Lecture 11: 14 February, 2023

Pranabendu Misra Slides by Madhavan Mukund

Data Mining and Machine Learning January–April 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

Overcoming limitations

- Bagging is an effective way to overcome high variance
 - Ensemble models
 - Sequence of models based on independent bootstrap samples
 - Use voting to get an overall classifier
- How can we cope with high bias?

Dealing with bias

- A biased model always makes mistakes
 - Build an ensemble of models to average out mistakes

Dealing with bias

- A biased model always makes mistakes
 - Build an ensemble of models to average out mistakes
- Mistakes should be compensated across models in the ensemble
 - How to build a sequence of models, each biased a different way?
 - Again, we assume we have only one set of training data

- Build a sequence of weak classifiers M_1, M_2, \ldots, M_n on inputs D_1, D_2, \ldots, D_n
 - A weak classifier is any classifier that has error rate strictly below 50%

< A

э

- Build a sequence of weak classifiers M_1, M_2, \ldots, M_n on inputs D_1, D_2, \ldots, D_n
 - A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D
 - Initially all weights equal, D_1
 - Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i

- Build a sequence of weak classifiers M_1, M_2, \ldots, M_n on inputs D_1, D_2, \ldots, D_n
 - A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D
 - Initially all weights equal, D_1
 - Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i
- Also, each model M_i gets a weight α_i based on its accuracy on D_i

- Build a sequence of weak classifiers M_1, M_2, \ldots, M_n on inputs D_1, D_2, \ldots, D_n
 - A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D
 - Initially all weights equal, D_1
 - Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i
- Also, each model M_i gets a weight α_i based on its accuracy on D_i
- Ensemble output
 - Individual classification outcomes are $\{-1, +1\}$
 - Unknown input x: ensemble outcome is weighted sum $\sum \alpha_i M_i(x)$
 - Check if weighted sum is negative/positive

 Initially, all data items have equal weight AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t)$; $e_t \leftarrow \sum D_t(w_i);$ 4. $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5. if $e_1 > \frac{1}{2}$ then 6. $k \leftarrow k-1$: 7. exit-loop 8 else $\beta_t \leftarrow e_t / (1 - e_t);$ $D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases};$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t);$ $e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i)) \neq y_i} D_t(w_i);$ 4. 5. if $e_1 > \frac{1}{2}$ then 6. $k \leftarrow k - 1$: 7. exit-loop 8 else $\beta_{t} \leftarrow e_{t} / (1 - e_{t});$ $D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{i})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t)$; $e_t \leftarrow \sum D_t(w_i);$ 4 $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ if $e_1 > \frac{1}{2}$ then 5. 6. $k \leftarrow k-1;$ 7. exit-loop 8 else $\beta_t \leftarrow e_t / (1 - e_t);$ $D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases};$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t)$; $e_t \leftarrow \sum D_t(w_i);$ 4. $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5. if $e_1 > \frac{1}{2}$ then 6. $k \leftarrow k - 1$: 7. exit-loop 8. else $\begin{array}{c} \beta_t \leftarrow e_t / (1 - e_t); \\ D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases} ;$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t)$; $e_t \leftarrow \sum D_t(w_i);$ 4 $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5. if $e_1 > \frac{1}{2}$ then 6. $k \leftarrow k - 1$: 7. exit-loop 8 else $\begin{array}{c} \beta_t \leftarrow e_t / (1 - e_t); \\ \hline D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases} , \end{array}$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize
- Final classifier

$$f_{\mathsf{final}}(x) = rgmax_{y \in Y} \sum_{t: f_t(x) = y} \log \frac{1}{\beta_t}$$

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t)$; $e_t \leftarrow \sum D_t(w_i);$ 4. $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5. if $e_1 > \frac{1}{2}$ then 6. $k \leftarrow k - 1$: 7. exit-loop 8 else $\beta_t \leftarrow e_t / (1 - e_t);$ $D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases};$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

• Each M_i could be a different type of model

DMML Jan-Apr 2023 11 / 18

э

- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?

- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates

- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates
- Inductively, assume we have selected M_1, \ldots, M_j , with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}

- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates
- Inductively, assume we have selected M_1, \ldots, M_j , with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}
 - Pick model with lowest error rate on D_{j+1} as M_{j+1}
 - Calculate α_{j+1} based on error rate of M_{j+1}
 - Reweight all training data based on error rate of M_{j+1}

- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates
- Inductively, assume we have selected M_1, \ldots, M_j , with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}
 - Pick model with lowest error rate on D_{j+1} as M_{j+1}
 - Calculate α_{j+1} based on error rate of M_{j+1}
 - Reweight all training data based on error rate of M_{j+1}
- Note that same model M may be picked in multiple iterations, assigned different weights α

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line
 - Increase weight of misclassified inputs

- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line
 - Increase weight of misclassified inputs
- Third separator: horizontal line

Final classifier is weighted sum of three weak classifiers

DMML Jan-Apr 2023 18 / 18

э

Final classifier is weighted sum of three weak classifiers

