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Unsupervised learning

e Supervised learningrequires labelled
data

e Vast majority of datais unlabelled

e What insights can you get into
unlabelled data?

“If intelligence was a cake, unsupervised
learning would be the cake, supervised
learning would be the icing on the cake

”
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-Yann LeCun
ACM Turing Award 2018
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Applications
|
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Marketing campaigns
* Anomaly detection :J 3 5’ jl?g Hllsés ?
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* Semi-supervised learning

Propagatelimited labels

* Image segmentation

Object detection
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Clustering
|

e Find natural groups of data
e Define a distance measure

e Group together data thatis close
together

e Top down

- Partition data into clusters

* Bottomup

- Group items into clusters

cm; 6, EEEN [



Top down clustering
|

K Means Clustering

e Dataitems are pointsin n dimensions
o (XpXpenX,)

e Partition into K clusters

- FixKin advance

e Eachcluster is represented by its
geometric centre

- Centroid, or mean

- Hence “K means”
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K Means Algorithm

e Choose K pointsinitiallyas random
centroids

e In each iteration

+ Assign each pointto nearest
centroid

+  Recompute centroids
e Termination
« Clustersstabilize

« Sum square distance is below
threshold
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K Means Algorithm

|
e Choose K pointsinitiallyas random =
. o\ ’/
centroids K 0‘\ -0
] | P
e |n each iteration / g ) . o
. . [} O ;’/’ -9- O
+ Assign each pointto nearest == |/O
centroid ‘*-—-_.___.o'
+  Recompute centroids
e Termination F A
! N -0
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« Clustersstabilize Jo40 .- 0
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K Means Algorithm

|
e Choose K pointsinitiallyas random _
centroids SO,
e |n each iteration ,"o o} \\\
' (c o A
- Assign each point to nearest ! (o] o}
centroid .. 0.7
- Recompute centroids
e Termination 2N
¢+ 0~
—  Clusters stabilize, or ,'O o\
. . J‘ (e 5 ‘\
- Sum square distance is below 10 0"
threshold N 0,"’
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Evaluating clustering

e How “tight” are the clusters?

e Mean squared distance from
centroids — inertia

LK
— E E dist(x, centroid;)? 2™
n E 600

j=1 zeC;
e Plot inertia for different values of K
and look for optimum

e Canalso use change ininertia
threshold to stop iterations
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K Means Algorithm

Advantages

e Efficient— each iteration makes a single
pass over data

+ Incrementally compute centroid

Disadvantages

e Can only find clusters that look like
ellipses
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K Means Algorithm

Advantages °o o °
- . . . 0
e Efficient— each iteration makes a single ° ©
o o o
pass over data 0 o °
- Incrementally compute centroid e
) o\
. ! o © :
Disadvantages %o 0.0
‘ _ ‘o o 0 o o
e Canonly find clusters that look like Lo o .
ellipses |
e Choice of initial random centroid ;0 o °!
1
matters 10 6° o 9
P i .
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« _ Repeatand check
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Outliers

|
e Anomalousvalues
T T - - T~
-0 = 10 Te-a .
«  Far awayfrom all ',’ o © 0.‘: o el outlier
: \ Te-a
centroids P o g 0 N + _\‘/
. . !
e But clustering with o, 0 °© wo.___ .
\s‘- e I NI -
outliersdistorts clusters | Tt ------- ’
e How to identify outliers -
before clustering? PR o
;o o o0 outlier
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Clustering
|

e K Means clustering can only find
clusters that look like ellipses

e Instead, build clusters bottom up, by
merging clusters

Hierarchical clustering
e Initially, each item is a singleton cluster

o At each step, merge nearest clusters
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Hierarchical Clustering
|

e |nitially, each item is a singleton cluster
e At each step, merge nearest clusters

e Canrepresent process using a tree —
dendrogram

e Choose appropriatelevel in
dendrogram for final clustering
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Hierarchical Clustering

|
To merge clusters, define distance [ Single |ln|f
between clusters
O 0 o 0 0‘.\ I'o 0O |
e Single link: distance between closest 'OO o O o N o
points 00 ®0e ¢ 40 ooo,"\ o
- o} SN
. 0 0. 9
. Creates chain effect R T B
e Complete link: maximum of pairwise
distances
. L. Complete Ilnk
e Average link: mean of pairwise T Ut
i o
distances 000 . 0 o O
e All require O(n?) computation - 0%0 0 oo o}
q X p ~‘\ o (ol I ."r ‘e 0 OOO 0 ’Ja
expensive 5 0 G /
m P ~0 R o) 0.
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Clustering

e How to identify odd shaped clusters?

o Cluster - group of pointsthatare “close
together”

¢ |dentify “dense” neighbourhoods

e How do we formalize this?
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Density based clustering

e Construct a small ball around each
point, radius Eps

¢ |dentify a threshold for neighbours
within ball, MinPts

e Core point— has at least MinPts
neighboursinside Eps ball

e Connect each core pointto all its
neighbours

e Border points — attached to core points
but not core themselves

e Noise — disconnected points
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Density based clustering

e Formally, edges from core pointsto
neighbours define a directed graph

e Border points are part of this graph, but
cannot add edges to extend the graph

e Discard the edge directions

e Connected componentsare clusters

cmni &




Dbscan
|

eps=0.05, min_samples=5

e Implementation of density based
clustering availablein Python and R

e Smallervalue of Eps subdividesinto
small clusters

e Larger Eps groups larger clusters
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Outliers and clustering

|

e QOutliersare pointsthat lie outside

natural clusters s S0 Tl ,
o 0O Vo T.- outlier
\ S~a
e K Means— far away from all V0 o+ ° +
. '\0 o o o o

centroids <0 e R AL EEE .

- Butoutlierscan distort the
clustering process

* Density based clustering— not
connected to any core point

« Butdensityisapplied \j
uniformly W—‘O
Bord N
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Outliers and density
|

e An outlieris less dense than its nearest
neighbours

e But difference in density may be local

e Adistance metric to eliminate o, could
make all of C, outliers

e C, has 400 points, C, has 100 points

e Larger distance would make all of C,
outliers with respect to C,
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Outliers and density
|

e For clustering, we defined a radius Eps
and looked for MinPts neighbours
within that ball

e Instead, fix MinPts and find smallest
ball with that many neighbours

e Compare radius(p) with radius of its
neighours

e Ais an outlier because its radiusis
much more than that of its neighbours
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Outliers and density
|

e Local outlier factor LOF(p)

Mean radius of MinPts-neighbours(p)

radius(p)

e The smaller this ratio, the more likely
thatp is an outlier

e Comparison is local to neighbourhood,
so this can deal with different densities
across range of data
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