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Linear regression

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i )

Add x0i = 1 by convention

yi is actual output

How far away is our prediction hθ(xi ) from
the true answer yi?

Define a cost (loss) function

J(θ) =
1

2

n∑
i=1

(hθ(xi )− yi )
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)
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The non-linear case

What if the relationship is
not linear?
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The non-linear case

What if the relationship is
not linear?

Here the best possible
explanation seems to be a
quadratic

Non-linear : cross
dependencies

Input xi : (xi1 , xi2)

Quadratic dependencies:

y = θ0 + θ1xi1 + θ2xi2 + θ11x
2
i1

+ θ22x
2
i2

+ θ12xi1xi2
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The non-linear case

Recall how we fit a line[
1 xi1

] [ θ0
θ1

]

For quadratic, add new
coefficients and expand
parameters[

1 xi1 x2i1
]  θ0

θ1
θ2


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The non-linear case

Input (xi1 , xi2)

For the general quadratic
case, we are adding new
derived “features”

xi3 = x2i1

xi4 = x2i2

xi5 = xi1xi2
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The non-linear case

Original input matrix

1 x11 x12
1 x21 x22
· · ·

1 xi1 xi2
· · ·

1 xn1 xn2


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The non-linear case

Expanded input matrix

1 x11 x12 x211 x212 x11x12

1 x21 x22 x221 x222 x21x22
· · ·

1 xi1 xi2 x2i1 x2i2 xi1xi2
· · ·

1 xn1 xn2 x2n1 x2n2 xn1xn2


New columns are computed
and filled in from original
inputs
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Exponential parameter blow-up

Cubic derived features

x3i1 , x3i2 , x3i3 ,

x2i1xi2 , x2i1xi3 ,

x2i2xi1 , x2i2xi3 ,

x2i3xi1 , x2i3xi2 ,

xi1xi2xi3 ,

x2i1 , x2i2 , x2i3 ,

xi1xi2 , xi1xi3 , xi2xi3 ,

xi1 , xi2 , xi3 .
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Higher degree polynomials

How complex a polynomial
should we try?

Aim for degree that
minimizes SSE

As degree increases,
features explode
exponentially
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Overfitting

Need to be careful about
adding higher degree terms

For n training points,can
always fit polynomial of
degree (n − 1) exactly

However, such a curve
would not generalize well to
new data points

Overfitting — model fits
training data well, performs
poorly on unseen data
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Regularization

Need to trade off SSE
against curve complexity

So far, the only cost has
been SSE

Add a cost related to
parameters (θ0, θ1, . . . , θk)

Minimize, for instance

1

2

n∑
i=1

(zi − yi )
2 +

k∑
j=1

θ2j

Second term penalizes curve
complexity
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Regularization

Variations on regularization

Change the contribution of coefficients
to the loss function

Ridge regression:

Coefficients contribute
k∑

j=1

θ2j

LASSO regression:

Coefficients contribute
k∑

j=1

|θj |

Elastic net regression:

Coefficients contribute
k∑

j=1

λ1|θj |+ λ2θ
2
j
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The non-polynomial case

Percentage of urban
population as a function of
per capita GDP

Not clear what polynomial
would be reasonable
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The non-polynomial case

Percentage of urban
population as a function of
per capita GDP

Not clear what polynomial
would be reasonable

Take log of GDP

Regression we are
computing is
y = θ0 + θ1 log x1
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The non-polynomial case

Reverse the relationship

Plot per capita GDP in
terms of percentage of
urbanization

Now we take log of the
output variable
log y = θ0 + θ1x1

Log-linear transformation

Earlier was linear-log

Can also use log-log

Madhavan Mukund Lecture 8: 2 February, 2023 DMML Jan–Apr 2023 16 / 24



Regression for classification

Regression line

Set a threshold

Classifier

Output below threshold : 0 (No)

Output above threshold : 1 (Yes)

Classifier output is a step function
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Smoothen the step

Sigmoid function

σ(z) =
1

1 + e−z

Input z is output of our
regression

σ(z) =
1

1 + e−(θ0+θ1x1+···+θkxk )

Adjust parameters to fix
horizontal position and steepness
of step
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Logistic regression

Compute the coefficients?

Solve by gradient descent

Need derivatives to exist

Hence smooth sigmoid, not
step function

Check that
σ′(z) = σ(z)(1− σ(z))

Need a cost function to minimize
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MSE for logistic regression and gradient descent

Suppose we take mean squared error as the loss function.

C =
1

n

n∑
i=1

(yi − σ(zi ))2, where zi = θ0 + θ1xi1 + θ2xi2

For gradient descent, we compute
∂C

∂θ1
,
∂C

∂θ2
,
∂C

∂θ0
Consider two inputs x = (x1, x2)

For j = 1, 2,

∂C

∂θj
=

2

n

n∑
i=1

(yi − σ(zi )) · −∂σ(zi )

∂θj
=

2

n

n∑
i=1

(σ(zi )− yi )
∂σ(zi )

∂zi

∂zi
∂θj

=
2

n

n∑
i=1

(σ(zi )− yi )σ
′(zi )xij

∂C

∂θ0
=

2

n

n∑
i=1

(σ(zi )− yi )
∂σ(zi )

∂zi

∂zi
∂θ0

=
2

n

n∑
i=1

(σ(zi )− yi )σ
′(zi )
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MSE for logistic regression and gradient descent . . .

For j = 1, 2,
∂C

∂θj
=

2

n

n∑
i=1

(σ(zi )− yi )σ
′(zi )x

i
j , and

∂C

∂θ0
=

2

n

n∑
i=1

(σ(zi )− yi )σ
′(zi )

Each term in
∂C

∂θ1
,
∂C

∂θ2
,
∂C

∂θ0
is proportional to σ′(zi )

Ideally, gradient descent should take large steps when σ(z)− y is large

σ(z) is flat at both extremes

If σ(z) is completely wrong,
σ(z) ≈ (1− y), we still have
σ′(z) ≈ 0

Learning is slow even when current
model is far from optimal
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Loss function for logistic regression

Goal is to maximize log likelihood

Let hθ(xi ) = σ(zi ). So, P(yi = 1 | xi ; θ) = hθ(xi ),
P(yi = 0 | xi ; θ) = 1− hθ(xi )

Combine as P(yi | xi ; θ) = hθ(xi )
yi · (1− hθ(xi ))1−yi

Likelihood: L(θ) =
n∏

i=1

hθ(xi )
yi · (1− hθ(xi ))1−yi

Log-likelihood: `(θ) =
n∑

i=1

yi log hθ(xi ) + (1− yi ) log(1− hθ(xi ))

Minimize cross entropy: −
n∑

i=1

yi log hθ(xi ) + (1− yi ) log(1− hθ(xi ))
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Cross entropy and gradient descent

C = −[y ln(σ(z)) + (1− y) ln(1− σ(z))]

∂C

∂θj
=
∂C

∂σ

∂σ

∂θj
= −

[
y

σ(z)
− 1− y

1− σ(z)

]
∂σ

∂θj

= −
[

y

σ(z)
− 1− y

1− σ(z)

]
∂σ

∂z

∂z

∂θj

= −
[

y

σ(z)
− 1− y

1− σ(z)

]
σ′(z)xj

= −
[
y(1− σ(z))− (1− y)σ(z)

σ(z)(1− σ(z))

]
σ′(z)xj
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Cross entropy and gradient descent . . .

∂C

∂θj
= −

[
y(1− σ(z))− (1− y)σ(z)

σ(z)(1− σ(z))

]
σ′(z)xj

Recall that σ′(z) = σ(z)(1− σ(z))

Therefore,
∂C

∂θj
= −[y(1− σ(z))− (1− y)σ(z)]xj

= −[y − yσ(z)− σ(z) + yσ(z)]xj

= (σ(z)− y)xj

Similarly,
∂C

∂θ0
= (σ(z)− y)

Thus, as we wanted, the gradient is proportional to σ(z)− y

The greater the error, the faster the learning rate
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