
- Input layer, hidden layers, output layer
- Assumptions
 - Hidden neurons are arranged in layers
 - Each layer is fully connected to the next

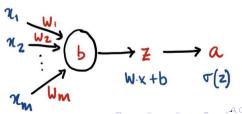


- Acyclic
- Input layer, hidden layers, output layer
- Assumptions
 - Hidden neurons are arranged in layers
 - Each layer is fully connected to the next
 - Set weight to zero to remove an edge

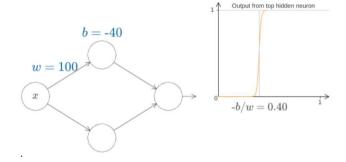


- Transform linear output *z* through a non-linear activation function
- Sigmoid function $\frac{1}{1 + e^{-z}}$
- Step is at z = 0
 - z = wx + b, so step is at x = -b/w
 - Increasing w makes step steeper



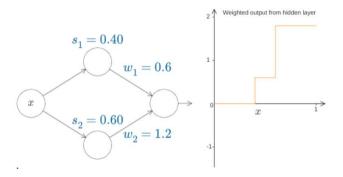


• Create a step at x = -b/w



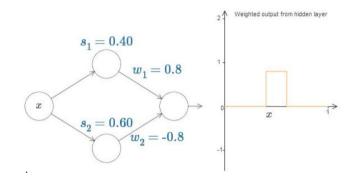
Madhavan Mukund Lecture 19: 23 March, 2023 DMML Jan-Apr 2023 7 / 16

- Create a step at x = -b/w
- Cascade steps



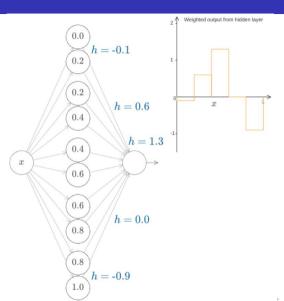
| ロ ト 4回 ト 4 重 ト 4 重 ト ・ 重 ・ 夕 Q ()・

- Create a step at x = -b/w
- Cascade steps
- Subtract steps to create a box

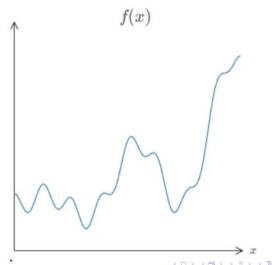


Madhavan Mukund Lecture 19: 23 March, 2023 DMML Jan-Apr 2023

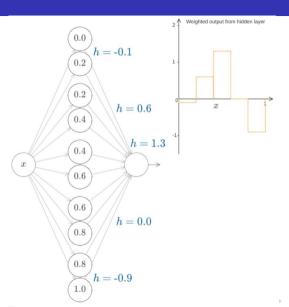
- Create a step at x = -b/w
- Cascade steps
- Subtract steps to create a box
- Create many boxes



- Create a step at x = -b/w
- Cascade steps
- Subtract steps to create a box
- Create many boxes
- Approximate any function

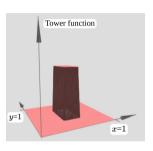


- Create a step at x = -b/w
- Cascade steps
- Subtract steps to create a box
- Create many boxes
- Approximate any function
- Need only one hidden layer!

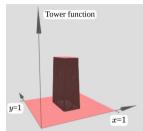


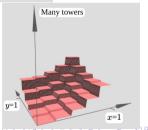
 With non-linear activation, network of neurons can approximate any function

- With non-linear activation, network of neurons can approximate any function
 - Can build "rectangular" blocks



- With non-linear activation, network of neurons can approximate any function
 - Can build "rectangular" blocks
 - Combine blocks to capture any classification boundary

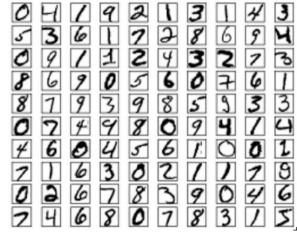




■ MNIST data set

- MNIST data set
- 1000 samples of 10 handwritten digits
 - Assume input has been segmented

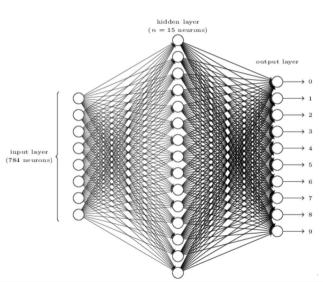
- MNIST data set
- 1000 samples of 10 handwritten digits
 - Assume input has been segmented
- Each digit is 28 × 28 pixels
 - Grayscale value, 0 to 1
 - 784 pixels



- MNIST data set
- 1000 samples of 10 handwritten digits
 - Assume input has been segmented
- Each digit is 28 × 28 pixels
 - Grayscale value, 0 to 1
 - 784 pixels
- Input $x = (x_1, x_2, \dots, x_{784})$

Example: Network structure

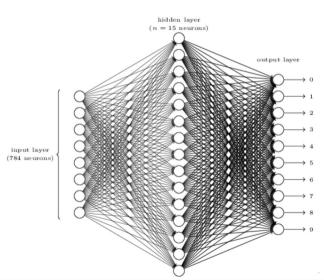
■ Input layer $(x_1, x_2, ..., x_{784})$



Madhavan Mukund Lecture 19: 23 March, 2023 DMML Jan–Apr 2023 10 / 16

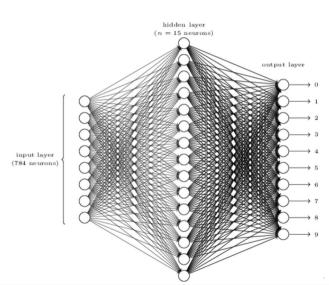
Example: Network structure

- Input layer $(x_1, x_2, ..., x_{784})$
- Single hidden layer, 15 nodes



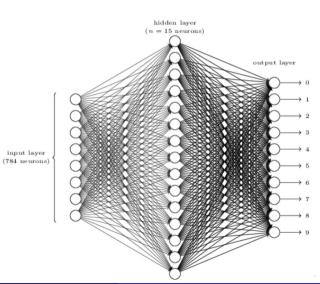
Example: Network structure

- Input layer $(x_1, x_2, ..., x_{784})$
- Single hidden layer, 15 nodes
- Output layer, 10 nodes
 - Decision a_j for each digit $j \in \{0, 1, ..., 9\}$



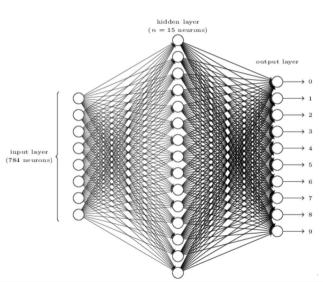
Example: Network structure

- Input layer $(x_1, x_2, ..., x_{784})$
- Single hidden layer, 15 nodes
- Output layer, 10 nodes
 - Decision a_j for each digit $j \in \{0, 1, ..., 9\}$
- Final output is best a;



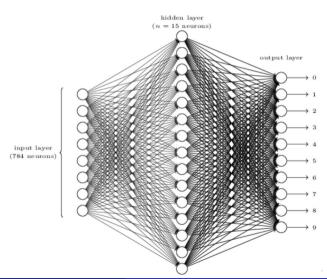
Example: Network structure

- Input layer $(x_1, x_2, ..., x_{784})$
- Single hidden layer, 15 nodes
- Output layer, 10 nodes
 - Decision a_j for each digit $j \in \{0, 1, ..., 9\}$
- Final output is best a;
 - Naïvely, $\underset{i}{\operatorname{arg max}} a_{j}$

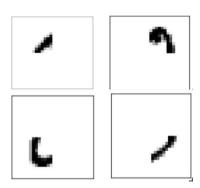


Example: Network structure

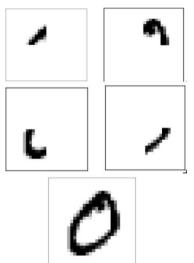
- Input layer $(x_1, x_2, ..., x_{784})$
- Single hidden layer, 15 nodes
- Output layer, 10 nodes
 - Decision a_j for each digit $j \in \{0, 1, ..., 9\}$
- Final output is best a;
 - Naïvely, $\underset{i}{\operatorname{arg max}} a_{j}$
 - Softmax, $\arg \max_{j} \frac{e^{a_{j}}}{\sum_{i} e^{a_{j}}}$
 - "Smooth" version of arg max



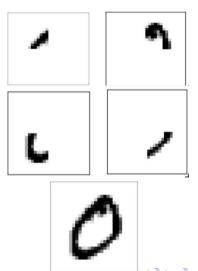
- Hidden layers extract features
 - For instance, patterns in different quadrants



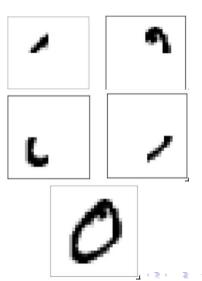
- Hidden layers extract features
 - For instance, patterns in different quadrants
- Combination of features determines output



- Hidden layers extract features
 - For instance, patterns in different quadrants
- Combination of features determines output
- Claim: Automatic identification of features is strength of the model



- Hidden layers extract features
 - For instance, patterns in different quadrants
- Combination of features determines output
- Claim: Automatic identification of features is strength of the model
- Counter argument: implicitly extracted features are impossible to interpret
 - Explainability



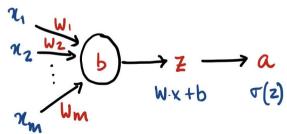
Neural networks

- Without loss of generality,
 - Assume the network is layered
 - All paths from input to output have the same length
 - Each layer is fully connected to the previous one
 - Set weight to 0 if connection is not needed

12 / 16

Neural networks

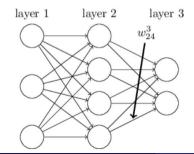
- Without loss of generality,
 - Assume the network is layered
 - All paths from input to output have the same length
 - Each layer is fully connected to the previous one
 - Set weight to 0 if connection is not needed
- Structure of an individual neuron
 - Input weights w_1, \ldots, w_m , bias b, output z, activation value a

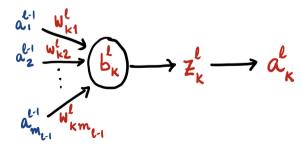


- Layers $\ell \in \{1, 2, ..., L\}$
 - Inputs are connected first hidden layer, layer 1
 - Layer *L* is the output layer
- Layer ℓ has m_{ℓ} nodes $1, 2, \ldots, m_{\ell}$

13 / 16

- Layers $\ell \in \{1, 2, ..., L\}$
 - Inputs are connected first hidden layer, layer 1
 - Layer L is the output layer
- Layer ℓ has m_{ℓ} nodes $1, 2, \ldots, m_{\ell}$
- Node k in layer ℓ has bias b_k^{ℓ} , output z_k^{ℓ} and activation value a_k^{ℓ}
- Weight on edge from node j in level $\ell-1$ to node k in level ℓ is w_{kj}^{ℓ}





• Why the inversion of indices in the subscript w_{kj}^{ℓ} ?

$$z_k^\ell = w_{k1}^\ell a_1^{\ell-1} + w_{k2}^\ell a_2^{\ell-1} + \dots + w_{km_{\ell-1}}^\ell a_{m_{\ell-1}}^{\ell-1}$$

- Let $\overline{w}_k^{\ell} = (w_{k1}^{\ell}, w_{k2}^{\ell}, \dots, w_{km_{\ell-1}}^{\ell})$ and $\overline{a}^{\ell-1} = (a_1^{\ell-1}, a_2^{\ell-1}, \dots, a_{m_{\ell-1}}^{\ell-1})$
- Then $z_k^\ell = \overline{w}_k^\ell \cdot \overline{a}^{\ell-1}$

14 / 16

• Why the inversion of indices in the subscript w_{ki}^{ℓ} ?

Let
$$\overline{w}_k^{\ell} = (w_{k1}^{\ell}, w_{k2}^{\ell}, \dots, w_{km_{\ell-1}}^{\ell})$$

and $\overline{a}^{\ell-1} = (a_1^{\ell-1}, a_2^{\ell-1}, \dots, a_{m_{\ell-1}}^{\ell-1})$

- Then $z_{k}^{\ell} = \overline{w}_{k}^{\ell} \cdot \overline{a}^{\ell-1}$
- Assume all layers have same number of nodes
 - $\blacksquare \text{ Let } m = \max_{\ell \in \{1.2, \dots, L\}}$
 - For any layer i, for $k > m_i$, we set all of w_{ki}^{ℓ} , b_k^{ℓ} , z_k^{ℓ} , a_k^{ℓ} to 0
- Matrix formulation

$$\left[egin{array}{c} \overline{z}_1^\ell \ \overline{z}_2^\ell \ \dots \ \overline{z}_m^\ell \end{array}
ight] \ = \ \left[egin{array}{c} \overline{w}_1^\ell \ \overline{w}_2^\ell \ \dots \ \overline{w}_m^\ell \end{array}
ight] \left[egin{array}{c} a_1^{\ell-1} \ a_2^{\ell-1} \ \dots \ a_m^{\ell-1} \end{array}
ight]$$

- Need to find optimum values for all weights w_{kj}^{ℓ}
- Use gradient descent
 - Cost function C, partial derivatives $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$

15 / 16

- Need to find optimum values for all weights w_{kj}^{ℓ}
- Use gradient descent
 - Cost function C, partial derivatives $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$
- Assumptions about the cost function

15 / 16

- Need to find optimum values for all weights w_{kj}^{ℓ}
- Use gradient descent
 - Cost function C, partial derivatives $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$
- Assumptions about the cost function
 - 1 For input x, C(x) is a function of only the output layer activation, a^{L}
 - For instance, for training input (x_i, y_i) , sum-squared error is $(y_i a_i^L)^2$
 - Note that x_i , y_i are fixed values, only a_i^L is a variable

15 / 16

- Need to find optimum values for all weights w_{kj}^{ℓ}
- Use gradient descent
 - Cost function C, partial derivatives $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$
- Assumptions about the cost function
 - 1 For input x, C(x) is a function of only the output layer activation, a^{L}
 - For instance, for training input (x_i, y_i) , sum-squared error is $(y_i a_i^L)^2$
 - Note that x_i , y_i are fixed values, only a_i^L is a variable
 - Total cost is average of individual input costs
 - Each input x_i incurs cost $C(x_i)$, total cost is $\frac{1}{n} \sum_{i=1}^{n} C(x_i)$
 - For instance, mean sum-squared error $\frac{1}{n}\sum_{i=1}^{n}(y_i a_i^L)^2$

- Assumptions about the cost function
 - 1 For input x, C(x) is a function of only the output layer activation, a^{L}
 - 2 Total cost is average of individual input costs
- With these assumptions:
 - We can write $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$ in terms of individual $\frac{\partial a_i^L}{\partial w_{kj}^{\ell}}$, $\frac{\partial a_i^L}{\partial b_k^{\ell}}$
 - Can extrapolate change in individual cost C(x) to change in overall cost C stochastic gradient descent

- Assumptions about the cost function
 - 11 For input x, C(x) is a function of only the output layer activation, a^{L}
 - 2 Total cost is average of individual input costs
- With these assumptions:
 - We can write $\frac{\partial C}{\partial w_i^\ell}$, $\frac{\partial C}{\partial b_i^\ell}$ in terms of individual $\frac{\partial a_i^L}{\partial w_i^\ell}$, $\frac{\partial a_i^L}{\partial b_i^\ell}$
 - Can extrapolate change in individual cost C(x) to change in overall cost C stochastic gradient descent
- Complex dependency of C on w_{ki}^{ℓ} , b_{k}^{ℓ}
 - Many intermediate lavers
 - Many paths through these layers
- Use chain rule to decompose into local dependencies

•
$$y = g(f(x)) \Rightarrow \frac{\partial g}{\partial x} = \frac{\partial g}{\partial f} \frac{\partial f}{\partial x}$$

