Lecture 12: 16 Feb, 2023

Pranabendu Misra
Slides by Madhavan Mukund

Data Mining and Machine Learning
January-April 2023

Gradient Boosting

- AdaBoost uses weights on data-items to build new weak learners that compensate for earlier errors
- Gradient boosting follows a different approach
- Shortcomings of the current model are defined in terms of gradients
- Gradient boosting $=$ Gradient descent + boosting

Gradient Boosting for Regression

- Training data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Fit a model $F(x)$ to minimize square loss

Gradient Boosting for Regression

- Training data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Fit a model $F(x)$ to minimize square loss
- The model F we build is good, but not perfect
- $y_{1}=0.9, F\left(x_{1}\right)=0.8$
- $y_{2}=1.3, F\left(x_{2}\right)=1.4$

Gradient Boosting for Regression

- Training data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Fit a model $F(x)$ to minimize square loss
- The model F we build is good, but not perfect
- $y_{1}=0.9, F\left(x_{1}\right)=0.8$
- $y_{2}=1.3, F\left(x_{2}\right)=1.4$
- Learn an additional ML model h, so that new prediction is $F(x)+h(x)$ corrects errors of F.

Gradient Boosting for Regression

- Training data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$

■ What should h look like?

- Fit a model $F(x)$ to minimize square loss
- The model F we build is good, but not perfect
- $y_{1}=0.9, F\left(x_{1}\right)=0.8$
- $y_{2}=1.3, F\left(x_{2}\right)=1.4$
- Learn an additional ML model h, so that new prediction is $F(x)+h(x)$ corrects errors of F.

Gradient Boosting for Regression

- Training data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Fit a model $F(x)$ to minimize square loss
- The model F we build is good, but not perfect
- $y_{1}=0.9, F\left(x_{1}\right)=0.8$
- $y_{2}=1.3, F\left(x_{2}\right)=1.4$
- Learn an additional ML model h, so that new prediction is $F(x)+h(x)$ corrects errors of F.

■ What should h look like?

- For each x_{i}, want $F\left(x_{i}\right)+h\left(x_{i}\right)=y_{i}$

Gradient Boosting for Regression

- Training data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Fit a model $F(x)$ to minimize square loss
- The model F we build is good, but not perfect

■ $y_{1}=0.9, F\left(x_{1}\right)=0.8$
■ $y_{2}=1.3, F\left(x_{2}\right)=1.4$

- Learn an additional ML model h, so that new prediction is $F(x)+h(x)$ corrects errors of F.

■ What should h look like?

- For each x_{i}, want $F\left(x_{i}\right)+h\left(x_{i}\right)=y_{i}$
- $h\left(x_{i}\right)=y_{i}-F\left(x_{i}\right)$

Gradient Boosting for Regression

- Training data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Fit a model $F(x)$ to minimize square loss
- The model F we build is good, but not perfect
- $y_{1}=0.9, F\left(x_{1}\right)=0.8$
- $y_{2}=1.3, F\left(x_{2}\right)=1.4$
- Learn an additional ML model h, so that new prediction is $F(x)+h(x)$ corrects errors of F.

■ What should h look like?

- For each x_{i}, want $F\left(x_{i}\right)+h\left(x_{i}\right)=y_{i}$
- $h\left(x_{i}\right)=y_{i}-F\left(x_{i}\right)$
- Fit a new model h (typically a regression tree) to the residuals $\left(x_{i}, y_{i}-F\left(x_{i}\right)\right.$

Gradient Boosting for Regression

- Training data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Fit a model $F(x)$ to minimize square loss
- The model F we build is good, but not perfect
- $y_{1}=0.9, F\left(x_{1}\right)=0.8$
- $y_{2}=1.3, F\left(x_{2}\right)=1.4$
- Learn an additional ML model h, so that new prediction is $F(x)+h(x)$ corrects errors of F.

■ What should h look like?

- For each x_{i}, want $F\left(x_{i}\right)+h\left(x_{i}\right)=y_{i}$
- $h\left(x_{i}\right)=y_{i}-F\left(x_{i}\right)$
- Fit a new model h (typically a regression tree) to the residuals $\left(x_{i}, y_{i}-F\left(x_{i}\right)\right.$
- If $F+h$ is not satisfactory, build another model h^{\prime} to fit residuals $\left(x_{i}, y_{i}-\left[F\left(x_{i}\right)+h\left(x_{i}\right)\right]\right)$

Gradient Boosting for Regression

- Training data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Fit a model $F(x)$ to minimize square loss
- The model F we build is good, but not perfect
- $y_{1}=0.9, F\left(x_{1}\right)=0.8$
- $y_{2}=1.3, F\left(x_{2}\right)=1.4$
- Learn an additional ML model h, so that new prediction is $F(x)+h(x)$ corrects errors of F.

■ What should h look like?

- For each x_{i}, want $F\left(x_{i}\right)+h\left(x_{i}\right)=y_{i}$
- $h\left(x_{i}\right)=y_{i}-F\left(x_{i}\right)$
- Fit a new model h (typically a regression tree) to the residuals $\left(x_{i}, y_{i}-F\left(x_{i}\right)\right.$
- If $F+h$ is not satisfactory, build another model h^{\prime} to fit residuals $\left(x_{i}, y_{i}-\left[F\left(x_{i}\right)+h\left(x_{i}\right)\right]\right)$
- Repeat....

Gradient Boosting for Regression

- Training data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Fit a model $F(x)$ to minimize square loss
- The model F we build is good, but not perfect
- $y_{1}=0.9, F\left(x_{1}\right)=0.8$
- $y_{2}=1.3, F\left(x_{2}\right)=1.4$
- Learn an additional ML model h, so that new prediction is $F(x)+h(x)$ corrects errors of F.

■ What should h look like?

- For each x_{i}, want $F\left(x_{i}\right)+h\left(x_{i}\right)=y_{i}$
- $h\left(x_{i}\right)=y_{i}-F\left(x_{i}\right)$
- Fit a new model h (typically a regression tree) to the residuals $\left(x_{i}, y_{i}-F\left(x_{i}\right)\right.$
- If $F+h$ is not satisfactory, build another model h^{\prime} to fit residuals $\left(x_{i}, y_{i}-\left[F\left(x_{i}\right)+h\left(x_{i}\right)\right]\right)$
- Repeat....

Why should this work?

Residuals and gradients

Gradient descent

- Move parameters against the gradient with respect to loss function

$$
\theta_{i} \leftarrow \theta_{i}-\frac{\partial J}{\partial \theta_{i}}
$$

Residuals and gradients

Gradient descent

■ Move parameters against the gradient with respect to loss function

$$
\theta_{i} \leftarrow \theta_{i}-\frac{\partial J}{\partial \theta_{i}}
$$

- Individual loss:

$$
L\left(y, F(x)=(y-F(x))^{2} / 2\right.
$$

Residuals and gradients

Gradient descent

■ Move parameters against the gradient with respect to loss function

$$
\theta_{i} \leftarrow \theta_{i}-\frac{\partial J}{\partial \theta_{i}}
$$

- Individual loss:

$$
L\left(y, F(x)=(y-F(x))^{2} / 2\right.
$$

- Minimize overall loss:

$$
J=\sum_{i} L\left(y_{i}, F\left(x_{i}\right)\right)
$$

Residuals and gradients

Gradient descent

■ Move parameters against the gradient with respect to loss function

$$
\theta_{i} \leftarrow \theta_{i}-\frac{\partial J}{\partial \theta_{i}}
$$

- Individual loss:

$$
L\left(y, F(x)=(y-F(x))^{2} / 2\right.
$$

■ Minimize overall loss:

$$
J=\sum_{i} L\left(y_{i}, F\left(x_{i}\right)\right)
$$

- $\frac{\partial J}{\partial F\left(x_{i}\right)}=F\left(x_{i}\right)-y$

Residuals and gradients

Gradient descent

■ Move parameters against the gradient with respect to loss function

$$
\theta_{i} \leftarrow \theta_{i}-\frac{\partial J}{\partial \theta_{i}}
$$

- Individual loss:

$$
L\left(y, F(x)=(y-F(x))^{2} / 2\right.
$$

■ Minimize overall loss:

$$
J=\sum_{i} L\left(y_{i}, F\left(x_{i}\right)\right)
$$

- $\frac{\partial J}{\partial F\left(x_{i}\right)}=F\left(x_{i}\right)-y$
- Residual $y_{i}-F\left(x_{i}\right)$ is negative gradient

Residuals and gradients

Gradient descent

■ Move parameters against the gradient with respect to loss function

$$
\theta_{i} \leftarrow \theta_{i}-\frac{\partial J}{\partial \theta_{i}}
$$

- Individual loss:

$$
L\left(y, F(x)=(y-F(x))^{2} / 2\right.
$$

- Minimize overall loss:

$$
J=\sum_{i} L\left(y_{i}, F\left(x_{i}\right)\right)
$$

- $\frac{\partial J}{\partial F\left(x_{i}\right)}=F\left(x_{i}\right)-y$
- Residual $y_{i}-F\left(x_{i}\right)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient

Residuals and gradients

Gradient descent

■ Move parameters against the gradient with respect to loss function

$$
\theta_{i} \leftarrow \theta_{i}-\frac{\partial J}{\partial \theta_{i}}
$$

- Individual loss:

$$
L\left(y, F(x)=(y-F(x))^{2} / 2\right.
$$

- Minimize overall loss:

$$
J=\sum_{i} L\left(y_{i}, F\left(x_{i}\right)\right)
$$

- $\frac{\partial J}{\partial F\left(x_{i}\right)}=F\left(x_{i}\right)-y$
- Residual $y_{i}-F\left(x_{i}\right)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient
- Updating F using residual is same as updating F based on negative gradient

Residuals and gradients

- Residuals are a special case of negative gradients - they are gradients for square loss

Residuals and gradients

- Residuals are a special case of negative gradients - they are gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient

Residuals and gradients

- Residuals are a special case of negative gradients - they are gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient

■ Square loss gets skewed by outliers

Residuals and gradients

- Residuals are a special case of negative gradients - they are gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient

■ Square loss gets skewed by outliers

- More robust loss functions with outliers
- Absolute loss $|y-f(x)|$
- Huber loss

$$
L(y, F)= \begin{cases}\frac{1}{2}(y-F)^{2}, & |y-F| \leq \delta \\ \delta(|y-F|-\delta / 2), & |y-F|>\delta\end{cases}
$$

Residuals and gradients

- Residuals are a special case of negative gradients - they are gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient

■ Square loss gets skewed by outliers

- More robust loss functions with outliers
- Absolute loss $|y-f(x)|$
- Huber loss

$$
L(y, F)= \begin{cases}\frac{1}{2}(y-F)^{2}, & |y-F| \leq \delta \\ \delta(|y-F|-\delta / 2), & |y-F|>\delta\end{cases}
$$

- More generally, boosting with respect to gradient rather than just residuals

Residuals and gradients

- Residuals are a special case of negative gradients - they are gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient

■ Square loss gets skewed by outliers

- More robust loss functions with outliers
- Absolute loss $|y-f(x)|$
- Huber loss

$$
L(y, F)= \begin{cases}\frac{1}{2}(y-F)^{2}, & |y-F| \leq \delta \\ \delta(|y-F|-\delta / 2), & |y-F|>\delta\end{cases}
$$

■ More generally, boosting with respect to gradient rather than just residuals

- Given any differential loss function L,
- Start with an initial model F
- Calculate negative gradients

$$
-g\left(x_{i}\right)=\frac{\partial L\left(y_{i}, F\left(x_{i}\right)\right)}{\partial F\left(x_{i}\right)}
$$

- Fit a regression tree h to negative gradients $-g\left(x_{i}\right)$
- Update F to $F+\rho h$
- ρ is the learning rate

Regression Trees

- Predict age based on given attributes

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

Regression Trees

- Predict age based on given attributes

■ Build a regression tree using CART algorithm

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

Regression Trees

■ LikesHats seems irrelevant, yet pops up

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

Regression Trees

- LikesHats seems irrelevant, yet pops up
- Can we do better?

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

Residuals

$\{13,14,15,35\}$
$\{25,49,68,71,73\}$

| PersonID Age | Tree1
 Prediction | Tree1
 Residual |
| :---: | :---: | :---: | :---: |

1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

Residuals

$\{13,14,15,35\}$
$\{25,49,68,71,73\}$

PersonID Age \begin{tabular}{ccc}
Tree1

Prediction

Tree1

Residual
\end{tabular}

	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

Residuals

PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

Residuals

PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

Residuals

Residuals

$\{13,14,15,25,35,49,68,71,73\}$	Per	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~g} \\ & \mathbf{e} \end{aligned}$	Tree 1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
dening $=T$	1	13	19.25	-6.25	-3.567	15.68	-2.683
	2	14	19.25	-5.25	-3.567	15.68	-1.683
	3	15	19.25	-4.25	-3.567	15.68	-0.6833
Tree 1	4	25	57.2	-32.2	-3.567	53.63	-28.63
	5	35	19.25	15.75	-3.567	15.68	+19.32
$\{-6.25,-5.25,-4.25,-32.2,15.75,-8.2,10.8,13.8,15.8\}$	6	49	57.2	-8.2	7.133	64.33	-15.33
	7	68	57.2	10.8	-3.567	53.63	+14.37
	8	71	57.2	13.8	7.133	64.33	+6.667
	9	73	57.2	15.8	7.133	64.33	+8.667

Tree 2

Residuals

$\{13,14,15,25,35,49,68,71,73\}$	$\begin{gathered} \text { Per } \\ \text { son } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~g} \\ & \mathrm{e} \end{aligned}$	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	$\begin{gathered} \text { Co } \\ \text { mbi } \\ \text { ned } \end{gathered}$	Final Resi dual
Gardening	1	13	19.25	-6.25	-3.567	15.68	-2.683
	2	14	19.25	-5.25	-3.567	15.68	-1.683
	3	15	19.25	-4.25	-3.567	15.68	-0.6833
Tree 1	4	25	57.2	-32.2	-3.567	53.63	-28.63
$\{-6.25,-5.25,-4.25,-32.2,15.75,-8.2,10.8,13.8,15.8\}$	5	35	19.25	15.75	-3.567	15.68	+19.32
	6	49	57.2	-8.2	7.133	64.33	-15.33
	7	68	57.2	10.8	-3.567	53.63	+14.37
	8	71	57.2	13.8	7.133	64.33	+6.667
	9	73	57.2	15.8	7.133	64.33	+8.667

Tree 2

Residuals

Tree 2

Residuals

$\{13,14,15,25,35,49,68,71,73\}$	Per son ID	$\begin{aligned} & \mathbf{A} \\ & \mathbf{g} \\ & \mathbf{e} \end{aligned}$	Tree1 Predi ction	Tree 1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
ning	1	13	19.25	-6.25	-3.567	15.68	-2.683
	2	14	19.25	-5.25	-3.567	15.68	-1.683
	3	15	19.25	-4.25	-3.567	15.68	0.6833
Tree 1	4	25	57.2	-32.2	-3.567	53.63	-28.63
	5	35	19.25	15.75	-3.567	15.68	+19.32
$\{-6.25,-5.25,-4.25,-32.2,15.75,-8.2,10.8,13.8,15.8\}$	6	49	57.2	-8.2	7.133	64.33	-15.33
VideoGames=F$\{-8.2,13.8,15.8\}$	7	68	57.2	10.8	-3.567	53.63	+14.37
	8	71	57.2	13.8	7.133	64.33	$+6.667$
	9	73	57.2	15.8	7.133	64.33	+8.667

Tree 2

Gradient Boosting

General Strategy

Tree 1

Tree 2

Gradient Boosting

General Strategy

■ Build tree 1, F_{1}

Tree 1

Tree 2

Gradient Boosting

General Strategy

■ Build tree 1, F_{1}
■ Fit a model to residuals, $h_{1}(x)=y-F_{1}(x)$

Tree 1

Tree 2

Gradient Boosting

General Strategy

■ Build tree 1, F_{1}
■ Fit a model to residuals, $h_{1}(x)=y-F_{1}(x)$
■ Create a new model $F_{2}(x)=F_{1}(x)+h_{1}(x)$

Tree 1

Tree 2

Gradient Boosting

General Strategy

■ Build tree 1, F_{1}
■ Fit a model to residuals, $h_{1}(x)=y-F_{1}(x)$
■ Create a new model $F_{2}(x)=F_{1}(x)+h_{1}(x)$

- Fit a model to residuals, $h_{2}(x)=y-F_{2}(x)$

$$
\{13,14,15,25,35,49,68,71,73\}
$$

Tree 1

Tree 2

Gradient Boosting

General Strategy

■ Build tree 1, F_{1}
■ Fit a model to residuals, $h_{1}(x)=y-F_{1}(x)$
■ Create a new model $F_{2}(x)=F_{1}(x)+h_{1}(x)$

- Fit a model to residuals, $h_{2}(x)=y-F_{2}(x)$

■ Create a new model $F_{3}(x)=F_{2}(x)+h_{2}(x)$

Tree 1

Tree 2

Hyper Parameters

Learning Rate

Tree 1

Tree 2

Hyper Parameters

Learning Rate

- h_{j} fits residuals of F_{j}

Tree 1

Tree 2

Hyper Parameters

Learning Rate

- h_{j} fits residuals of F_{j}
- $F_{j+1}(x)=F_{J}(x)+L R \cdot h_{j}(x)$
- $L R$ controls contribution of residual
- $L R=1$ in our previous example

Tree 1

Tree 2

Hyper Parameters

Learning Rate

- h_{j} fits residuals of F_{j}
- $F_{j+1}(x)=F_{J}(x)+L R \cdot h_{j}(x)$
- $L R$ controls contribution of residual
- $L R=1$ in our previous example

■ Ideally, choose $L R$ separately for each residual to minimize loss function

- Can apply different $L R$ to different leaves

$$
\{13,14,15,25,35,49,68,71,73\}
$$

Tree 1

Gradient Boosting for Classification

■ Assume binary classification

Gradient Boosting for Classification

- Assume binary classification
- Original training outputs are $y \in\{0,1\}$

Gradient Boosting for Classification

- Assume binary classification
- Original training outputs are $y \in\{0,1\}$

■ For each x, classifier produces scores $\left\langle s_{0}, s_{1}\right\rangle$

Gradient Boosting for Classification

- Assume binary classification
- Original training outputs are $y \in\{0,1\}$

■ For each x, classifier produces scores $\left\langle s_{0}, s_{1}\right\rangle$

- Use softmax to convert to probabilities:

For $j \in\{0,1\}, p_{j}=\frac{e^{s_{j}}}{e^{s_{0}}+e^{s_{1}}}$

Gradient Boosting for Classification

- Assume binary classification
- Original training outputs are $y \in\{0,1\}$
- For each x, classifier produces scores $\left\langle s_{0}, s_{1}\right\rangle$
- Use softmax to convert to probabilities:

For $j \in\{0,1\}, p_{j}=\frac{e^{s_{j}}}{e^{s_{0}}+e^{s_{1}}}$

- Use cross entropy as the loss function
$L(y, F)=y \log \left(p_{1}\right)+(1-y) \log \left(p_{0}\right)$

Gradient Boosting for Classification

- Assume binary classification
- Original training outputs are $y \in\{0,1\}$
- For each x, classifier produces scores $\left\langle s_{0}, s_{1}\right\rangle$
- Use softmax to convert to probabilities:

For $j \in\{0,1\}, p_{j}=\frac{e^{s_{j}}}{e^{s_{0}}+e^{s_{1}}}$

- Use cross entropy as the loss function
$L(y, F)=y \log \left(p_{1}\right)+(1-y) \log \left(p_{0}\right)$
- Compute negative gradients

Gradient Boosting for Classification

- Assume binary classification
- Original training outputs are $y \in\{0,1\}$

■ For each x, classifier produces scores $\left\langle s_{0}, s_{1}\right\rangle$

- Use softmax to convert to probabilities:

For $j \in\{0,1\}, p_{j}=\frac{e^{s_{j}}}{e^{s_{0}}+e^{s_{1}}}$

- Use cross entropy as the loss function

$$
L(y, F)=y \log \left(p_{1}\right)+(1-y) \log \left(p_{0}\right)
$$

- Compute negative gradients

■ Fit regression trees to negative gradients to minimize cross entropy

