Lecture 18: 21 March, 2023

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2023

Soft margin optimization

$\operatorname{Minimize} \frac{|w|}{2}+\sum_{i=1}^{N} \xi_{i}^{2}$
Subject to
$\xi_{i} \geq 0$
$w \cdot x_{i}+b>1-\xi_{i}$, if $y_{i}=1$
$w \cdot x_{i}+b<-1+\xi_{i}$, if $y_{i}=-1$

- Constraints include requirement that error terms are non-negative
- Again the objective function is quadratic

Dualization

Wolfe dual
Maximize $\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i} \cdot x_{j}\right)$
Subject to

$$
\begin{aligned}
& 0 \leq \alpha_{i} \geq 1 \\
& \sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

- α_{i} are Lagrange multipliers

Soft margin optimization

■ Can again be solved using convex optimization theory

■ Form of the solution turns out to be the same as the hard margin case

- Expression in terms of Lagrange multipliers α_{i}
- Only terms corresponding to support vectors are actively used

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(x_{i} \cdot z\right)+b\right]
$$

The non-linear case

■ How do we deal with datasets where the separator is a complex shape?

■ Geometrically transform the data

- Typically, add dimensions

■ For instance, if we can "lift" one class, we can find a planar separator between levels

Geometric tranformation

- Consider two sets of points separated by a circle of radius 1
- Equation of circle is $x^{2}+y^{2}=1$
- Points inside the circle, $x^{2}+y^{2}<1$
- Points outside circle, $x^{2}+y^{2}>1$
- Transformation

$$
\varphi:(x, y) \mapsto\left(x, y, x^{2}+y^{2}\right)
$$

- Points inside circle lie below $z=1$
- Point outside circle lifted above $z=1$

SVM after transformation

■ SVM in original space

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(x_{i} \cdot z\right)+b\right]
$$

- After transformation

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(\varphi\left(x_{i}\right) \cdot \varphi(z)\right)+b\right]
$$

- All we need to know is how to compute dot products in transformed space

Dot products

■ Consider the transformation

$$
\varphi:\left(x_{1}, x_{2}\right) \mapsto\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

- Dot product in transformed space

$$
\begin{aligned}
\varphi(x) \cdot \varphi(z)= & 1+2 x_{1} z_{1}+2 x_{2} z_{2}+x_{1}^{2} z_{1}^{2} \\
& +2 x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2} \\
= & \left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2}
\end{aligned}
$$

- Transformed dot product can be expressed in terms of original inputs

$$
\varphi(x) \cdot \varphi(z)=K(x, z)=\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2}
$$

Kernels

■ K is a kernel for transformation φ if $K(x, z)=\varphi(x) \cdot \varphi(z)$

■ If we have a kernel, we don't need to explicitly compute transformed points

- All dot products can be computed implicitly using the kernel on original data points

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(\varphi\left(x_{i}\right) \cdot \varphi(z)\right)+b\right]
$$

Kernels

■ K is a kernel for transformation φ if $K(x, z)=\varphi(x) \cdot \varphi(z)$

■ If we have a kernel, we don't need to explicitly compute transformed points

- All dot products can be computed implicitly using the kernel on original data points

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i} K\left(x_{i}, z\right)+b\right]
$$

Kernels

- If we know K is a kernel for some transformation φ, we can blindly use K without even knowing what φ looks like!
- When is a function a valid kernel?
- Has been studied in mathematics Mercer's Theorem
- Criteria are non-constructive
- Can define sufficient conditions from linear algebra

Kernels

■ Kernel over training data $x_{1}, x_{2}, \ldots, x_{N}$ can be represented as a gram matrix

- Entries are values $K\left(x_{i}, x_{j}\right)$
- Gram matrix should be positive semi-definite for all $x_{1}, x_{2}, \ldots, x_{N}$

Known kernels

- Fortunately, there are many known kernels
- Polynomial kernels

$$
K(x, z)=(1+x \cdot z)^{k}
$$

- Any $K(x, z)$ representing a similarity measure
- Gaussian radial basis function similarity based on inverse exponential distance

$$
K(x, z)=e^{-c|x-z|^{2}}
$$

