Lecture 17: 14 March, 2023

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2023

A geometric view of supervised learning

- Think of data as points in space

■ Find a separating curve (surface)

- Separable case
- Each class is a connected region

- A single curve can separate them

■ More complex scenario

- Classes form multiple connected regions
- Need multiple separators

Linear separators

Linear

- Simplest case - linearly separable data
- Dual of linear regression
- Find a line that passes close to a set of points
- Find a line that separates the two sets of points

Linear separators

- Each input x has n attributes

$$
\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle
$$

- Linear separator has the form

$$
w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b
$$

- Classification criterion
- $w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b>0$, classify yes, +1
- $w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b<0$, classify no, -1

Linear separators

- Dot product $w \cdot x$

$$
\begin{aligned}
& \left\langle w_{1}, w_{2}, \ldots, w_{n}\right\rangle \cdot\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle= \\
& w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}
\end{aligned}
$$

- Collapsed form

$$
w \cdot x+b>0, w \cdot x+b<0
$$

- Rename bias b as w_{0}, create fictitious $x_{0}=1$
- Classification criteria become $w \cdot x>0, w \cdot x<0$

Perceptron algorithm

(Frank Rosenblatt, 1958)

- Each training input is $\left(x_{i}, y_{i}\right)$, where $x_{i}=\left\langle x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right\rangle$ and $y_{i}=+1$ or -1
- Need to find $w=\left\langle w_{0}, w_{1}, \ldots, w_{n}\right\rangle$
- Recall $x_{i 0}=1$, always

Initialize $w=\langle 0,0, \ldots, 0\rangle$
While there exists x_{i}, y_{i} such that

$$
\begin{aligned}
& y_{i}=+1 \text { and } w \cdot x_{i}<0, \text { or } \\
& y_{i}=-1 \text { and } w \cdot x_{i}>0
\end{aligned}
$$

Update w to $w+x_{i} y_{i}$

Perceptron algorithm . . .

- Keep updating w as long as some training data item is misclassified

■ Update is an offset by misclassified input
■ Need not stabilize, potentially an infinite loop

Theorem

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

Perceptron algorithm ...

Theorem

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

- Termination time depends on two factors
- Width of the band separating the positive and negative points
- Narrow band takes longer to converge
- Magnitude of the \times values

■ Larger spread of points takes longer to
 converge

Perceptron Algorithm — Proof

Theorem

If there is w^{*} satisfying $\left(w^{*} \cdot x_{i}\right) y_{i} \geq 1$ for all i, then the Perceptron Algorithm finds a solution w with $\left(w \cdot x_{i}\right) y_{i}>0$ for all i in at most $r^{2}\left|w^{*}\right|^{2}$ updates, where $r=\max _{i}\left|x_{i}\right|$.

■ Assume w^{*} exists. Keep track of two quantities: $w^{\top} w^{*},|w|^{2}$.

- Each update increases $w^{\top} w^{*}$ by at least 1.

$$
\left(w+x_{i} y_{i}\right)^{\top} w^{*}=w^{\top} w^{*}+x_{i}^{\top} y_{i} w^{*} \geq w^{\top} w^{*}+1
$$

- Each update increases $|w|^{2}$ by at most r^{2}

$$
\left(w+x_{i} y_{i}\right)^{\top}\left(w+x_{i} y_{i}\right)=|w|^{2}+2 x_{i}^{\top} y_{i} w+\left|x_{i} y_{i}\right|^{2} \leq|w|^{2}+\left|x_{i}\right|^{2} \leq|w|^{2}+r^{2}
$$

- Note that we update only when $x_{i}^{\top} y_{i} w<0$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

Perceptron Algorithm — Proof (cont'd)

- Assume Perceptron Algorithm makes m updates
- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

Perceptron Algorithm — Proof (cont'd)

- Assume Perceptron Algorithm makes m updates
- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

■ $m \leq|w|\left|w^{*}\right|$, because $a \cdot b=|a||b| \cos \theta$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

$$
\begin{aligned}
m & \leq|w|\left|w^{*}\right| \\
m /\left|w^{*}\right| & \leq|w|
\end{aligned}
$$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

$$
\begin{aligned}
m & \leq|w|\left|w^{*}\right| \\
m /\left|w^{*}\right| & \leq|w| \\
m /\left|w^{*}\right| & \leq r \sqrt{m}, \text { because }|w|^{2} \leq m r^{2}
\end{aligned}
$$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

$$
\begin{aligned}
m & \leq|w|\left|w^{*}\right| \\
m /\left|w^{*}\right| & \leq|w| \\
m /\left|w^{*}\right| & \leq r \sqrt{m} \\
\sqrt{m} & \leq r\left|w^{*}\right|
\end{aligned}
$$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

$$
\begin{aligned}
m & \leq|w|\left|w^{*}\right| \\
m /\left|w^{*}\right| & \leq|w| \\
m /\left|w^{*}\right| & \leq r \sqrt{m} \\
\sqrt{m} & \leq r\left|w^{*}\right| \\
m & \leq r^{2}\left|w^{*}\right|^{2}
\end{aligned}
$$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$
- $m \leq|w|\left|w^{*}\right|$
$m /\left|w^{*}\right| \leq|w|$
$m /\left|w^{*}\right| \leq r \sqrt{m}$
$\sqrt{m} \leq r\left|w^{*}\right|$
$m \leq r^{2}\left|w^{*}\right|^{2}$

■ Note (for later) that final w is of the form $\sum_{i} n_{i} x_{i}$

Linear separators

- Simplest case - linearly separable data
- Perceptron algorithm is a simple procedure to find a linear separator, if one exists
- Many lines are possible
- Does the Perceptron algorithm find the best one?
- What is a good notion of "cost" to optimize?

Margin

- Each separator defines a margin
- Empty corridor separating the points
- Separator is the centre line of the margin

■ Wider margin makes for a more robust classifier

- More gap between the classes
- Optimum classifier is one that maximizes the width of its margin
- Margin is defined by the training data points on the boundary

- Support vectors

Finding a maximum margin classifier

- Recall our original linear classifier
$w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b>0$, classify yes, +1
$w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b<0$, classify no, -1
- Scale margin so that separation is 1 on either side

$$
\begin{aligned}
& w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b>1, \text { classify } \\
& \text { yes, }+1 \\
& w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b<-1, \text { classify } \\
& \text { no, }-1
\end{aligned}
$$

Finding a maximum margin classifier

- Scale margin so that separation is 1 on either side
$w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b>1$, classify
yes, +1
$w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b<-1$, classify no, -1
- Using Pythagoras's theorem, perpendicular distance to nearest support vector is $\frac{1}{|w|}$, where
$|w|=\sqrt{w_{1}^{2}+w_{2}^{2}+\cdots+w_{n}^{2}}$

Optimization problem

- Want to maximize the overall margin $\frac{2}{|w|}$
- Equivalently, minimize $\frac{|w|}{2}$
- Also, w should classify each $\left(x_{i}, y_{i}\right)$ correctly

$$
\begin{aligned}
& w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b>1, \\
& \text { if } y_{i}=1 \\
& w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b<-1, \\
& \text { if } y_{i}=-1
\end{aligned}
$$

Optimization problem

Minimize $\frac{|w|}{2}$
Subject to
$w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b>1$, if $y_{i}=1$
$w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b<-1$, if $y_{i}=-1$

- The constraints are linear
- The objective function is not linear
$|w|=\sqrt{w_{1}^{2}+w_{2}^{2}+\cdots+w_{n}^{2}}$
- This is a quadratic optimization problem, not linear programming

Solution to optimization problem

- Convex optimization theory
- Can be solved using computational techniques
- Solution expressed in terms of Lagrange multipliers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$, one multiplier per training input
- α_{i} is non-zero iff x_{i} is a support vector
- Final classifier for new input z
$\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(x_{i} \cdot z\right)+b\right]$

■ $s v$ is set of support vectors

Support Vector Machine (SVM)

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(x_{i} \cdot z\right)+b\right]
$$

- Solution depends only on support vectors
- If we add more training data away from support vectors, separator does not change
- Solution uses dot product of support vectors with new point
- Will be used later, in the non-linear case

The non-linear case

- Some points may lie on the wrong side of the classifier

■ How do we account for these?

- Add an error term to the classifier requirement
- Instead of

$$
\begin{aligned}
& w \cdot x+b>1, \text { if } y_{i}=1 \\
& w \cdot x+b<-1, \text { if } y_{i}=-1
\end{aligned}
$$

we have

$$
\begin{aligned}
& w \cdot x+b>1-\xi_{i}, \text { if } y_{i}=1 \\
& w \cdot x+b<-1+\xi_{i}, \text { if } y_{i}=-1
\end{aligned}
$$

Soft margin classifier

$$
\begin{aligned}
& w \cdot x+b>1-\xi_{i} \text {, if } y_{i}=1 \\
& w \cdot x+b<-1+\xi_{i}, \text { if } y_{i}=-1
\end{aligned}
$$

- Error term always non-negative,
- If the point is correctly classified, error term is 0
- Soft margin - some points can drift across the boundary
- Need to account for the errors in the objective function
- Minimize the need for non-zero error terms

Soft margin optimization

$\operatorname{Minimize} \frac{|w|}{2}+\sum_{i=1}^{N} \xi_{i}^{2}$
Subject to
$\xi_{i} \geq 0$
$w \cdot x_{i}+b>1-\xi_{i}$, if $y_{i}=1$
$w \cdot x_{i}+b<-1+\xi_{i}$, if $y_{i}=-1$

- Constraints include requirement that error terms are non-negative
- Again the objective function is quadratic

Soft margin optimization

■ Can again be solved using convex optimization theory

■ Form of the solution turns out to be the same as the hard margin case

- Expression in terms of Lagrange multipliers α_{i}
- Only terms corresponding to support vectors are actively used

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(x_{i} \cdot z\right)+b\right]
$$

The non-linear case

■ How do we deal with datasets where the separator is a complex shape?

■ Geometrically transform the data

- Typically, add dimensions

■ For instance, if we can "lift" one class, we can find a planar separator between levels

