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Linear regression

m Training input is
{(x1,31), (x2,52), -+ (Xn, yn) }
m Each input x; is a vector (x, ..., xX)
m Add x? = 1 by convention
m y; is actual output

m How far away is our prediction hy(x;) from
the true answer y;?

m Define a cost (loss) function
1< 2
J(0) =5 > (ho(xi) = vi)

i=1

m Essentially, the sum squared error (SSE)

m Divide by n, mean squared error (MSE)
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The non-linear case

m What if the relationship is
not linear?
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The non-linear case

10

m What if the relationship is
not linear?

—— Predictions

m Here the best possible
explanation seems to be a
quadratic

m Non-linear : cross
dependencies

m Input x; : (X, ;)

m Quadratic dependencies:
y = 0o + 01x;, + O2x;, + 911X,-f + 922X,-§ + O12xi, Xi,
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The non-linear case

m Recall how we fit a line 10 —— Predictions
to
[ 1 x; } { 0, }

m For quadratic, add new
coefficients and expand

parameters
to
[1 Xi X’21} 01
)
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The non-linear case

m Input (x;,, x;,) —— Predictions

m For the general quadratic
case, we are adding new
derived “features”

_ 2
Xy = X

_ 2
Xiy = XI-2
Xis = XipXip
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The non-linear case

. - - L 10
m Original input matrix —— Predictions
1 X1, X1,
1 X21 X22
1 X,'1 X,'2
L1 Xm Xny
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The non-linear case

m Expanded input matrix —— Predictions

- 5 o -
1 Xy, X, X3, Xg, XX
2

2
I xo, X2, X3, X5, Xo,X2,
. . 2 2 s
1 x; X Xi o Xg o Xy Xi

2 2
1 Xnp Xnp an XnQ Xny Xy d

m New columns are computed
and filled in from original
inputs
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Exponential parameter blow-up

m Cubic derived features —— Predictions

2., 2.,
Xi2 Xiy s Xi2X13'
X X X2X'

B g2y
Xiy Xiy Xig s

2 2 2

n' Xf2 T3

Xiy Xiny Xiy Xigy XiyXiz,

Xiyr Xipy Xz -
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Higher degree polynomials

m How complex a polynomial

should we try? 10 1 7
300

-2 /

m Aim for degree that
minimizes SSE

m As degree increases,
features explode
exponentially
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m Need to be careful about

. : 10
adding higher degree terms R & g v

-2 /

m For n training points,can
always fit polynomial of
degree (n — 1) exactly

m However, such a curve
would not generalize well to
new data points

m Overfitting — model fits
training data well, performs
poorly on unseen data
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Regularization

m Need to trade off SSE

against curve complexity 10 = J
4

-2 /

m So far, the only cost has
been SSE

m Add a cost related to
parameters (0o, 01,...,0k)

m Minimize, for instance
Z - ) +292

m Second term penalizes curve
complexity
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Regularization

m Variations on regularization
10

m Change the contribution of coefficients 1T 200 ; 1
to the loss function 8-
m Ridge regression: 61
k
" . 2
Coefficients contribute Z Gj 44
j=1
. 24
m LASSO regression:
k
0 . : ; ; :
HP H i ) —2 1 0 1 2 3
Coefficients contribute Z 16} o
j=1

m Elastic net regression:

k
Coefficients contribute Z A1) + )\2912
j=1
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The non-polynomial case

m Percentage of urban

population as a function of 100 ) LS
- o
per capita GDP 0. o ° °
. < o o © @ o
m Not clear what polynomial E 8 ° 0 ° .
would be reasonable o co0s oo I
: | ° :
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United Nations per capita GDP
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The non-polynomial case

m Percentage of urban

population as a function of 100 B o
. o
per capita GDP a o u 5 my
@ o
o
. = - o © o
m Not clear what polynomial c o & 30 ° B
o o o ° 4
would be reasonable D B 0 °od o o,
o ° Oo o° 0o o o 8
E 1 ° & o %% °,0 ¢
m Take log of GDP 2 . B . B
§ ooc?O ) ° 5 9
. el o o
m Regression we are 3 | @ e . °
. . ® o @ §o e 2
computing Is R
o
=0+ 611 g °
y 0 1108 X1 o o R o
8 - oo
4,3‘{381 : ' I 10,655’)3
IPcGDP95
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The non-polynomial case

m Reverse the relationship

m Plot per capita GDP in
terms of percentage of
urbanization

m Now we take log of the
output variable
logy = 0o + 01xa

m Log-linear transformation
m Earlier was linear-log

m Can also use log-log

IPcGDP95
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Regression for classification

m Regression line

m Set a threshold

m Classifier
m Output below threshold : 0 (No) e
m Output above threshold : 1 (Yes)

m Classifier output is a step function
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Smoothen the step

m Sigmoid function

o(z)= |

- 1+e 2

[y

® Input z is output of our
regression

o)
o

N 1
o(z) = 1 + e—(Oo+01x1++0kxi)

\

m Adjust parameters to fix —
horizontal position and steepness
of step
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Logistic regression

m Compute the coefficients?

[y

m Solve by gradient descent /

m Need derivatives to exist

m Hence smooth sigmoid, not
step function

m Check that
o'(z) = 0(2)(1 - o(2))

m Need a cost function to minimize

o)
o

L
\
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MSE for logistic regression and gradient descent

m Suppose we take mean squared error as the loss function.
n

1
C= . Z;(y,- — a(z,-))2, where z; = 0y + 01x;, + tox;,
=
For gradient descent, we co te 0c oc o
m For gradien nt, we compute ——, ——, ——
& PUte 96." 96," 99,
m Consider two inputs x = (x1,x2)
m Forj=1,2,
oc 2 u oy Oo(z) 2 4 Ny Oo(zi) 0z
00; n,z(y’ o(z)) 99,  n“ (o(z) = i) =5, 29;
i=1 i=1
2 n

. (a)TCO = 2_21:(0(2,-) - )/i)a(;(;) g; N i,Z(U(Zi) —yi)o'(z)
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MSE for logistic regression and gradient descent . ..

. OC 2N, s 0C 2, v
m Forj =12, 7891- = ,-E_ (0(zi) — yi)o'(zi)x;, and 99~ n E: (o(zi) — yi)o'(zi)
C o0C oC
m Each term in 301 202 290 is proportional to ¢’(z;)

m Ideally, gradient descent should take large steps when o(z) — y is large

m o(z) is flat at both extremes 1 —

/

m If o(z) is completely wrong,
o(z) =~ (1 —y), we still have
o'(z) =0

m Learning is slow even when current
model is far from optimal

o)
o

-6 —4 -2 0 2 4 6
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Loss function for logistic regression

m Goal is to maximize log likelihood

Let ho(x;) = o(z). So, P(yi =1 x;0) = ho(x;),
P(yi =0|x;0) =1 — hp(x;)

Combine as P(y; | xi;0) = ho(x;)" - (1 — hy(x;))*

m Likelihood: £(0 th X))+ (L= hg(xi))' ™

Log-likelihood: £(0) = " yilog hy(x;) + (1 — yi) log(1 — hy(x;))

m Minimize cross entropy: — Zy,- log hg(xi) + (1 — y;i) log(1 — hg(x;))
i=1
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Cross entropy and gradient descent

m C=—[yln(c(2)) + (1 —y)In(1 - o(2))]

L0C_9Cor [y 1yl

00; 0o 08;  |o(z) 1-—o(2)] 90;
vy 1oy 000z
o(z) 1—o0(z)] 0z 0;

= — _ y — l_y O'/ZX'
= @ 1_0(2)} (20
Y1 - o(2) — (1 - y)o(2)

=T e e@) }"(Z)Xf
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Cross entropy and gradient descent . ..

Recall that 0/(z) = o(z)(1 — o(2))

Therefore, g;j = -yl -0o(2)) = (1= y)o(2)]lx

= —ly —yo(z) —o(z) + yo(z)]x

Similarly, SQC; =(o(z) —y)

m Thus, as we wanted, the gradient is proportional to o(z) — y

The greater the error, the faster the learning rate
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