Lecture 12: 16 Feb, 2023

Pranabendu Misra Slides by Madhavan Mukund

Data Mining and Machine Learning January–April 2023

Gradient Boosting

- AdaBoost uses weights on data-items to build new weak learners that compensate for earlier errors
- Gradient boosting follows a different approach
 - Shortcomings of the current model are defined in terms of gradients
 - Gradient boosting = Gradient descent + boosting

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss

3/12

Pranabendu Misra Lecture 12: 16 Feb, 2023 DMML Jan-Apr 2023

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3$, $F(x_2) = 1.4$
 -

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3$, $F(x_2) = 1.4$
 -
- Learn an additional ML model h, so that new prediction is F(x) + h(x) corrects errors of F.

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3$, $F(x_2) = 1.4$
 -
- Learn an additional ML model h, so that new prediction is F(x) + h(x) corrects errors of F.

■ What should *h* look like?

- Training data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $v_1 = 0.9$. $F(x_1) = 0.8$
 - $v_2 = 1.3$, $F(x_2) = 1.4$
 - . . .
- Learn an additional ML model h, so that new prediction is F(x) + h(x) corrects errors of F

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3, F(x_2) = 1.4$
 -
- Learn an additional ML model h, so that new prediction is F(x) + h(x) corrects errors of F.

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3, F(x_2) = 1.4$
 -
- Learn an additional ML model h, so that new prediction is F(x) + h(x) corrects errors of F.

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals $(x_i, y_i F(x_i))$

- Training data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $\mathbf{v}_1 = 0.9$, $F(x_1) = 0.8$
 - $v_2 = 1.3$, $F(x_2) = 1.4$
 - . . .
- Learn an additional ML model h, so that new prediction is F(x) + h(x) corrects errors of F

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals $(x_i, y_i - F(x_i))$
- If F + h is not satisfactory, build another model h' to fit residuals $(x_i, y_i - [F(x_i) + h(x_i)])$

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3, F(x_2) = 1.4$
 -
- Learn an additional ML model h, so that new prediction is F(x) + h(x) corrects errors of F.

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals $(x_i, y_i F(x_i))$
- If F + h is not satisfactory, build another model h' to fit residuals $(x_i, y_i - [F(x_i) + h(x_i)])$
- Repeat....

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3, F(x_2) = 1.4$
 -
- Learn an additional ML model h, so that new prediction is F(x) + h(x) corrects errors of F.

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals $(x_i, y_i F(x_i))$
- If F + h is not satisfactory, build another model h' to fit residuals $(x_i, y_i - [F(x_i) + h(x_i)])$
- Repeat....

Why should this work?

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Minimize overall loss:

$$J = \sum_{i} L(y_i, F(x_i))$$

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Minimize overall loss:

$$J = \sum_{i} L(y_i, F(x_i))$$

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Minimize overall loss:

$$J = \sum_{i} L(y_i, F(x_i))$$

Residual $y_i - F(x_i)$ is negative gradient

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Minimize overall loss:

$$J = \sum_{i} L(y_i, F(x_i))$$

- Residual $y_i F(x_i)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Minimize overall loss:

$$J = \sum_{i} L(y_i, F(x_i))$$

- Residual $y_i F(x_i)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient
- Updating F using residual is same as updating F based on negative gradient

 Residuals are a special case of negative gradients — they are gradients for square loss

- Residuals are a special case of negative gradients — they are gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient

- Residuals are a special case of negative gradients — they are gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers

Pranabendu Misra Lecture 12: 16 Feb, 2023

- Residuals are a special case of negative gradients — they are gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |v f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

Lecture 12: 16 Feb. 2023

- Residuals are a special case of negative gradients — they are gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |v f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

More generally, boosting with respect to gradient rather than just residuals

- Residuals are a special case of negative gradients — they are gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |v f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

- More generally, boosting with respect to gradient rather than just residuals
- Given any differential loss function L.
 - Start with an initial model F
 - Calculate negative gradients

$$-g(x_i) = \frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$$

- Fit a regression tree h to negative gradients $-g(x_i)$
- Update F to $F + \rho h$
- ρ is the learning rate

5 / 12

Pranabendu Misra Lecture 12: 16 Feb. 2023

■ Predict age based on given attributes

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

- Predict age based on given attributes
- Build a regression tree using CART algorithm

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

■ LikesHats seems irrelevant, yet pops up

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

Pranabendu Misra Lecture 12: 16 Feb, 2023 DMML Jan-Apr 2023

- LikesHats seems irrelevant, yet pops up
- Can we do better?

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

PersonID	Age	Tree1 Prediction	Tree1 Residua
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

{13,14,15,25,35,49,68,71,73}		Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=F Gardening=T {13,14,15,35} {25,49,68,71,73}	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}		2	14	19.25	-5.25	-3.567	15.68	- 1.683
{13,14,13,33}	{23,47,00,71,73}	3	15	19.25	-4.25	-3.567	15.68	-0.6833
Tree 1		4	25	57.2	-32.2	-3.567	53.63	- 28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32	.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
(00120150)	(4.05.505.405.000.1575.10.0)	8	71	57.2	13.8	7.133	64.33	+ 6.667
{-8.2,13.8,15.8} {-6.25,-5.25,-4.25,-32.2,15.75	{-0.25,-5.25,-4.25,-32.2,15./5,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

	5,25,35,49,68,71,73}	Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}	{13,14,15,35} {25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	- 1.683
(10,14,10,00)	(20)-17,007, 17,03	3	15	19.25	-4.25	-3.567	15.68	-0.6833
Tree 1		4	25	57.2	-32.2	-3.567	53.63	- 28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32	.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
(00100150)	(8	71	57.2	13.8	7.133	64.33	+ 6.667
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

Residuals

{13,14,15,25,35,49,68,71,73}		Per son ID	A g e	Tree1 Predi	Tree1 Resi dual	Tree2 Predi	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	- 1.683
	(==//==//-=/	3	15	19.25	-4.25	-3.567	15.68 -	0.6833
Tree 1		4	25	57.2	-32.2	-3.567	53.63	- 28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32.2,15.75,-8.2,10.8,13.8,15.8}		6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
{-8.2,13.8,15.8} {-6	[4 25 5 25 4 25 22 2 1 5 7 5 10 9]	8	71	57.2	13.8	7.133	64.33	+ 6.667
	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

Residuals

{13,14,15,25,35,49,68,71,73}		Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	- 1.683
		3	15	19.25	-4.25	-3.567	15.68 -	0.6833
Tree 1 {-6.25,-5.25,-4.25,-32.2,15.75,-8.2,10.8,13.8,15.8}		4	25	57.2	-32.2	-3.567	53.63	-28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
		6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	8	71	57.2	13.8	7.133	64.33	+ 6.667
		9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

9 / 12

Pranabendu Misra Lecture 12: 16 Feb, 2023 DMML Jan-Apr 2023

Tree 1

Tree 2

General Strategy

■ Build tree 1, F₁

Tree 1

Tree 2

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$

Tree 1

Tree 2

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$

Tree 1

Tree 2

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$

Tree 1

Tree 2

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$
- Create a new model $F_3(x) = F_2(x) + h_2(x)$
-

Tree 1

Tree 2

Learning Rate

Tree 1

Tree 2

11 / 12

Learning Rate

 \bullet h_j fits residuals of F_j

Tree 1

Tree 2

11 / 12

Learning Rate

- \blacksquare h_j fits residuals of F_j
- $F_{i+1}(x) = F_J(x) + LR \cdot h_i(x)$
 - *LR* controls contribution of residual
 - \blacksquare *LR* = 1 in our previous example

Tree 1

Tree 2

Learning Rate

- \blacksquare h_j fits residuals of F_j
- $F_{i+1}(x) = F_J(x) + LR \cdot h_i(x)$
 - LR controls contribution of residual
 - \blacksquare LR = 1 in our previous example
- Ideally, choose LR separately for each residual to minimize loss function
 - Can apply different LR to different leaves

Tree 1

Tree 2

Assume binary classification

Pranabendu Misra Lecture 12: 16 Feb, 2023 DMML Jan-Apr 2023 12 / 12

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$

12 / 12

Pranabendu Misra Lecture 12: 16 Feb, 2023 DMML Jan-Apr 2023

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$

12 / 12

Pranabendu Misra Lecture 12: 16 Feb, 2023 DMML Jan-Apr 2023

- Assume binary classification
- Original training outputs are $y \in \{0,1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = \frac{e^{s_j}}{e^{s_0} + e^{s_1}}$

12 / 12

Pranabendu Misra Lecture 12: 16 Feb. 2023

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = \frac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

$$L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$$

Pranabendu Misra Lecture 12: 16 Feb, 2023

12 / 12

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = \frac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

$$L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$$

■ Compute negative gradients

Pranabendu Misra

- Assume binary classification
- Original training outputs are $y \in \{0,1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = \frac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

$$L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$$

- Compute negative gradients
- Fit regression trees to negative gradients to minimize cross entropy

12 / 12

Lecture 12: 16 Feb. 2023